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ABSTRACT
We modified the “Daisyworld” model of Watson and Lovelock to consider the energy balance of vegetation with differing
potential to evaporate water vapour across a 2-D landscape. High-resolution spatial fields of surface temperature, latent
heat exchange and net radiation are computed using cellular automata (CA). The CA algorithm considers competition
between actively transpiring “wet daisies” and “dry daisies” for bare ground through temperature-dependent birth and
death probabilities.

This paper examines how differences in biophysical properties (e.g. surface albedo and surface conductance) affect
the composition and heterogeneity of the landscape and its energy exchange. And with high resolution and gridded
spatial information we evaluate bias errors and scaling rules associated with the subgrid averaging of the nonlinear
functions used to compute surface energy balance.

Among our key findings we observe that there are critical conditions, associated with albedo and surface resistance,
when wet or dry/dark or bright “daisies” dominate the landscape. Second, we find that the heterogeneity of the spatial
distribution of “daisies” depends on initial conditions (e.g. a bare field versus a random assemblage of surface classes).
And third, the spatial coefficient of variation of land class, latent heat exchange, net radiation and surface temperature
scale with the exponential power of the size of the averaging window.

Though conceptual in nature, the 2-D “wet/dry Daisyworld” model produces a virtual landscape whose power-law
scaling exponent resembles the one derived for the spatial scaling of a normalized difference vegetation index for a
heterogeneous savanna ecosystem. This observation is conditional and occurs if the initial landscape is bare with two
small colonies of “wet” and “dry” daisies.

Bias errors associated with the nonlinear averaging of the surface energy balance equation increase as the coefficient of
variation of the surface properties increases. Ignoring the subgrid variability of latent heat exchange produces especially
large bias errors (up to 300%) for heterogeneous landscapes. We also find that spatial variations in latent heat exchange,
surface temperature and net radiation, derived from our “Daisyworld” model, scale with the spatial variation in surface
properties. These results suggest that we may be able to infer spatial patterns of surface energy fluxes from remote sensing
data of surface features. “Wet/dry Daisyworld”, therefore, has the potential to provide a link between observations of
landscape heterogeneity, deduced from satellites, and their interpretation into spatial fields of latent and sensible heat
exchange and surface temperature.

1. Introduction

Numerical models and remote sensing instruments borne on
satellites are among the tools employed by biogeoscientists to
assess weather, climate and atmospheric chemistry. Numerical
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models calculate the time rate of change of meteorological
scalars by quantifying both the fluxes of mass and energy into
and out of the atmosphere and the advection across lateral and
vertical boundaries (McGuffie and Henderson-Sellers, 1997;
Sellers et al., 1997). These calculations hinge upon informa-
tion on the composition, structure and functional capacity (e.g.
minimal stomatal resistance and maximal photosynthesis rates)
of the Earth’s terrestrial biosphere. Today, some information on
surface structural and functional properties and flux boundary
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conditions can be inferred from space (Running et al., 2004;
Ustin et al., 2004), while other information is gleaned from field
observations provided by ecological and micrometeorological
networks (Canadell et al., 2000; Baldocchi et al., 2001).

Numerical models and many remote sensing instruments view
the Earth’s surface at discrete and rather coarse spatial scales.
In the case of land–atmosphere models, the horizontal length
scale of individual grid cells typically range between 1 and
50 km on a side for mesoscale models (Avissar, 1995; Pyles et al.,
2003) and 100 to 500 km on a side for global models (Dickinson,
1995; Sellers et al., 1997). Satellite-based sensors that periodi-
cally observe the Earth’s surface, like the Advanced Very High
Resolution Radiometer (AVHRR) and the Moderate Resolution
Imaging Spectroradiometer (MODIS), have pixel resolutions of
the order of 250 to 1000 m (Running et al., 1995, 1999). Subgrid
scale information, within 1 km pixels, can be obtained using
higher-resolution sensors (1 to 4 m) like IKONOS (Morisette
et al., 2003) or aircraft-mounted sensors like the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) (Ustin et al., 2004).
But these high-resolution sensors tend to be employed to view
the Earth’s surface episodically rather than periodically.

Landscapes, whose horizontal dimensions correspond with
the grid size of a land–atmosphere model or coarse resolution
satellite sensors, are rarely uniform. Typical grid size regions
are comprised of a mosaic of land patches, each with a different
potential to control or influence momentum, mass and energy
transfer (Raupach, 1991; Bonan et al., 1993; Pielke et al., 1998).
Of prime concern is how the spatial variability of surface fluxes,
within and among constituent patches of a landscape, are inte-
grated and averaged at the scale of the model grid (Raupach,
1991; McNaughton, 1994; Raupach and Finnigan, 1995; Avis-
sar, 1995; Bunzli and Schmid, 1998; Brunsell and Gillies, 2003;
Lyons and Halldin, 2004).

To quantify the spatial average of a model’s finest grid scale
we must evaluate the expected value E[ ] of a set of nonlinear
functions that represent surface energy flux densities F( ). These
functions are dependent upon independent variables a that vary
across a spatial domain (x, y) and are bounded within a finite
extent, denoted by X and Y . Conceptually, E[F(a(x, y))] is de-
pendent upon the integration of the function across the extent
of the independent variable and weighted by its probability den-
sity function p(a(x, y). This integral is then integrated across the
spatial domain, X, Y , such that:

E[F(a(x, y))] =
∫ Y

0

∫ X

0

∫ ∞

−∞
F(a(x, y))p(a(x, y)) da dx dy. (1)

Due to the complexity of evaluating eq. (1), it is common prac-
tice to evaluate a spatially averaged surface energy flux density,
F(〈a〉), in terms of the spatial mean of an independent value,
〈a〉. Bias errors occur when the expected values of the spatially
averaged energy flux density E[F(a(x , y))] do not equal the en-
ergy flux densities evaluated as a function of the mean of the
forcing variable F(〈a〉). The magnitude of this bias error, for a

single independent variable a, can be estimated using a Taylor’s
expansion series, truncated at the second order:

E[F(a)] ≈ F(〈a〉) + 1

2

∂2 F(〈a〉)
∂a2

σ 2
a . (2)

On inspection of eq. (2) we conclude that the bias error
E[F(a)] − F(〈a〉) is a function of the second partial derivative
of the function F(a) with respect to a, and the spatial variance of
the independent variable σ 2

a . In summary, the spatial average of
surface energy fluxes is prone to bias when the functional rep-
resentation of the energy flux density is a nonlinear function of
an environmental or biological forcing variable (e.g. albedo, sur-
face and aerodynamic resistance, humidity deficits and available
energy) that possesses a non-Gaussian probability distribution in
space (Brunsell and Gillies, 2003). The magnitude of this bias er-
ror will vary with the spatial resolution of the averaging domain
because the spatial variance of the variable σ 2

a is a power-law
function of the size of the spatial averaging window � (Levin,
1992).

Real-world analysis of subgrid averaging and the assessment
of flux-weight resistances (Raupach, 1991; McNaughton, 1994)
is hampered due to the lack of high-resolution information on
spatial variations of surface energy fluxes. Rarely, for example,
do we have information on the spatial variances of λE , Rn, and
H or components such as surface temperature, T s, and the aero-
dynamic and surface resistances, R a and R s.

Tower-based eddy flux measurements produce direct mea-
surements of energy exchange (Baldocchi, 2003) but they
‘smear’ the flux information that is contained within a spatial
footprint of several hundred to a thousand metres square in area
(Schmid, 2002). Low-level aircraft flights of flux instrumenta-
tion can produce some information on the spatial variation of
energy flux densities and meteorological variables (Crawford
et al., 1996; Desjardins et al., 1997; Brunsell and Gillies, 2003;
Kustas et al., 2003; Lyons and Halldin, 2004). However, aircraft
are flown episodically, and generally along horizontal transects.
Furthermore, they act like moving towers, so they too produce
a smeared view of underlying latent and sensible energy fluxes
(Ogunjemiyo et al., 2003). Remote sensing instrument systems,
like IKONOS, can produce high-resolution information on some
surface properties (at a scale between 1 and 4 m). But remote
sensing produces indirect information on surface characteris-
tics and these are used to infer surface energy fluxes (Sellers,
1987; Brunsell and Gillies, 2003; Running et al., 2004). So most
available methods—tower and airborne eddy flux measurements
and high-resolution remote sensing instruments—have a limited
ability to quantify the subgrid variability of surface energy fluxes.

An alternative approach to the experimental study of the sub-
grid scale variability of surface fluxes involves a theoretical
analysis that couples models employed by landscape ecologists
to simulate spatial patterns of vegetation with biophysical al-
gorithms used by micrometeorologists. We start with the con-
ceptual model “Daisyworld” (Watson and Lovelock, 1983) and
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modify it to consider latent and sensible heat exchange from
vegetated surfaces. We then take this theory, which we denote
“wet/dry Daisyworld”, and couple it with 2-D cellular automata
(CA) theory (von Bloh et al., 1999), to create 2-D energy flux
fields over virtual landscapes of “wet” and “dry” daisies which
differ in their albedos and surface conductances. Within these
virtual landscapes, which may be spatially heterogeneous or ho-
mogeneous, we are able to compute surface temperature and
sensible and latent heat fluxes explicitly and at high spatial
resolution.

Our overarching goal is to use the 2-D “wet/dry Daisy-
world” model to investigate theoretical questions associated with
vegetation–atmosphere interactions. Key questions we address
in this paper include:

(1) Are there critical values of albedo and surface resistance
that cause the composition of the landscape to switch between
different dominant vegetation classes?

(2) If such switches occur, how do they alter the energy ex-
change components of a spatially integrated surface?

(3) What are the bias errors associated with computing en-
ergy exchange over heterogeneous surfaces as a function of a
mean forcing variable?

(4) Does the spatial variation of surface energy fluxes scale
with spatial variation in surface properties?

Our intent is to use this information to derive theoretical scal-
ing algorithms that may link surface properties detected with
satellite-borne sensors with the surface energy fluxes they infer.
In other words, we endeavour to define scaling laws that trans-
form coarse to fine-scale information on surface heterogeneity
into energy fluxes that reflect the effects of high-resolution spa-
tial variation on aggregated energy fluxes. While this analysis
is theoretical, it has relevance to our understanding of subgrid
parametrization of energy exchange over heterogeneous land-
scapes like savannas, an ecologically important plant functional
type that occupies over 20% of the terrestrial biosphere (Scholes
and Archer, 1997; Baldocchi et al., 2004).

2. Theoretical background

2.1. Daisyworld

The “Daisyworld” model was developed by Watson and Love-
lock (1983) to examine regulation of the Earth’s climate by the
terrestrial biosphere, as the luminosity of the sun increased over
geological time. During the past 20 yr numerous authors have
modified “Daisyworld” to consider additional components. For
example, “Daisyworld” has been customized to consider density-
dependent (Lenton and Lovelock, 2001) and interspecific com-
petition (Cohen and Rich, 2000), competition in two dimensions
(von Bloh et al., 1997, 1999; Lenton and van Oijen, 2002), mu-
tations (Saunders, 1994) and latitudinal variations in solar inso-
lation (Ackland et al., 2003; Adams et al., 2003). Investigators

have also examined the chaotic properties of “Daisyworld” (Zeng
et al., 1990) and whether or not it acts as a complex adaptive sys-
tem (Lenton and van Oijen, 2002).

The original “Daisyworld” model considers competition for
bare space by dark and bright vegetation, i.e. “daisies” with dif-
ferent albedos. The fractional area A of bright or dark “daisies”
is evaluated with a simple first-order differential equation that is
a function of its current state, A, and a proportionality constant,
K:

dA

dt
= K (T )A. (3)

The proportionality constant, K, represents a balance between
temperature-dependent birth, B, of “daisies” in bare spaces (Abare

is the fractional area of bare space) and death, d, in occupied
spaces. In practice, the constant K is down-regulated as temper-
ature gets too hot or cold and decreases as the fractional area of
open space decreases:

K (T ) = Abare B(T ) − d. (4)

The birth rate B is assumed to be a parabolic function of absolute
temperature T:

B(T ) = 1 − a(Tref − T )2. (5)

The death rate, d, is typically held constant, but it can be a func-
tion of temperature or density, too.

To quantify the time rate of change in the fractional area of
the dark (Adark) and bright (Abright) “daisies” and bare ground
(Abare) three coupled differential equations are evaluated:

dAbright(t)

dt
= Abright(t)[Abare(t)B(T ) − d(t)] (6)

dAdark(t)

dt
= Adark(t)[Abare(t)B(T ) − d(t)] (7)

Abare = 1 − Abright − Adark. (8)

The albedo of the Earth, α, is computed as an area-weighted
function of the dark and bright daisies and bare ground:

α = Adarkαdark + Abrightαbright + Abareαbare. (9)

The surface temperature of the Earth, T earth, is computed by
assuming there is a radiative balance between net incoming solar
radiation and the long-wave energy lost:

σ T 4
earth = L S0

4
(1 − α). (10)

In eq. (10), L is the sun’s relative luminosity, which is allowed to
change over geological time, and S0 is the sun’s energy flux den-
sity (solar constant) at the top of the atmosphere (1365 W m−2).
The factor of 4 is introduced because the Earth’s disc intercepts
sunlight, but its entire surface radiates energy (πr 2/4πr 2). Fi-
nally, σ is the Stefan–Boltzmann constant (5.67 × 10−8 J m−2

K−4 s−1).
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To compute the Earth’s temperature, “Daisyworld” evaluates
the sum of long-wave energy loss for each component of the
surface (L ↑):

L ↑=
∑

σ Ai T
4

i . (11)

This requires that we evaluate the surface temperature of each
component

T 4
dark = L S0

4σ
(α − αdark) + T 4

earth (12)

T 4
bright = L S0

4σ
(α − αbright) + T 4

earth. (13)

2.2. Wet/dry Daisyworld

In real ecosystems, leaves transpire and convect heat, causing
the surface temperature of a moist system to differ considerably
from that of a dry system (Monteith and Unsworth, 1990). To
account for the effects of latent and sensible heat exchange on
the surface energy balance we expanded the representation of
the surface energy balance that is within “Daisyworld”. The ap-
proach computes latent and sensible heat exchange of the vege-
tation and soil explicitly, by coupling the surface energy balance
with algorithms for sensible and latent heat exchange that are
based on Ohm’s law; energy flux densities are proportional to
the potential difference in the scalar and are inversely propor-
tional to the sum of resistances. The formal derivation produces
quadratic formulae for latent heat exchange, a + bλE + cλE2,
and surface temperature, d + eTs + f T 2

s , that we solve ana-
lytically (Paw and Gao, 1988; Baldocchi et al., 1999). We then
specify surface resistances and albedos for the “wet” and “dry”
daisies, respectively, and specify whether the soil is wet or dry,
dark or bright. Details of the energy balance computations are
shown in the Appendix.

2.3. Two-dimensional Daisyworld

Horizontal competition for bare spaces by “wet” and “dry”
daisies is computed using CA (von Bloh et al., 1997). CA com-
putation schemes originated in the 1950s and 1960s with John
von Neumann and J. H. Conway (Gardner, 1971). CA mod-
els are rule-based and have reaction–diffusion properties simi-
lar to those simulated with sets of partial differential equations
(Cronhort, 2000). Consequently, they are able to generate com-
plex spatial patterns and produce scaling properties that mimic
those observed in nature (Fernandez-Illescas and Rodriguez-
Iturbe, 2004; Rietkerk et al., 2004).

The computational domain is defined by a matrix of 512 by
512 cells in size. We evaluate the temporal dynamics of each cell
in the domain on the basis of von Neumann’s neighbourhood (a
five-cell neighbourhood, consisting of a central cell and four or-
thogonal neighbours; alternatively one can implement Moore’s

neighbourhood which considers orthogonal and diagonal neigh-
bours (Wolfram, 2002)).

The set of rules that determine the fate of each cell is proba-
bilistic. If a cell is bare, we call a random number generator and
compare the random number with the probability of birth. If the
birth rate B(T) exceeds the random number, then a “daisy” is
born. The composition of the “daisy” in the central cell assumes
the identity of one of its adjacent neighbours, chosen at random.
If a cell is occupied, it either remains the same or dies. Death is
decided by comparing another random number with the proba-
bility of death. Our computations are based on a random number
algorithm that repeats a random sequence only once in 231 calls
(Press et al., 1988).

We used a Gaussian curve to describe the probability of birth
(Lenton and Lovelock, 2001). This function depends on absolute
surface temperature, T, it peaks at 295.5 K and equals zero at 273
and 313 K. Its functional form is:

B = exp
[ − 0.01(295.5 − T)2

]
. (14)

We assume that the probability of death is an exponential func-
tion of temperature that ranges between 0 and 1 as absolute
surface temperature increases from 273 to 315 K:

d = exp[50(T − 315)/315]. (15)

We also consider density-dependent death. The “daisy” in a cen-
tral cell dies if all four adjacent neighbouring cells are occupied
with similar daisies.

After the identity of the cell is determined, we assign it prop-
erties (i.e. albedo and surface resistance) that correspond to its
class and then compute its surface energy balance. The whole
domain is updated in a synchronous manner; the state of adjacent
cells is associated with its state during the previous time-step, as
opposed to an asynchronous approach that consists of new and
old neighbouring cells as one marches across the grid domain).
This version of “wet/dry Daisyworld” does not consider lateral
advection of heat between cells. Across patches of vegetation,
net lateral energy exchange is typically small compared with
the vertical energy exchange across vegetation edges (Baldoc-
chi and Rao, 1995; Park and Paw, 2004). And at the landscape
scale, many studies indicate that the checkerboard approach to
assessing subgrid variability of energy exchange has merit be-
cause horizontal energy advection is secondary compared with
vertical energy exchange when the scales of the heterogeneous
patches are smaller than the depth of the planetary boundary
layer, e.g. 1 to 3 km (Raupach, 1991; Bunzli and Schmid, 1998).
Nevertheless, this model framework can be adapted to consider
lateral advection, as has been done by others at global scales
(Adams et al., 2003). This model framework also has the flex-
ibility to consider (1) feedbacks between energy exchange and
the diurnal development of the planetary boundary layer, (2) the
effects of aerodynamically smooth and rough “daisies” and (3)
the effects of varying soil heat flux for vegetated and bare cells.
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Table 1. Values of albedo, α, and surface resistance, R s, assigned to
wet and dry “daisies” and the bare ground for the reference case

Parameter Wet “daisies” Dry “daisies” Bare ground

α 0.15 0.15 0.25
R s (s m−1) 50 1000 2000

Table 2. Meteorological conditions assigned to the
reference cases. Variables include solar radiation Rg, air
temperature T air, vapour pressure ea, soil heat flux density
G soil and wind speed u

Metric value

Rg (W m−2) 341
T air (◦C) 25
ea (kPa) 0.1
G soil (W m−2) 50
u (m s−1) 3

Two initial conditions are considered in this paper. One con-
dition seeds the initial model domain randomly with wet, bare
and dry “daisies”. The other initial condition assumes that all
spaces in the domain are bare, except for patches in the diagonal
corners; one corner contains a cluster of wet “daisies” and the
other corner contains a cluster of dry “daisies”. The first initial
condition is analogous to gap dynamics that are associated with
closed forest stands. The second initial condition is analogous
to the regeneration of a landscape after a disturbance, like fire or
logging.

Tables 1 and 2 list the parameter values and meteorologi-
cal conditions that were used for the reference model runs. The
flux density of solar radiation represents the mean value inci-
dent to the Earth (1365 W m−2/4). This value also approximates
the daily mean value for a typical mid-latitude site during sum-
mer, Rg, whose maximum value approaches 1070 W m−2 and
the daily course of which approximates a sinusoidal function,
Rg = Rg,max/π .

Preliminary tests were conducted to examine the numerical
stability of the computational system. The CA model was run
until the change with time of the fractional area of bare cells was
equal to zero. For the initial condition when most cells are bare,
equilibrium typically occurs after 800 to 1200 time-steps (Fig. 1).
For the initial condition that consists of a random distribution of
“wet”, “dry” and bare cells, only 20 to 50 iterations are needed
to achieve equilibrium.

3. Results

3.1. The roles of albedo and surface resistance
on the composition of Daisyworld

The relative proportion of wet and dry “daisies” and bare soil,
at steady-state conditions, depends upon the surface parameters

Fig. 1. Time change in bare, wet and dry fractional area of “daisies”
for assorted combinations in albedo and surface resistance. These
computations pertain to the case when the initial field was bare, except
for clumps of vegetation in each corner of the 2-D domain.

assigned to both “daisies” and bare soil, as well as the initial
meteorological conditions. For example, varying the albedo of
the dry “daisies” has a nonlinear impact on the fractional ar-
eas occupied by wet and dry “daisies” at equilibrium (Fig. 2).
When the dry “daisies” are relatively dark (α < 0.5), the wet
“daisies” dominate the population, for both sets of initial con-
ditions. As the surface becomes brighter (α > 0.5), the fraction
of wet “daisies” decreases and the dry fraction increases if the
initial matrix consists of randomly distributed vegetation. In con-
trast, wet “daisies” out-compete dry “daisies” for the range of
albedo values if the initial field is bare and dark. This behaviour
also holds if we vary the albedo of the wet “daisies” (data not
shown).

Fig. 2. The fractional area of wet and dry “daisies”. Computations were
performed by varying the albedo of the dry “daisy” class. Computer
runs were made for the case when the initial field was bare and when it
was randomly seeded with wet and dry “daisies” and bare soil.
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Fig. 3. The fractional area of wet and dry “daisies”. Multiple
computations were performed varying the surface resistance of the dry
“daisy” class. Computer runs were made for the case when the initial
field was bare and when it was randomly seeded with wet and dry
‘daisies and bare soil.

Causing the dry “daisies” to become increasingly wetter, by
reducing their surface resistance, significantly alters the propor-
tion of wet and dry “daisies” if the initial field is seeded ran-
domly (Fig. 3). As R s(dry) drops below 800 s m−1 the spatial
field changes from being dominated by wet “daisies” (>70%)
to a field that has an even mix of “wet” and “dry” daisies. This
switch does not occur when the initial conditions are bare, as
would occur when a landscape is disturbed by fire or logging.
In the second case, wet, dark “daisies” dominate the spatial field
for all combinations of competing dry “daisies”.

Varying the combination of albedo and the resistance of the
wet “daisies” produces a different proportion of wet and dry
“daisies” (Fig. 4). If the initial field is random, we find that wet,
dark “daisies” dominate dark dry “daisies” in an increasing fash-
ion as Rwet increases. For the alternative situation, an increase in
Rwet causes the fraction of wet, dark “daisies” to decrease and
the fraction of dry, bright “daisies” to increase. We also observe
that dry, bright “daisies” dominate the spatial domain when Rwet

is greater than 1000 s m−1. In this situation, the specification of
albedo overrides that of surface resistance.

Because the birth and death rates are nonlinear functions of
surface temperature, varying the air temperature has a marked
impact on the competition between the two classes for space.
The populations of wet and dry “daisies” comprise less than
50% of the land area for cool temperatures (T air ≤ 10◦C). At
temperatures greater than 10◦C the landscape is dominated by
wet “daisies” until the air temperature reaches 35◦C (Fig. 5),
then the populations of both wet and dry “daisies” plummet.

3.2. Two-dimensional Daisyworld

The CA version of “Daisyworld” produces complex spatial pat-
terns in surface class, latent heat exchange and surface temper-

Fig. 4. The fractional area of wet and dry “daisies”. Multiple
computations were performed varying the surface resistance of the wet
“daisy” class and by assuming either low (0.15) or high (0.75)
reflectivity for the dry “daisies”. Computer runs were made for the case
when the initial field was randomly seeded with wet and dry “daisies”
and bare soil.

Fig. 5. The fractional area of wet and dry “daisies”. Multiple
computations were performed varying the air temperature of the
domain. Computer runs were made for the case when the initial field
was bare and when it was randomly seeded with wet and dry “daisies”
and bare soil.

ature. The spatial field of latent heat exchange, for example,
exhibits coherent fields, associated with interconnected paths of
similar vegetation and surface properties (Fig. 6). Qualitatively,
the spatial field shown in Fig. 6 resembles a savanna (see Sec-
tion 4) and the spatial fields computed with other CA savanna
models (Jeltsch et al., 1996; von Bloh et al., 1999; van Wijk
and Rodriguez-Iturbe, 2002; Fernandez-Illescas and Rodriguez-
Iturbe, 2004; Rietkerk et al., 2004).

To quantify the geostatistical features of the 2-D energy
flux and scalar domains we compute the spatial coefficient of
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Fig. 6. Visualization of the 2-D field of latent heat exchange (W m−2).
This case assumed an initial field that was random.

variation for cell classification, latent heat exchange and surface
temperature as a function of an averaging window, � (Figs. 7,
8a and 8b). In general, a log–log function describes the relation-
ship between the dependent (the spatial coefficient of variation)
and the independent (size of the averaging window) variables as
long as the length scale of the window is less than the integral
correlation length scale of the spatial field (Levin, 1992):

log

(
σa

E[a]

)
= b0 + b1 log(�). (16)

In eq. (16), b0 is the intercept and b1 is the regression slope. The
log transformation of eq. (16) produces a power-law relationship
where the regression coefficient, b1, corresponds to the power-
law exponent:

σa

E[a]
= 10b0�b1 . (17)

For reference, a spatial field is random when σ 2
a/E[a] is equal

to 1, it has a regular distribution when σ 2
a/E[a] is less than 1 and

it is clumped when σ 2
a/E[a] is greater than 1 (Nilson, 1971). In

principle, the power-law exponent approaches zero as the degree
of spatial correlation increases, as in a homogeneous field, and

Fig. 7. Scaling of the coefficient of variation of cell class (wet, dry or
bare vegetation) with the size of the averaging window. To compute
spatial means and variances, wet cells were coded as 0, dry cells were
coded as 1 and bare cells were assigned a value of 2. The data are
plotted on a log–log scale.

Fig. 8. The scaling of the spatial coefficient of variation of a surface
temperature (a) and latent heat exchange (b) as a function of the
averaging window. These computations were for the reference case
(Tables 1 and 2).
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it approaches −1.0 as the spatial correlation approaches zero, as
with a random field (Levin, 1992).

We quantify the spatial variation in vegetation class by assign-
ing cells with wet leaves a value of zero, cells with dry leaves a
value of 1 and bare soil a value of 2 (Fig. 7). The spatial coeffi-
cient of variation of cell identity has a power-law dependency on
the averaging window size. For this case, windowed-averaging
(1 to 256 m) produces a power-law exponent of −1.05. The
coefficient of variation, derived from assigning numerical val-
ues to the wet, dry and bare cells, decreases from 58%, when a
1 m averaging window is used, to about 0.15%, when a 256 m
averaging window is employed.

A power-law scaling function also describes how the spatial
coefficient of variation of surface temperature and latent heat
exchange changes with size of the averaging window. For this
case, the power-law exponent is −1.02 when the coefficient of
variation for surface temperature or latent heat exchange is the
dependent variable. From these functions we deduce that that
the coefficient of variation at 1 m resolution is 1.4% for absolute
surface temperature and 52% for latent heat exchange. How the
power-law exponents vary with other biophysical conditions and
surface heterogeneity will be investigated in more detail below.

3.3. Spatial averaging of energy fluxes and surface
temperature and subgrid variability

We pooled calculations from sensitivity studies shown above,
and others, to examine the bias errors that are associated with
the subgrid averaging of the spatial fields for λE, T and Rnet. For
the virtual landscapes simulated with “Daisyworld”, we observe
large bias errors in estimating latent heat exchange (Fig. 9a).
On average, the mean latent heat flux is 154% greater than the
expected value of latent heat exchange for the 2-D domain for the
combination of variations in albedo and surface resistances of
the wet and dry leaves. The magnitude of the relative bias error,
however, is conditional on the spatial coefficient of variation of
latent heat exchange (Fig. 9b), a reflection of the proportion and
spatial variation of wet and dry “daisies”. In general, the relative
error term increases in magnitude in a nonlinear fashion as the
spatial coefficient of variation (cv) in λE increases. For highly
heterogeneous landscapes (cv approaching 1), we observe that
the relative bias error approaches 300%. For more homogeneous
landscapes (cv ranging between 0 and 0.4), the relative bias error
ranges between zero and 100%.

Bias errors associated with the evaluation of surface temper-
ature are not as severe as those associated with λE. On average,
we calculate a 3.5 K bias error in surface temperature, relative
to its expected value (Fig. 10a). This error is similar in magni-
tude with direct observations over heterogeneous land surfaces
(Brunsell and Gillies, 2003; Kustas et al., 2003). Overall, the
relative bias error increases from zero to 2.5% as the spatial
coefficient of variation of surface temperature increases from
zero to 2.5%. While a 4 K bias error represents a 1 to 2% rel-

Fig. 9. (a) A comparison between the expected value latent heat
exchange, E[λE], across a 512 by 512 pixel domain and the functional
evaluation of latent heat flux, 〈λE〉, computed on the basis of spatial
mean albedo and surface resistance. (b) A comparison between the
spatial coefficient of variation of latent heat exchange and the relative
bias error.

ative error in terms of absolute temperature it has significant
consequences on the assessment of the surface energy budget
and latent heat exchange. This is because several components
of the Penman–Monteith equation are nonlinear functions of
surface temperature. For example, the long-wave emission is
a function of surface temperature to the fourth power and the
saturation vapour pressure is an exponential function of surface
temperature. Consequently, a 1% error in surface temperature (at
300 K), for example, will produce a 4% error in long-wave energy
emission.

Because bias errors in surface temperature affect long-wave
energy emission, they should produce bias errors in the compu-
tation of the net radiation budget, too. On average we observe
a −7.5% difference between the expected value of Rn and the
value determined from averaged subcomponents like albedo, sur-
face temperature and surface resistance (Fig. 11a). Here too, we
observe that the magnitude of the relative bias error is
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Fig. 10. (a) A comparison between the expected value of surface
temperature, E[T], and the mean surface temperature computed from
inverting the surface energy balance in terms of mean albedo, surface
resistance and net radiation, 〈T〉. (b) A comparison between the spatial
coefficient of variation of surface temperature and the relative bias
error.

conditional on the spatial coefficient of variation of the net ra-
diation field; it increases from zero to 14% as the independent
variable increases to 12% (Fig. 11b). Considering that many field
sites do not observe energy balance closure (Wilson et al., 2002),
it is feasible to expect non-representative spatial sampling of the
net radiation field within the flux footprint to contribute towards
this imbalance (Kim et al., 2005).

4. Discussion

There continues to be considerable debate about the relative im-
portance of biophysical controls versus disturbance in determin-
ing and maintaining the heterogeneous structure of savannas.
Ecohydrologists invoke the role of niche separation associated
with trees tapping deep water sources and grasses tapping shal-
lower water sources (Eagleson, 1982; Rodriguez-Iturbe et al.,
1999). Ecologists, on the other hand, argue that disturbance from
fire and grazing and their impact on subsequent recruitment dy-
namics cause savanna to be sparse (Jeltsch et al., 1996; Scholes

Fig. 11. (a) A comparison between the expected value net radiation,
E[Rn], across a 512 by 512 pixel domain and the net radiation flux
computed on the basis of mean albedo and surface temperature, 〈Rn〉.
(b) A comparison between the spatial coefficient of variation of latent
heat exchange and the relative bias error.

and Archer, 1997; Higgins et al., 2000; Sankaran et al., 2004).
Our “Daisyworld” model has the potential to investigate how a
combination of factors, including the initial conditions and the
biophysical properties of competing functional types, may influ-
ence the spatial heterogeneity of a savanna. In the following text,
we use our model calculations to draw some new, but limited,
perspectives on this debate.

First, we note that the spatial pattern of the virtual landscape
created with CA has many visual similarities, such as clumping
of vegetation and gaps that are observed with a panchromatic
image of an oak–grass savanna in California (Fig. 12). Second,
we can demonstrate a quantitative similarity between the spatial
fields generated by Daisyworld and with those for the savanna
using multispectral IKONOS data. This is achieved by comput-
ing the normalized difference vegetation index (NDVI) for the
landscape shown in Fig. 12 and evaluating how the coefficient of
variation in NDVI scales with the size of averaging window. Our
computations yielded a power-law exponent of −0.2 (Fig. 13).
This value is nearly identical to the exponent for virtual fields
we produce with “Daisyworld” when the initial condition was
bare and colonized with “daisies” in opposite corners of the grid,
a condition analogous to a disturbance. In this case patchiness
arises from initial disturbance and from low probabilities for
birth due to unfavourable energy balance conditions associated
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Fig. 12. Panchromatic IKONOS image (1 m resolution) of an
oak–grass savanna near Ione, CA. The scale of the image is 1 km.

Fig. 13. Scaling relationship between the coefficient of variation of
NDVI and an averaging window for an IKONOS scene of an oak–grass
savanna and an open grassland growing near Ione, CA.

with bare patches. To expand upon the investigation of the causes
and effects of savanna spatial patterns further and more conclu-
sively with our “wet/dry Daisyworld” we will need to simulate
the differential supply and demand for water by trees and grasses,
following van Wijk and Rodriguez-Iturbe (2002), simulate the
feedback between water balance and leaf area index (Baldocchi
and Meyers, 1998) and consider the effects of soil temperature
and moisture and grazing and fire on seedling recruitment.

Assuming we can characterize the scaling power law for sur-
face characteristics, can this information be used to infer the
spatial variation in surface energy fluxes and surface tempera-
ture? The answer to this question is yes, based on data shown
in Figs 14 and 15. We observe that a linear relationship exists
between the power-law exponents for the coefficient of variation
associated with cell class and those associated with latent en-
ergy exchange and surface temperature, respectively. However,
separate linear relations hold for the homogeneous and hetero-

Fig. 14. Relationship between the power-law exponent for the spatial
scaling of surface character and that for latent heat exchange. The
power-law exponents were derived from the slopes of the log–log
relation between the coefficient of variation (cv) and the size of the
averaging window.

Fig. 15. Relationship between the power-law exponent for the spatial
scaling of surface character and that for surface temperature. The
power-law exponents were derived from the slopes of the log–log
relation between the coefficient of variation (cv) and the size of the
averaging window.

geneous canopies; exponents near −0.2 are associated with the
bare initial condition and exponents near −1.0 are generally as-
sociated with the initial condition that is composed of a random
assemblage of vegetation and bare ground.

Finally we show there is potential to use spatial information
about surface characteristics and surface temperature to infer
the spatial variation in energy exchange. In Fig. 16 we observe
a strong correlation between scaling power-law exponents of
surface temperature and latent heat exchange (the regression
slope is near 1 and the coefficient of determination, r 2, equals
0.95). These theoretical calculations support conclusions drawn
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Fig. 16. Relationship between the power-law exponent for the spatial
scaling of evaporation and that for surface temperature. The power-law
exponents were derived from the slopes of the log–log relation between
the coefficient of variation (cv) and the size of the averaging window.

by Brunsell and Gillies (2003) who report that remote sensing
can be used to infer surface energy fluxes based on model cal-
culations and aircraft overflight data.

5. Conclusion

By modifying “Daisyworld” to examine differential evaporation
from different vegetation classes and soil, and coupling the en-
ergy balance model with a 2-D CA scheme that considers com-
petition between wet and dry “daisies” we are able to produce
virtual landscapes that possess similar scaling power-law expo-
nents, describing spatial variation in structure and function, as
real savannas. Since we are able to assess surface energy fluxes
and surface temperature at high and low resolution, this con-
ceptual model proves useful for testing ideas about bias errors
associated with subgrid averaging and using remote sensing in-
formation on the spatial patterns of surface properties to infer
how surface energy fluxes will vary in space. This analysis pro-
duces both bad and good news on these topics. First, we give
the bad news which is associated with bias errors and subgrid
averaging. We find that ignoring subgrid variation associated
with latent heat exchange can produce huge bias errors, often
exceeding 100% and sometimes approaching 300% for hetero-
geneous landscapes. The bias errors, however, diminish as the
spatial coefficient of variation approaches zero. In contrast, bias
errors are much smaller for net radiation and surface temperature.
The good news deduced from this study is that spatial variation
in surface properties (quantified by the power-law exponent of
the plot between the coefficient of variation and the size of the
averaging window) scales directly with those for latent heat ex-
change and surface temperature. This analysis lends credence
to the concept that spatial patterns of energy exchange can be
inferred with information on spatial patterns of surface proper-

ties. This version of “Daisyworld” has the potential to be a tool
for providing a linkage between observations of landscape het-
erogeneity, deduced from satellites, and their interpretation into
spatial fields of latent and sensible heat exchange and surface
temperature.

In future work we intend to couple these algorithms with the
growth of the planetary boundary layer and compute tempo-
ral changes in air temperature and moisture. We also intend to
simulate spatial patterns in soil moisture and examine a feedback
between soil moisture deficits and stomatal closure. There is also
the need to examine more sophisticated competition models and
consider the effects of disturbance, grazing and fire, other factors
that have been hypothesized to form savannas and heterogeneous
landscapes (Rietkerk et al., 2004).
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7. Appendix A: Quadratic solutions for latent
heat exchange and surface temperature

Latent heat exchange (λE in W m−2) and surface–air temperature
differences (�T in K) were computed analytically by solving
quadratic equations associated with these dependent variables
(Paw and Gao, 1988):

aλE2 + bλE + c = 0 (A1)

d�T 2 + e�T + f = 0. (A2)

The coefficients a. . . f , associated with the quadratic eqs (A1
and A2), can be derived through the algebraic manipulation of
a set of equations describing the surface energy balance. This
derivation starts with the definition of available energy, the sum
of net incoming short- and long-wave energy (Q in W m−2):

Q = Rg(1 − α) + εL ↓ . (A3)

In eq. (A3), Rg is the flux density of incoming short-wave solar
radiation (W m−2), α is albedo, L ↓ is the flux density of incoming
long-wave radiation (W m−2) and ε is emissivity. Next we define
the flux density of net radiation as the balance between Q and
the long-wave energy emitted by the surface, which is a function
of its temperature (T s) to the fourth power:

Rn = Rg(1 − α) + εL ↓ −εσ T 4
s . (A4)
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In eq. (A4) σ represents the Stefan–Boltzmann constant. At the
landscape scale, net radiation is consumed via sensible, H, latent,
λE, and soil, G soil, heat exchange:

Rn = H + λE + Gsoil. (A5)

Sensible and latent heat flux density can be expressed using an
Ohm’s law analogue that expresses the energy flux density as a
product of a network of resistances and a potential difference:

H = ρaCp(Ts − Ta)

Ra
(A6)

λE = mv/mvλρa(es(Ts) − ea)

P(Ra + Rs)
. (A7)

In eqs (A6) and (A7), ρ a is air density, λ is the latent heat of
vaporization, R a is the aerodynamic conductance for sensible
heat transfer (m s−1), R s is stomatal conductance (m s−1), Cp is
the specific heat of air (J kg−1 K−1), m v and m a are the molecular
weights of vapour and dry air (g mol−1), P is pressure (kPa), es

is saturated vapour pressure (kPa) and ea is the ambient vapour
pressure (kPa).

Manipulating eqs (A4), (A5) and (A6), and adopting a lin-
earized version of the emission of long-wave radiation (T 4

s ∼ T 4
a

+ 4T 3
a (T s − T a)) produces an expression for the surface–air

temperature difference:

Ts − Ta = Q − λE − σεT 4
a − Gsoil

ρaCpGa + 4εσ T 3
a

. (A8)

G a is the aerodynamic conductance for heat transfer, the inverse
of the resistance (1/R a). Eq. (A8), requires an exact expression
for λE too. To obtain an algorithm for λE we linearize the satura-
tion vapour pressure equation with a second-order approximation
to Taylor’s expansion series:

λE = (mv/ma)λρaGsGa

P(Gs + Ga)

(
(es(Ta) − ea)

+ s(Ta)(Ts − Ta) + es(Ta)′′

2
(Ts − Ta)

2

)
.

(A9)

In eq. (A9), G s is surface conductance, s is the slope of the
saturation vapour pressure function, es(T ), with respect to tem-
perature and the double primes represent the second derivative of
es(T ) with respect to T . Finally we combining eqs (A8) and (A9)
and substituted an expression that defines the total conductance
for vapour transfer, (G w = G aG s/(G a + G s). This operation
produces exact solutions for the coefficients in the quadratic
eqs (A1) and (A2). The coefficients for λE are:

a = ρaλGwmv

2ma P(ρaCpGa + 4σεT 3
a )

d2es(Ta)

dT 2
(A10)

b = −4εσ T 3
a − ρaλGwmv

ma P

des(Ta)

dT
− ρaCpGa

+ ρaλGwmv

2ma P(ρaCpGa + 4σεT 3
a )

× d2es(Ta)

dT 2

(−2Q + 2σεT 4
a + 2Gsoil

)
(A11)

c = (
ρaCpGa + 4εσ T 3

a

)ρaλGwmv(es(Ta) − ea)

ma P

+ ρaλGwmv

ma P

des(Ta)

dT

(
Q − εσ T 4

a − Gsoil

)
+ ρaλGwmv

2ma P
(
ρaCpGa + 4σεT 3

a

) d2es(Ta)

dT 2

[
Q2 + (

σεT 4
a

)2

+ G2
soil − 2QσεT 4

a − 2QGsoil + 2GsoilσεT 4
a

]
.

(A12)

The coefficients for eq. (A2) are defined as:

d = 6εσ T 2
a + ρaλGwmv

2ma P

d2es(Ta)

dT 2
(A13)

e = 4εσ T 3
a + ρaλGwmv

ma P

des(Ta)

dT
+ ρCpGa (A14)

f = εσ T 4
a + ρaλGamv(es(Ta) − ea)

ma P
+ −Q + Gsoil. (A15)
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