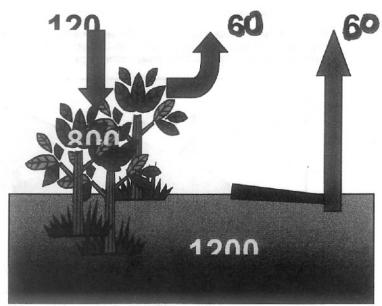
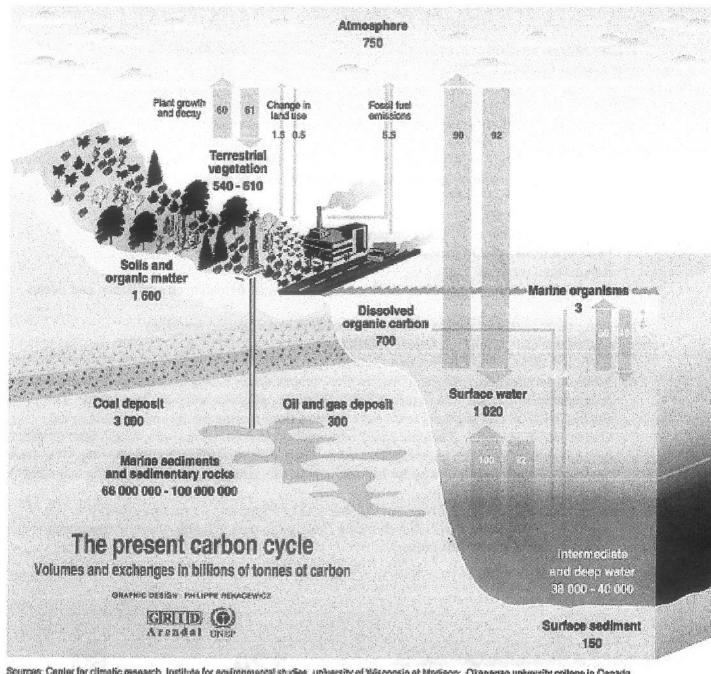
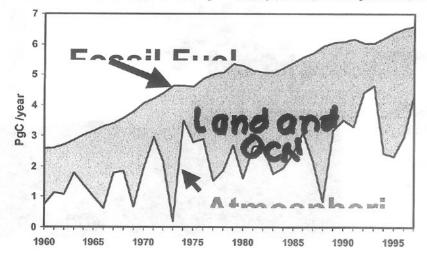

ES10 March 10 2003 The Global Carbon Cycle


Inez Fung


Topics

- 1. Inventory, fluxes, turnover times: the atmosphere is the smallest of all the carbon reservoirs. Turnover times of carbon in the other reservoirs provide information about the time scale at which the reservoir's CO₂ exchange dominates variations in the atmosphere.
- Fast cycling (~1 year) gas exchange with the surface oceans CO₂ + H₂O ←→ H⁺ + HCO₃⁻ CO₃⁻ + H⁺ ←→ HCO₃⁻
- Short-term cycling (~10 years on land)
 Photosynthesis: 6CO₂ + 6H₂O → C₆H₁₂O₆ + 6 O₂
 Respiration: reverse
- 4. Intermediate-term cycling (100-1000 years) exchange between surface ocean and ocean interior
- 5. Long-term cycling (million years) weathering and volcanic eruptions CaCO₃ + CO₂ + H₂O ←→ Ca++ + 2HCO₃- CaSiO₃ + 2CO₂ + H₂O ←→ Ca++ + 2HCO₃- + SiO₂
- 6. Medium-term cycling: Organic matter that escapes decay is transformed by pressure and temperature into coal, oil and gas. Coal is found in paleo-swampy environments. The Persian Gulf oil and gas reservoirs were formed from marine plants and animals in the Cretaceous-Cenozoic. Tectonic uplift exposes buried coal, oil and gas, which then oxidizes.
- Natural variations in the global carbon cycle are tied to variations in climate e.g. CO₂ varied between 180 ppmv and 280 ppmv between glacial and interglacial periods of the last 420,000 years.
- 8. Human perturbations current atmospheric CO2 >350ppmv, increasing steadily at 1.5 ppmv/y. Concentration is higher than any time in the past 420,000 years; increase rate is also fastest in the past 420,000 years.


Net CO₂ O₂ Flux

Sources: Center for climatic research, Institute for environmental studies, university of Wisconsin at Medison; Okanegan university college in Canada, Department of geography; World Watch, November-December 1996; Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge press university, 1996.

