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Abstract We tested the hypothesis that the date of the
onset of net carbon uptake by temperate deciduous for-
est canopies corresponds with the time when the mean
daily soil temperature equals the mean annual air temper-
ature. The hypothesis was tested using over 30 site-years
of data from 12 field sites where CO2 exchange is being
measured continuously with the eddy covariance method.
The sites spanned the geographic range of Europe, North
America and Asia and spanned a climate space of 16◦C in
mean annual temperature. The tested phenology rule was
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robust and worked well over a 75 day range of the initia-
tion of carbon uptake, starting as early as day 88 near Ione,
California to as late as day 147 near Takayama, Japan. Over-
all, we observed that 64% of variance in the timing when net
carbon uptake started was explained by the date when soil
temperature matched the mean annual air temperature. We
also observed a strong correlation between mean annual air
temperature and the day that a deciduous forest starts to be
a carbon sink. Consequently we are able to provide a sim-
ple phenological rule that can be implemented in regional
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carbon balance models and be assessed with soil and tem-
perature outputs produced by climate and weather models.

Keywords Phenology . Eddy covariance . CO2 exchange .
Canopy photosynthesis

Introduction

The timing of leaf out, across the temperate deciduous for-
est biome, has major implications on the seasonal variation
of numerous ecosystem/atmosphere interactions. For ex-
ample, the transition between dormant and vegetated states
of deciduous forests causes an abrupt change in surface
albedo, aerodynamic roughness and the surface conduc-
tance to water, carbon dioxide and pollutant transfer. To-
gether, these variables alter the availability of energy and its
partitioning into sensible and latent heat exchange (Blanken
et al. 2001; Moore et al. 1996; Wilson and Baldocchi 2000).
A perturbation in the partitioning of energy is consequen-
tial because it alters the growth rate and ultimate depth
of the planetary boundary layer (McNaughton and Spriggs
1986). The modifications in boundary layer growth, in turn,
affect the diurnal course and amplitude of temperature
and humidity within the surface and planetary boundary
layer (Schwartz and Karl 1990). Furthermore, the absence
or presence of leaves can act as a switch for the forma-
tion of convective clouds through links with the properties
of the planetary boundary layers (Fitzjarrald et al. 2001;
Freedman et al. 2001; Schwartz and Crawford 2001).

The timing of leaf-out marks the beginning of the pho-
tosynthetic season for a deciduous forest and is a major
determinant of its duration (White et al. 1999). With re-
gards to terrestrial carbon cycling, the length of carbon
uptake period has much predictive power about the spatial
variation of the net annual carbon exchange of ecosystems
(NEE) across a latitudinal and continental gradient of de-
ciduous forests (Baldocchi et al. 2001)—the length of the
carbon uptake period explained 80% of the spatial vari-
ance in annual NEE. It has also been reported—on both
experimental (Black et al. 2000; Goulden et al. 1996b;
Schmid et al. 2000; Schmid et al. 2003) and theoretical
bases (White et al. 1999)—that the timing of leaf out pro-
vides partial explanation for the year-to-year variability in
NEE at individual sites; additional controlling factors on
NEE include presence and absence of snow, drought, and
summer cloudiness.

Lately, phenology has received added attention because
of its role as a surrogate in detecting global climate change
(Jackson et al. 2001; Penuelas and Filella 2001; White
et al. 2003). Phenological indices measured across Europe
(Menzel and Fabian 1999) and North America (Cayan et al.
2001) and interannual measurements of biosphere green-
ness, as observed by satellites (Myneni et al. 1997; Tucker
et al. 2001), are detecting a trend towards earlier springtime
leaf-out, portending a potential signal of global warming. In
order to simulate the implications of changing phenology
on biosphere-atmosphere interactions, models that com-
pute the biogeochemical cycling of water, carbon and nu-

trients, atmospheric chemistry, weather and climate need
algorithms that can predict the timing of leaf expansion,
the initiation of photosynthesis and the onset of net carbon
uptake by deciduous forests (White et al. 1997).

Dates of bud break, leaf unfolding, and commencement
of photosynthesis have been used to characterize aspects of
forest phenology (Brugger et al. 2003; Gu et al. 2003).
Physiological mechanisms for the timing of springtime
phenological events involve a need for dormancy and are
triggered by interactions between growth-promoting and
inhibiting hormones (Schaber and Badeck 2003). The re-
lease of these hormones seems to be triggered by an
accumulation of winter chilling, a critical photoperiod
and springtime warming. Historically, phenological mod-
els have used photoperiod and cumulative heat and chilling
units as independent variables (Chuine et al. 2003; Kramer
et al. 2000; Nizinski and Saugier 1988; Raulier and Bernier
2000; Spano et al. 1999). While this class of models has
many practical applications, it is highly empirical. Conse-
quently, its generality is limited because the threshold sum
of heat and chill units, that determines the date of a partic-
ular phenological event, needs to be calibrated at each site
and for each mix of species (Kramer et al. 2000; Raulier and
Bernier 2000; Taylor 1974). We also note that there can be
considerable imprecision with identifying the specific date
of a phenological event due to natural temporal and spatial
variability and sampling errors. Phenological metrics like
bud break, leaf unfolding and the onset of photosynthesis
are not synchronous and can occur for an extended period
(Brugger et al. 2003; Morecroft et al. 2003). For example, it
takes 11 days for European oak leaves to transcend between
budbreak and a physiological state that maintains a positive
carbon balance (Morecroft et al. 2003). Considerable spa-
tial variation in the timing of phenology will occur within a
woodland, too, due to the presence of multiple species and
because of microclimate variations. Sampling error is yet
another source of variation. Detecting the precise date of a
phenological event depends upon the sampling frequency
and sampling area associated with manual observations or
with the frequency of passage and pixel size associated
with remote sensing instruments mounted on a satellite or
tower.

Our goal is to assess a simple phenological rule that has
a detection criterion that is based on biophysical principles
and can be assessed with information that is commonly
available at weather stations and from weather and clima-
tological forecast models (e.g. air and soil temperature).
We propose and test the hypothesis that: “the date of the
onset of net carbon uptake by a temperate deciduous forest
corresponds with the time when the mean soil tempera-
ture equals its mean annual air temperature”. This working
hypothesis was generated from observing the timing of
leaf-out near Oak Ridge, Tennessee. There, trees tended to
leaf out when the soil temperature was near 13◦C (Taylor
1974), a temperature that corresponds with the mean annual
air temperature of the region. While this anecdotal obser-
vation requires further scrutiny with a larger database, we
contend that there may be mechanistic justifications for this
hypothesis. For example, soil temperature acts as a proxy
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Table 1 List of the field sites used in this analysis, their location, mean annual air temperature and citations describing site characteristics
and meteorological measurements

Site Genera Lat Long Mean annual
temperature

citation

Prince Albert, Saskatchewan Populus 53 N 106 W 0.6 Black et al. (2000)
Douglas Lake, Michigan Populus/Quercus 45 N 84 W 6.2 Schmid et al. (2003)
Borden, Ontario Acer/Populus 44 N 79 W 6.4 Lee et al. (1999)
Collelongo Italy Fagus 41 N 13 E 6.5 Valentini et al. (1996)
Takayama, Japan Betula 36 N 137 E 7.3 Yamamoto et al. (1999)
Harvard Forest, Massachusetts Quercus/Acer 42 N 72 W 7.4 Goulden et al. (1996b)
Hainich, Germany Fagus 51N 10 E 7.5 Knohl et al. (2003)
Soroe, Denmark Fagus 55 N 11 E 7.6 Pilegaard et al. (2001)
Hesse, France Fagus 48 N 7 E 9.2 Granier et al. (2002)
Morgan Monroe, Indiana Quercus 39 N 86 W 11.8 Schmid et al. (2000)
Oak Ridge, Tennessee Quercus/Acer 36 N 84 W 14.9 Wilson and Baldocchi (2001)
Ione, California Quercus 38 N 120 W 16.5 Baldocchi et al. (2004)

for accumulated chill and heat units as it is an integrator
of these measures due to the soil’s thermal inertia and en-
ergy balance. Secondly, deciduous trees have evolved to
be in synchrony with their climate to minimize the expo-
sure of their young leaves to freezing and possibly lethal
temperatures during the spring; the probability of frost be-
comes quite low once mean daily air temperature exceeds
its annual mean temperature.

We test this hypothesis using continuous CO2 flux mea-
surements, an approach that has been adopted in other
recent phenological studies (Gu et al. 2003; Suni et al.
2003). The analysis is based on over 30 site-years of me-
teorological and carbon flux data from 12 temperate de-
ciduous forest sites that are associated with the FLUXNET
project (Baldocchi et al. 2001). The datasets examined here
were acquired from sites that are distributed across the ge-
ographic domains of Europe, North America and Asia and
they span 16◦C in mean annual temperature. An advantage
of quantifying phenology with eddy covariance measure-
ments includes its capacity to make nearly continuous mea-
surements and to sample a large area, as characterized by
its flux footprint (Schmid 2002).

Materials and methods

We restricted this phenological study to FLUXNET study
sites whose trees have broad leaves and deciduous habits.
The key genera at the sites used in this analysis include Pop-
ulus (aspen), Acer (maple), Quercus (oak), Betula (birch)
and Fagus (beech). Forests at the majority of sites inspected
formed closed canopies; their leaf area indices ranged be-
tween 3 and 6 and their tree heights ranged between 8
and 30 m. With regards to age structure, most of the sites
were second-growth forests and were less than 120 years
old. Characteristics of the sites used in this analysis, and
primary references describing additional site details, are
summarized in Table 1.

A common set of meteorological and eddy flux measure-
ments were acquired from each of the sites involved in

the analysis. The datasets scrutinized here included long-
term and simultaneous measurements of air and soil tem-
perature and net ecosystem CO2 exchange between the
forest and the atmosphere. Air temperature was measured
above the forest stands with aspirated and shielded sensors.
Soil temperatures were measured with either thermistor
or thermocouple sensors; most sites had soil temperature
measurements at 2, 5, 8 or 10 cm depths. Daily means
were computed from the original 30 min datasets using
the mean diurnal course gap-filling method (Falge et al.
2001).

CO2 flux densities were measured across the forest-
atmosphere interface with the eddy covariance method
(Baldocchi et al. 1988). In Europe, flux measurements
systems were based on closed path CO2 sensors (Aubinet
et al. 2000), while in North America, both open and closed
path CO2 sensors were used; independent studies show
that there is no bias by using either an open or closed path
sensor system to measure CO2 exchange (Billesbach et al.
2004; Suyker and Verma 1993).

Efforts have been made by the AmeriFlux and FLUXNET
communities to inter-compare CO2 flux measurements and
meteorological measurements with a roving, calibration
system (Baldocchi et al. 2001; Billesbach et al. 2004). In
general, the absolute errors in eddy flux measurements of
CO2 exchange are less than 15%, with the application of
proper corrections (Goulden et al. 1996a; Hollinger et al.
2004; Massman and Lee 2002).

The date of onset of net carbon uptake was identified as
the day when daily integrated net CO2 exchange (NEE)
experienced a transition from its winter respiration phase
to its spring/summer assimilation phase (Fig. 1). To deduce
this date with objective and statistical rigor, we regressed
measurements of daily NEE on day of year, using a
subsets of data from this springtime source-sink transition
period. The method has a clean and distinct signal with
a quantifiable error. For the case shown in Fig. 1, the
statistical variation in detecting the precise date of the
zero crossing is ±2 days, based on the 95% confidence
interval.
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Fig. 1 An example of daily net
ecosystem CO2 exchange
measurements (NEE) as a
function of time. The solid line
represents the linear regression
and the dashed lines are the
95% confidence interval.
During this transition period a
linear regression was fit through
the data and the ‘leaf-out’ date
was computed by inverting that
regression and solving for when
NEE was zero

On a physiological and fundamental level, it may be
preferable to detect the onset of canopy photosynthesis
rather than rely on transitional observations of NEE. How-
ever, the use of canopy photosynthesis can introduce an
additional source of error and imprecision because canopy
photosynthesis is a derived quantity that is assessed by sub-
tracting an indirect estimate of ecosystem respiration from
direct measurements of NEE (Falge et al. 2002). Ecosystem
respiration (Reco), for example, is deduced from night mea-
surements (which are uncertain due to turbulent mixing)
and is calculated during the daytime with a temperature-
dependent function (Falge et al. 2001). During the dynamic
spring growth period, temperature response functions, that
are commonly used to assess ecosystem respiration are apt
to fail because growth respiration is accelerating during
this transitional period and it enhances ecosystem respira-
tion (Xu et al. 2004).

Our working hypothesis presumes that there is a corre-
spondence between the date of the initiation of net carbon
uptake and the day when mean daily-averaged soil temper-
ature crosses a line corresponding with the mean annual
air temperature. Since a tree is unable to sense the mean
annual air temperature a priori, we decided to approximate
mean annual air temperature ( T ) using a low-pass, digital
recursive filter (Hamming 1989). The low-pass character
of this recursive filter provides us with a method that ap-
proximates the temporal mean by weighting the current air
temperature with its history:

Tt = (1 − α)T t−1 + αTt (1)

The mean air temperature, at time t, is updated based on
its previous mean value, at t−1, and the most recent daily-

averaged air temperature, Tt. The weighting factor, α, is
defined as:

α = exp

(
−�t

τ

)
(2)

We computed mean air temperature using a 730 day (2
year) time constant, τ , and a 1 day sampling interval, �t.

Results and discussion

Before we attempt to test our working hypothesis across
a network of field sites, it is crucial that we demonstrate
whether or not this concept works across a representative
sampling of study sites (Figs. 2, 3). Figure 2 shows a test
of the hypothesis for a beech forest in Denmark; this site
is near the most northerly and coolest end of the deciduous
forest biome range in the FLUXNET network. We observe
that there is very close correspondence between the date
when net CO2 exchange crossed the zero line and when
mean soil temperature (computed with a 3 day running
mean) crossed the isotherm representing the mean annual
air temperature at that site. A second example is shown for
a contrasting case, a site near Oak Ridge, Tenn. This site
is near the most southern and warmest end of the decidu-
ous forest biome (Fig. 3). Like the Danish forest, there is a
close correspondence between the date of the zero crossing
of canopy CO2 exchange and when the soil temperature
crosses the line representing the mean annual air temper-
ature at that site. Despite the fact that the commencement
of net CO2 uptake near Oak Ridge, Tenn. occurs about 30
days earlier and the mean annual air temperature is about
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Fig. 2 Seasonal course in daily
integrated net ecosystem CO2
exchange (NEE), mean air
temperature computed with a
digital recursive filter, mean air
temperature computed with a
digital recursive filter and the
mean daily soil temperature at
2 cm (based on a 3 day running
mean). These data were
acquired over a beech forest in
Denmark during 1999. The
double-headed arrow identifies
when soil temperature matched
mean annual air temperature
and when NEE crossed zero (the
lower horizontal line)

6◦C warmer than in Denmark, the general relationship ‘that
a critical soil temperature identifies the onset of net carbon
uptake by the ecosystem’ holds.

How well the match between daily mean soil tempera-
ture and mean annual air temperature provides a precise
gauge for predicting the onset of net CO2 uptake for the en-
tire database is quantified in Fig. 4. We report that a linear
regression between the dependent (the day Tsoil equaled
mean annual air temperature) and independent (the day
NEE equaled zero) variables accounts for 64% of the vari-
ance. Furthermore, the slope of the regression was close to,
but significantly different from one (0.929±0.21) and the
intercept was 17.1±25.3 days. Because the dependent and
independent variables have sampling and measurement er-
rors, we also computed the geometric mean regression. In
this case, the slope was 1.15±0.344 and the intercept was
−8.57±41.5.

Another question we can pose and address is: ‘how well
can climatological data describe when a deciduous forest
transcends from being a carbon source to a sink?’ Figure 5
shows that the start-date of net carbon uptake becomes
earlier, in a linear fashion, as the local climate (mean annual
air temperature) becomes warmer. Overall, perturbations in
mean annual air temperature explain 69% of the variance
in the start-date of net carbon uptake.

In sum, both phenology rules seem robust by working
well over a 75 day range of the initiation of carbon uptake,
starting as early as day 88 in near Ione, California to as
late as day 147 near Takayama, Japan. However, the results
shown here may not be universal for all functional plant
types and climate zones. For example, Suni et al. (2003)

reported that soil temperature was not a good indicator
for signaling the onset of photosynthesis across the boreal
forest biome. On the other hand, they found that air temper-
ature was a good indicator of the onset of photosynthesis
for conifers at high latitudes, but they found no unifying re-
lationship that held across the boreal forest biome. Hence,
we advise the reader to apply the functional relationship
between soil temperature and the onset of carbon uptake
only to deciduous broadleaved forests. Close inspection of
Fig. 4 shows that the significant outliers were associated
with measurements at Harvard Forest, in Massachusetts,
where net carbon uptake starts later than one would expect
based on soil temperature measurements. This site is near
the eastern edge of the North American continent and is a
locale subject to much climatic variability during the spring
due to the passing of warm and cold air masses; examin-
ing over 40 years of mean air temperature we found that
the daily mean temperature ranges between 0 and 20◦C
around the expected date of leaf out, approximately day
120. So soil temperature may not queue the phenology of
net carbon uptake as well at this site as others. We also
add that our phenology rule does not work well for a de-
ciduous forest in the boreal zone, where the mean annual
temperature is close to zero centigrade and snow cover
keeps soil temperature close to zero during the winter and
early spring (Griffis et al. 2003). Consequently, soil temper-
ature in this region crosses the isotherm representing mean
air temperature much sooner than when leaves emerge
(Fig. 6).

Measurements of net CO2 exchange have the potential
for assessing the timing of leaf-out if we know the time
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Fig. 3 Seasonal course in daily
integrated net CO2 exchange
(NEE) and the mean daily soil
temperature at 8 cm. These data
were acquired over an
oak/maple forest near Oak
Ridge, Tenn. during 1996. The
double-headed arrow identifies
when soil temperature matched
mean annual air temperature
and when NEE crossed zero (the
lower horizontal line)

Fig. 4 The empirical
relationship between the date
when mean daily soil
temperature equals mean annual
air temperature and when daily
net ecosystem carbon exchange
(NEE) crosses zero. The solid
line represents the linear
regression through the data and
the dashed line represents the
95% confidence interval

delay between when leaves unfold and when canopy pho-
tosynthesis matches soil respiration. We detected the date
of leaf-out at a few selected sites using light transmission
measurements through the canopy; leaf-out was identified
when the fraction of beam penetration through the forest
decreased, relative to its winter deciduous state. Our detec-

tion of the date of leaf out, with CO2 flux measurements,
accounted for over 94% of the variance in the timing of
leaf-out observed with light measurements. The statistics
associated with the linear regression possessed a non-zero
intercept of 22.1±29.1 days and the regression slope that
was less than one (0.744±0.243) (Fig. 7). We also observed
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Fig. 5 The relationship
between the mean annual air
temperature and the day when
net carbon of deciduous forests
uptake commences. The solid
line represents the linear
regression through the data and
the dashed line represents the
95% confidence interval

Fig. 6 Seasonal course in daily
integrated net ecosystem CO2
exchange (NEE), the mean daily
soil temperature at 8 cm
(computed with a 3 day running
mean) and mean air
temperature, computed with a
digital recursive filter. These
data were acquired over an
aspen forest in the southern
portion of the boreal zone of
Canada during 2000

that the onset of net carbon uptake, relative to the date of
leaf-out, becomes more delayed as the start of growing
season becomes later.

To compensate for the bias between the date of observed
leaf-out and the onset of net carbon uptake, we produced
a transformed metric using the regression between the ob-

served and inferred dates of leaf-out, discussed in Fig. 7. We
next compared this transformed metric for identifying the
date of leaf out against the date when mean daily soil tem-
perature crosses mean annual air temperature (Fig. 8). For
the dataset in hand, we found that the mean date of leaf out,
detected using soil and air temperature, was ±114.9±14.9
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Fig. 7 The relationship
between the day net ecosystem
CO2 exchange crossed zero and
the date that leaf out was
observed. Data were from sites
in Michigan, Tennessee,
Saskatchewan and California

Fig. 8 A test of the timing of
leaf out as detected by the date
when soil temperature crosses
the mean air temperature, as
computed with a recursive
digital filter. Data on the
dependent axis were assessed
by applying the empirical
relation between the observed
date of leaf out and that detected
with CO2 flux measurements.
Statistical analysis (via a paired
t-test) indicates there is no
significant difference between
the data on the dependent and
independent axes

days and the mean date detected with the transformed CO2
flux measurements was 116.6±14.3 days. Further analysis
of the data, using Student’s paired t statistic, indicates that
there was no significant difference between the two means
on the 5% probability level (t=0.413; P=0.60; 29 df). A
linear regression between the independent and dependent
variables explained 61% of the variance, had a slope of
0.744 and an intercept of 28.7.

There are several sources of variation associated with the
results in Figs. 5 and 8 that merit further discussion. Soil
temperature was not measured at uniform depths across
the network, so this source of variation may contribute to
some ‘noise’ introduced into the cross-site comparison. In
general, we attempted to minimize this source of variation
by: (1) using soil temperatures measured in the area of
the main root activity, 5 to 16 cm; (2) by relying on daily
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Fig. 9 Seasonal variation in
mean daily soil at 2 and 32 cm
and mean air temperature
computed with a digital
recursive filter. The data were
collected at an oak woodland
field site in California during
2003. Both measures of soil
temperature crossed the mean
air temperature at day 90

Fig. 10 Seasonal course of
daily-integrated CO2 flux and
canopy photosynthesis at Oak
Ridge, Tenn. during 1999.
Canopy photosynthesis was
computed by subtracting
understory eddy flux
measurements from the
overstory measurements

mean temperatures, a more conservative metric; and (3) by
applying a 3-day running mean to the soil temperatures.
Overall, site-to-site differences in the depth of soil temper-
ature measurements probably had a minor and secondary
effect on the results shown in Figs. 5 and 8. This claim is
supported with experimental data shown in Fig. 9. We ob-

serve that there was little difference when daily mean soil
temperature, at 2 or 32 cm depths, first crossed the isotherm
representing mean annual air temperature at an oak savanna
field site in California and at other sites where soil temper-
atures was measured at multiple depths as in Oak Ridge,
Tennessee and Soroe, Denmark (data not shown).
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There may also be imprecision associated with using the
CO2 flux cross-over date as a measure of leaf out, rather
than canopy photosynthesis. At most temperate deciduous
forest sites there will be some photosynthesis prior to this
date, which offsets soil respiration. But the temporal change
in both NEE and Ac during spring is rapid and will only
cause a few days lag in the detected leaf out date, as shown
for a case near Oak Ridge, Tenn. (Fig. 10).

A strength of our approach, compared with traditional
phenological models based on heat degree units, is that our
method does not rely on an arbitrary heat unit threshold that
must be calibrated on a site-by-site basis. It is also worth
noting that the simple phenology scheme examined in this
report says nothing about photoperiod, which may also be
a source of variance and a weakness of the method we are
advocating here (Nizinski and Saugier 1988; Raulier and
Bernier 2000).

With regards to further work, we encourage a wider test-
ing of this scheme with remote sensing data at continental
scales. This exercise would involve predicting the seasonal
course of soil temperature at each pixel in the deciduous
forest biome and find the date when it matches the local
mean annual air temperature. Then one would compare
that product with remote sensing data of the green wave of
spring. The phenology algorithm could also use additional
validation against data from independent phenology net-
works (http://www.uwm.edu/∼mds/markph.html) and new
measurements being produced by the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) on the TERRA
satellite (Shabanov et al. 2003). Finally, we encourage col-
leagues to install video cameras at all FLUXNET sites and
record the state of the canopy each day.
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