Soil development

1. Origins of soil science
2. General characteristics of soils
3. Jenny’s state factor equation \(s = f(C_l, o, r, p, t) \)
4. Soil description and classification

Figures: 3.10 3.13 Allaby; 3.14 Allaby; 4.14 Schlesinger

The 11 soil orders of the US soil taxonomy

Alfisols Soils of climates with 510–1270 mm annual rainfall; most develop under forests; clay accumulates in the B horizon.

Andisols Volcanic soils, deep and light in texture; contain iron and aluminium compounds.

Aridisols Desert soils with accumulations of lime or gypsum; often with salt layers; little organic matter.

Entisols Little or no horizon development; often found in recent flood plains, under recent volcanic ash, as wind-blown sand.

Histosols Organic soils; found in bogs and swamps.

Inceptisols Young soils; horizons starting to develop; often wet conditions.

Mollisols Very dark soils; upper layers rich in organic matter; form mainly under grassland.

Oxisols Deeply weathered soils; acid; low fertility; contain clays of iron and aluminium oxides.

Spodosols Sandy soils found in forests, mainly coniferous; organic matter, iron and aluminium oxides accumulated in B horizon; strongly acid.

Ultisols Deeply weathered tropical and subtropical soils; strongly acid; clay accumulated in B horizon.

Vertisols Clay soils that swell when wet; develop in climates with pronounced wet and dry seasons; deep cracks appear when dry.
Figure 3.14 World distribution of soil orders

Figure 4.14 Annual sediment flux from major drainage basins to the world’s oceans. Data are millions of tons (10^{12} g) per year, and arrows are drawn proportional to the flux. From Milliman and Meade (1983).