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Environmental determinants of Oncomelania hupensis snail occurrence along irrigation 

ditch networks in Sichuan Province, China 

Eyal Matalon 

 

Abstract 

The Oncomelania hupensis snail transmits the infectious parasite Schistosoma japonicum, which, at the end of 

the 20
th

 century, was estimated to infect 865,000 total people along the Yangtze River Basin. Whereas Geographic 

Information Systems and Remote Sensing have been indispensable tools for modeling the habitat of this disease 

vector, most studies are limited by the low spatial resolution of remotely-sensed environmental data and have 

focused on identifying potential snail habitat on a regional scale. There is limited understanding of what influences 

snail occurrence at the level of human communities. In this paper, the association between snail occurrence and 

landscape features at varying spatial scales derived from field measurements and remote sensing was explored using 

logistic and negative binomial regression. Water conditions (particularly the flow rate and the existence of a thin 

film of water) were the most important small-scale ecological variables affecting snail occurrence. Percent forest 

cover and crop cover were the most significant macro-scale landscape features associated with snail occurrence. 

This paper discusses the possible underlying ecological mechanisms for these associations and suggests directions 

for future study at the village level. 
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Introduction 

The Oncomelania hupensis snail transmits the parasite responsible for schistosomasis in 

China, Schistosoma japonicum. At the end of the 20
th

 century, schistosomiasis was estimated to 

infect 865,000 people along the Yangtze River Basin (Chen and Feng 1999). Surveys taken in 

the early 1990s found infected human subjects and O. hupensis snails in approximately 400 

counties or cities in the region (Schistosomiasis Expert Advisory Committee 1993). The parasite 

is water-borne and endemic to plains regions, swamp and lake regions, and hilly and 

mountainous regions (Chen and Feng 1999). Because individuals in agricultural, rural areas have 

high levels of water contact (working along irrigation ditches) they are most susceptible to 

infection (Yang et al. 2008). It is estimated that 40 million people in the People’s Republic of 

China are at risk (Chen and Feng 1999).  

Propagation of the parasite depends on both snail and mammalian hosts. In the Yangtze 

River, two subspecies of the amphibious snail O. hupensis transmit the schistosome parasite 

(Davis et al. 1999). A free-swimming form of the parasite (miracidia) infects snails living in 

agricultural ditches. The infected snails release another free-swimming form of the parasite 

(cercariae) into the water network. Humans or domesticated animals then become infected 

through skin-water contact in agricultural ditches. Once inside the body, juvenile worms mature 

and lay eggs in the liver, causing a severe immune reaction in the host. Symptoms include a 

“progressive enlargement of the liver and spleen, intestinal damage, and hypertension of 

abdominal blood vessels” (WHO 2008). Schistosome eggs leave the human body in the stool, 

and the untreated waste is, in turn, used to fertilize agriculture fields through the ditch networks. 

Inside the ditches, schistosome eggs hatch into the miracidia that then infect the Oncomelania 

snails living along the ditches, completing the life cycle (Xu et al. 2006). 

Because propagation of the disease is completely dependent on the presence of O. hupensis, 

it is important to understand the ecology of this intermediate host. As amphibious snails, adult O. 

hupensis are found at the interface between soil and water along the banks of irrigation ditches 

and swamps (Davis et al. 1999). Generally, Oncomelania spp. distributions are associated with 

agricultural land-uses, heavily vegetated soils rich in organic matter, and a wide range of 

temperatures and moisture levels (Seto et al. 2002). Understanding the relative importance of 

these ecological factors in the abundance and distribution of O. hupensis is critical to 

schistosomiasis control efforts, that can include focal mollusciciding to reduce snail densities 
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(Bergquist 2001). This strategy relies upon the ability to identify areas of high snail density in 

order to maximize the effectiveness of snail control while minimizing the environmental impacts 

of molluscicides (e.g., toxicity to fish that live in the ditches and in the fishponds that are 

connected to the ditch network) (Liang et al 2002). Because snail distributions are wide-spread 

across various habitats, detailed surveys to identify hot spots are labor-intensive and expensive. 

Therefore, spatial analysis is needed to further describe ecological determinants and predict the 

occurrence of O. hupensis at the relatively small scales needed to inform focal mollusciciding 

efforts. 

Geographic Information Systems (GIS) and Remote Sensing (RS), two tools that allow for 

remote analysis of environmental and epidemiological factors, have been indispensable to 

understanding the ecology of disease (Clarke et al. 1996). RS tools have generated indices for 

vegetation, surface temperature, soil moisture, and precipitation, all of which have been useful 

for exploring spatial association between epidemiological and environmental data (Cringoli et al. 

2005). Further, the development of GIS-based analytical regression techniques in recent years 

has been instrumental in modeling disease transmission (Jerrett et al. 2003).  

Such methods have proved especially useful for modeling vector-borne disease transmission 

(Malone 2005). For example, epidemiologists have studied the associations between remotely 

sensed land-use changes and distributions of tsetse flies that serve as vectors for trypanosomiasis, 

a disease in vertebrates caused by parasitic trypanosomes (de la Rocque et al. 2005). Malone 

(2005) has integrated aerial photographs, soil maps, farm boundary maps and snail habitat survey 

data from southwest coastal Louisiana to describe relationships between soil temperature, water, 

and the transmission of fasciolosis in cattle by freshwater snail hosts. Ceccato et al. (2005) 

discuss the potential of similar integrated GIS-RS models to produce an early warning system for 

mosquito-borne malaria. Daniel et al. (2004) describe how mapping microclimatic factors such 

as temperature and humidity can, in turn, help map tick distributions and tick-borne disease 

occurrence. Because all of these diseases are associated with specific vectors or intermediate 

hosts, their epidemiologies lend themselves to georeferenced population surveys, subsequent GIS 

spatial regression methods, and modeling of vector habitats. 

In the last decade, researchers have used GIS and RS to understand the ecology of O. 

hupensis and predict its occurrence along the Yangtze River basin. For example, Seto et al. 

(2002) used Landsat imagery of habitat and non-habitat sites to generate a predictive habitat-
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ranking statistic for different agricultural landscapes in the Anning River Valley of Sichuan 

Province. In a later study, Zhang et al. (2004) found that values of three RS indices (modified 

soil-adjusted vegetation, wetness, and land surface temperature) had strong associations with 

high snail densities. Similar indices were used in a later model that estimated potential O. 

hupensis habitats in the marshland around Poyang Lake (Guo et al. 2005). While these studies 

have been formative in modeling snail habitats at the macro-scale (national, provincial, or county 

level) Yang et al. (2008) argue that they are limited due to the low spatial resolution of remotely-

sensed environmental data. 

Because most prior studies have focused on describing snail habitat on a larger scale, there is 

limited understanding of what influences snail distributions at the level of human communities. 

Along the agricultural Yangtze River Basin, these are rural Chinese production groups–

geographic entities that correspond to approximately 250 individuals who collectively farm an 

area of land approximately 0.25 km
2
 in size. To improve finer-scale description of snail 

distribution, Seto et al. (2001) designed a protocol for geographically randomized snail surveys 

at the production group level. In a subsequent study, Xu et al. (2004) integrated snail survey data 

with land-cover, land-use, and elevation data from high-resolution IKONOS and ASTER 

satellite images to generate a predictive model of snail abundance for a 30-meter resolution grid. 

A later study by Spear et al. (2004) implemented the protocol in 20 production groups in Sichuan 

Province, China and showed that snails exhibit an overdispersed, clumped distribution along 

agricultural ditches. The authors suggest that this distribution is due to underlying ecological 

features of the irrigation ditch network. Descriptions of these features of O. hupensis habitat have 

been largely anecdotal (Davis 2008, Seto 2009 pers. comm.). It is generally known that snails are 

mainly present in areas where mud surfaces and emergent vegetation are covered by a film of 

slow-flowing water (Sturrock 2001).  

Given the importance of small-scale factors in determining village-level O. hupensis 

distribution, it is necessary to verify this anecdotal evidence with empirical research. Further, it 

is important to explore the utility of RS/GIS-based techniques for modeling snail habitats at this 

scale by examining the relative importance of and relationships between remotely-sensed 

landscape features and smaller scale ecological conditions on the ground. Some RS/GIS-based 

studies at larger scales have considered associations between variables at different scales while 

others have neglected to mention them entirely. For example, Seto et al. (2002) suggest that the 
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suitability of snail habitats within different land cover categories may have more to do with 

factors such as soil composition rather than variables that can be described using RS. Guo et al. 

(2005), on the other hand, forward three RS indices (green vegetation, elevation, and soil 

moisture) as proxies for suitable O. hupensis habitats without discussing any underlying 

ecological reasons or mechanisms. Whereas strictly GIS/RS-based studies generally preclude the 

examination of small-scale ecological variables in favor of lower-resolution environmental 

variables, an integration of ground survey data with remotely-sensed data can establish important 

links between environmental factors at larger and smaller scales (Seto 2009, pers. comm.). These 

links are especially important for the continued utility of RS/GIS in mapping and predicting O. 

hupensis distribution at the production group level.  

This study assesses the relative importance of remotely sensed landscape features and small-

scale ecological conditions in the distribution of Oncomelania hupensis at the production group 

scale. Specifically, given the overdispersed distribution of O. hupensis along agricultural ditch 

networks, the study determines (1) the association between conditions at the ditch and O. 

hupensis densities, (2) the association between remotely-sensed landscape features and O. 

hupensis occurrence, and (3) whether remotely sensed landscape features are useful proxies for 

suitable small-scale ecological conditions at the production group level.  The hypotheses that 

higher-density sites along the ditch are associated with three ditch conditions: visible, low-

flowing water, thick grass, and soil ditch construction; and three remotely-sensed landscape 

features: percent crop land cover, a wetness index, and slope will be tested. Furthermore, the 

hypothesis that crop land cover, built infrastructure land cover, the wetness index, and slope will 

serve as useful proxies for the grass thickness, concretized ditch construction, water level, and 

water flow at the ditch, respectively will be explored. 
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Methods 

An observational study was conducted to understand how small-scale ecological conditions and 

large-scale landscape features affect snail distributions along irrigation ditch networks at the 

village level.  

 

Study Region and Study Specimen 

Snail density and satellite imagery data were collected for 13 production groups in Jinyang, 

county in Sichuan Province in the fall of 2007 (see Fig. 1). Land cover in production groups is 

primarily agricultural fields but manmade ponds, forests, and built infrastructure are also present 

within village boundaries. Each production group surveyed contains a network of irrigation 

ditches that transport water and nutrients to agricultural fields (see Fig. 2). This study 

investigated distributions of the snail subspecies Oncomelania hupensis robertsoni (Davis 1999). 

The two known subspecies, O. h. hupensis and O. h. robertsoni, are geographically separated by 

the Three Gorges along the Yangtze River and are therefore highly genetically and ecologically 

divergent (Wilke 2000). Whereas O. h. hupensis is primarily found along low-lying reservoir 

banks (Guo et al. 2005), O. h. robertsoni lives in the high plateaus, hills, and mountains of 

Yunnan and Sichuan Provinces (Davis 1999). As amphibious snails, O. h. robertsoni adults are 

found along the banks of irrigation ditch networks (Seto et al. 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Jinyang counties in Sichuan Province, 

China (Courtesy of commons.wikimedia.org) 

 

Figure 2: Irrigation Ditches in a 

Sichuan Production Group  

(Courtesy of ehs.sph.berkeley.edu/china) 
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Data Collection 

Snail surveys were loosely based on the protocol outlined in Seto et al. (2001). Snails were 

collected and analyzed at 10-meter intervals along the entire ditch network of each production 

group by field staff of the Sichuan Institute of Parasitic Diseases. At each site, a kuang (square 

frame, 0.11 m
2
) was placed on the bank of the ditch. After GPS coordinates were taken at the site 

(Trimble GeoExplorer, Trimble Navigation Limited, Sunnyvale, CA, USA), all adult snails 

within the kuang were collected into envelopes and labeled with a location ID. Various 

characteristics of the ditch were also observed and recorded at each site by trained observers: 

water conditions (wet, dry, or visible water), water flow (< 0.15 m/s or > 0.15 m/s), grass 

conditions (no grass, thin grass, or thick grass) and ditch construction (soil, brick, or concrete). 

Collected snails were crushed under a microscope to check for schsitosome infection, indicated 

by the presence of schistosome cercariae.  

Two IKONOS images of the study site were obtained from November 30, 2002, a 1-meter 

resolution panchromatic image and a 4-meter true color image. These images were merged using 

the Pan-sharpening tool in ArcGIS (Version 9.0, ESRI, Redlands, CA, USA) to create a single 1-

meter resolution true color image. 

A supervised maximum likelihood classification was performed to classify the image into six 

land cover categories based on remotely-sensed spectral signatures. Based on visual 

interpretation done in collaboration with Dr. Edmund Seto, who has familiarity with the ground 

land cover in this region, 554 pixels were selected and identified as one of six land cover 

categories: built infrastructure (48 pixels), crop (65 pixels), bare soil/dry field (74 pixels), river 

(67 pixels), forest (258 pixels), and pond (52 pixels). The Maximum Likelihood Classification 

tool in the Spatial Analyst Extension of ArcMap (Version 9.0, ESRI, Redlands, CA, USA) 

classified all pixels in the image into the six land cover categories based on this 554-pixel 

training set. The same classification algorithm was applied to a validation set. For each category, 

pixels were selected (but not identified in advance) and input into the classification model (552 

pixels total): built infrastructure (51 pixels), crop (47 pixels), bare soil/dry field (62 pixels), river 

(78 pixels), forest (284 pixels), and pond (30 pixels). Subsequent accuracy assessment was 

performed to generate the overall accuracy and Kappa coefficient of the Maximum Likelihood 

Classification. 
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Elevation data was obtained through NASA’s Shuttle Range Topographic Mission (SRTM) 

at 90-meter resolution. Degrees slope were calculated using the Slope Tool in Spatial Analyst in 

ArcMap (Version, 9.0, ESRI, Redlands, CA, USA). Topographic wetness index was also derived 

from the SRTM image by using the Flow Direction and Flow Accumulation Tools from the 

Spatial Analyst toolbox and inputting the resulting raster file into the Raster Calculator of 

ArcMap (Version, 9.0, ESRI, Redlands, CA, USA): 

 

To account for autocorrelation, the variable, Distance to Nearest Presence Site, was 

generated by performing a spatial join between all sampling sites and only sites in which snails 

were present using ArcGIS (Version, 9.0, ESRI, Redlands, CA, USA). 

Lastly, a Shannon’s evenness index was calculated using the results of Zonal Statistics 

analysis for the six land cover categories (see next section). 

 

Summarizing Environmental Data in Proximity to Sampling Sites 

To understand whether snail densities might be associated with the above remotely-sensed 

landscape features, 50-meter buffers were generated around all snail sampling sites using the 

Buffer tool in Analysis Tools in ArcMap (ESRI, Redlands, CA) (see Figure 3). Land cover, 

elevation, wetness, slope, and elevation data were then imported into ArcMap and projected onto 

a single coordinate system (WGS84 UTM Zone 48N).  

Zonal Statistics ++ in HawthsTools (Beyer 2004) were used to summarize the SRTM 

elevation, slope, and wetness raster data within each snail-site buffer. Average elevation meters, 

slope degrees, wetness index values were calculated for each snail buffer. The single land cover 

raster layer was converted into six distinct raster layers using Raster Calculator in the Spatial 

Analyst Extension of ArcMap. For each new raster layer, ones and zeros indicated whether given 

land cover types were present or absent, respectively. Zonal Statistics ++ in HawthsTools were 

then used to summarize land cover data within the snail-site buffers. The number of pixels of 

each land cover category was calculated for each snail buffer.  

To calculate the evenness index for each snail-site buffer, the results of the Zonal Statistics 

analysis for land cover were input into the following equation using Microsoft Excel 2007 

(Microsoft Corporation, Seattle, WA, USA) 
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, where  

Where: 

pi is the proportion of pixels of land cover i within a snail-site buffer. 

ni is the number of land cover pixels of class i in a snail-site buffer. 

N is the total number of pixels in a snail-site buffer. 

 S is the total number of land cover categories (in this case, six) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Diagram of a 50-meter buffer around a snail sampling site (kuang). Landscape features such as elevation, 

slope, wetness, and land cover were summarized within 50 meters of each snail sampling sites using the Zonal 

Statistics tool in ArcGIS (ESRI, Redlands, CA) 

 

Statistical Data Analysis 

Because snail count data gathered in this study was zero-inflated (i.e. has a modal value of 

zero), inputting data into a standard linear regression model resulted in residuals that were 

neither normally distributed nor homogenous in variance (two important assumptions of linear 

regression). Previous studies have stressed that zero-inflated data is better fit by negative 

binomial distributions than by normal distributions (White and Bennetts 1996). Although there 

are numerous methods for modeling associations between zero-inflated count data and 

environmental data (see, for example, Agarwal et al. 2002, Cunningham and Lindenmayer 2005, 

Sileshi 2008) a review by Martin et al. (2005) stresses that negative binomial regression, 

available in most statistical software packages, models such data with sufficient accuracy. Small-

and large-scale variables were regressed against continuous snail count data using stepwise 

negative binomial regression models in Stata/IC (Version 8.1, Stata Corporation, College Station, 

TX, USA). Significant determinants of snail counts were identified by assessing the p-values of 

Buffer 

[---50 m---] 

Kuang 
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their regression coefficients in both univariate and two-variable models. The two-variable 

models with the least negative log likelihood values were identified as the most suitable models 

of snail counts for both scales of analysis. 

Additionally, continuous snail count data was divided into binomial “presence” / “absence” 

data. Logistic regression was performed to test whether there was any significant difference 

presence and absence sites for any of the above small- and large-scale environmental variables. 

An odds ratio, or the ratio between the odds of snail presence and the odds of snail absence, was 

calculated for each environmental variable. 

Lastly, pair-wise correlation coefficients between four large-scale and four small-scale 

variables were calculated to verify the hypothesis that certain landscape features serve as useful 

proxies for certain environmental conditions at the ditch. 

 

Results 

Data Collection 

Out of a total of 2525 sampling sites, 48 sites had snails present. The mean number of snails 

per sampling site was 0.063 with a standard deviation of 0.878. Counts at sites in which snails 

were present ranged from 1 to 37 snails. For a statistical summary of snail count data for each 

production group, see Table 1. 

 

Table 1: Summary statistics of stratified snail surveys for 13 villages in Jinyang County, Sichuan Province. Snail 

count data was zero-inflated (modal value of 0, = .063, SD = 0.833) and statistical analysis was performed on the 

entire data set. 

 

Village # sites mean snail count SD snail count # presence sites 

Gaohuai 3 227 0.211 0.810 22 

Gaohuai 7 157 0.166 1.25 8 

Gongqiao 2 280 0 0 0 

Gongqiao 3 143 0.042 0.426 2 

Shuiku 4 340 0 0 0 

Guihua 8 233 0.004 0.065 1 

Shiban 1 977 0.035 0.993 4 

Longfeng 2 140 0 0 0 

Longfeng 4 155 0 0 0 

Longfeng 6 348 0.006 0.076 2 

Dashu 4 357 0.036 0.310 6 

Dashu 5 137 0.058 0.601 2 

Dongchao 5 145 0.021 0.248 1 

Total (within IKONOS image) 2525 0.063 0.878 48 
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Of the sampling sites for which snail and small-scale ecological data were collected, 1,114 

corresponded to sites on terraces (away from irrigation ditches) or to sites that did not correspond 

to any remotely-sensed data when overlaid over the IKONOS imagery (see Fig. 4). These 1,114 

sites were not included in the analysis. 

 

 

Figure 4: Georeferenced snail survey data overlaid on IKONOS imagery (November 30, 2002 1-m pan-sharpened 

resolution). Each point represents a sampling site along the irrigation ditch network in which snails were counted 

and collected and ditch conditions were recorded. Image is from ‘Gaohuai7’ production group in Jinyang County, 

Sichuan Province, China.  

 

 

Land Cover Classification 

The result of the land cover classification is illustrated in Figure 5. The overall accuracy of 

the land-cover categories for the MLC training set was 85% and the overall Kappa statistic was 

0.798. The accuracies for built infrastructure, crop, bare soil / dry field, river, forest, and pond 

were 97.9%, 93.8%, 100%, 29.9%, 89.5%, and 90.5%, respectively (see Table 2). The overall 

accuracy of the land-cover categories for the MLC validation set was 83% and the overall Kappa 

statistic was 0.754. The accuracies for built infrastructure, crop, bare soil / dry field, river, forest, 

and pond were 86.3%, 91.5%, 96.8%, 28.2%, 91.2%, and 93.3%, respectively (see Table 3).  
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Figure 5: Land Cover Data based on Supervised Maximum Likelihood Classification of IKONOS imagery 

(November 30, 2002 1-m pan-sharpened resolution) Image is from ‘Gaohuai7’ production group in Jinyang County, 

Sichuan Province, China. 

 

 

 

Table 2: Maximum Likelihood Classification Accuracy Matrix for a training set of 554 pixels.  MLC performed on 

IKONOS image from Jinyang County, Sichuan Province (November 30, 2002; 1-m pan-sharpened resolution). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reference    Classification   

  Built Crop Baresoil River Forest Pond Total 

Built 47 0 1 0 0 0 48 

Crop 0 61 2 2 0 0 65 

Baresoil 0 0 74 0 0 0 74 

River 1 3 0 20 2 41 67 

Forest 0 8 1 18 231 0 258 

Pond 0 0 0 3 1 38 42 

Total 48 72 78 43 234 79 554 

        

 Kappa Statistic: 0.798 Overall Accuracy: 85%  
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Table 3: Maximum Likelihood Classification Accuracy Matrix for the validation set of 552 pixels.  From IKONOS 

satellite image of Jinyang County, Sichuan Province (November 30, 2002; 1-m pan-sharpened resolution) 

 

Reference    Classification   

  Built Crop Baresoil River Forest Pond Total 

Built 44 1 2 3 0 1 51 

Crop 0 43 1 2 1 0 47 

Baresoil 2 0 60 0 0 0 62 

River 3 0 0 22 1 52 78 

Forest 0 8 0 17 259 0 284 

Pond 0 0 0 2 0 28 30 

Total 49 52 63 46 261 81 552 

        

 Kappa Statistic: .754 Overall Accuracy: 83%  

 

 

Small-Scale: Ditch Conditions 

Three ditch conditions were significantly associated with snail presence sites (i.e. odds ratio 

> 1 for univariate logistic regression against a snail presence indicator variable): thin grass, 

visible water, and slow water flow (< 0.15 m/s). Three ditch conditions were significantly 

associated with snail absence sites (i.e. odds ratio < 1): thick grass, dry conditions, and fast water 

flow (> 0.15 m/s). Visible water and slow water flow were significant predictors of snail counts 

in univariate negative binomial (NB) models at p ≤ 0.05 (see Table 4). Using the log likelihood 

value as a measure of best fit, the NB regression model predicting snail count from visible water 

(coefficient = 2.18, p = 0.0001) and slow water flow (coefficient = 3.40, p = 0.0001)  was the 

best two-variable micro-scale model (chi-squared = 24.8, df = 2, p = 0.0001, log likelihood = 

−320.4). The NB regression model predicting snail count from fast water (coefficient = −2.51, p 

= 0.0001) and dry conditions (coefficient = −1.21, p = 0.011) was also statistically significant 

(chi-squared = 14.9, df = 2, p = 0.0006, log likelihood = −325.3). Thin grass and soil ditch 

construction, although not significant predictors of snail counts in univariate models, were 

positively correlated with snail counts in two-variable models at significance, p ≤ 0.05. Thick 

grass, concrete ditch construction, wet conditions without visible water, and dry conditions were 

negatively correlated with snail counts in two-variable models at significance, p ≤ 0.05 (see 

Table 5). 
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Table 4: Univariate associations between small-scale ditch 

conditions and snail presence (logistic model) and snail 

counts (negative binomial [NB] model). An odds ratio > 1 

indicates that a given variable is associated with snail 

presence sites; an odds ratio < 1 indicate that a given 

variable is associated with snail absence sites. *denotes 

significance at p ≤ 0.05 

Table 5: Two-variable negative binomial regression 

models associating small-scale ditch conditions and 

snail counts. Regression coefficients and their 

corresponding p-values are indicated in parenthesis 

next to each variable. Log-likelihood is a measure of 

goodness of fit such that the higher (more positive) 

the log-likelihood value is, the more the model 

explains the data’s variability. 

 

 

 

 

 

Large-Scale: Remotely Sensed Landscape Features 

Two remotely sensed landscape features were significantly associated with snail presence 

sites (i.e. odds ratio > 1 for univariate logistic regression against a snail presence indicator 

variable): percent forest cover and percent pond cover. Three landscape features were 

significantly associated with snail absence sites (i.e. odds ratio < 1): elevation, % built 

infrastructure land cover, and percent crop field land cover. Percent forest cover was a significant 

predictor of snail counts in univariate negative binomial (NB) models at significance, p ≤ 0.05. 

Elevation, percent built infrastructure land cover, and percent river land cover were negatively 

 Logistic Model 
(Snail Presence) 

NB Model 
(Snail Counts) 

   

Variable Odds Ratio Coefficient  2-variable NB Models Log-Likelihood 

GRASS       None .628 .020  Thick Grass (-1.23, p=.023) 

Dry Conditions (-.884, p=.051) 

-329.5 

Thin 2.41* .569  Thick Grass (-1.19, p=.024) 

Visible Water (1.15, p=.011) 

-328.0 

Thick .403* -.961  Thick Grass (-1.21, p=.024) 

Concrete Constr. (-.924, p=.052) 

-329.6 

WATER        Dry  

LEVEL 

.365* -.608  Thick Grass (-1.25, p=.021) 

Soil Constr. (.978, p=.039) 

-329.4 

Wet .964 -.939  Dry Conditions (-.887, p=.056) 

Wet Conditions (-1.41, p=.043) 

-330.0 

Visible 2.79* .977*  Dry Conditions (-1.21, p=.011) 

SlowWater (2.51, p=.001) 

-325.3 

WATER       Fast 
VELOCITY  

.144* -1.83*  Wet Conditions (-1.20, p=.057) 

Fast Water (-1.98, p=.001) 

-327.2 

Slow 6.96* 1.83*  Visible Water (2.18, p=.0001) 

Slow Water (3.40, p=.0001) 

-320.4 

DITCH   Concrete 

CONSTR. 

.579 -.642    

Brick 1.18 -1.02    

Soil 1.69 .681    
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Table 6: Univariate associations between remotely sensed 

landscape features and snail presence (logistic model) and 

snail counts (negative binomial [NB] model). An odds ratio > 

1 indicates that a given variable is associated with snail 

presence sites; an odds ratio < 1 indicate that a given variable 

is associated with snail absence sites. *denotes significance 

at p ≤ 0.05 

Table 7: Two-variable negative binomial regression 

models associating remotely sensed landscape 

features and snail counts. Regression coefficients and 

their corresponding p-values are indicated in 

parenthesis next to each variable. Log-likelihood is a 

measure of goodness of fit such that the higher (more 

positive) the log-likelihood value is, the more the 

model explains the data’s variability. 

associated with snail counts in univariate NB models at significance, p ≤ 0.05. Univariate models 

regressing the autocorrelation variable, distance between sites, did not converge (see Table 6). 

Using the log likelihood value as a measure of best fit, the NB regression model predicting 

snail count from percent forest cover (coefficient = 6.08, p = 0.001) and percent crop field cover 

(coefficient = 3.38, p= .038)  was the best two-variable micro-scale model (chi-squared = 12.41, 

df = 2, p<.002, log likelihood = -326.6). All other significant two-variable macro-scale models 

included the variable % river cover and were discounted due to this land category’s low 

classification accuracy (see Tables 1 and 2). The autocorrelation variable was not a significant 

predictor of snail counts for any two-variable NB model and was therefore not included in the 

analysis (see Table 7). 

 

 

 

 

 

 Logistic Model 

(Snail Presence) 

NB Model 

(Snail Counts) 

   

Variable Odds Ratio Coefficient  2-variable NB Models Log-Likelihood 

Elevation  .968* -.028*  Elevation (-.042, p=.005) 

% River (-122.5, p=.001) 

-324.8 

Slope 1.04 .032  % Road (-9.884, p=.056) 

% River (-8.296, p=.021) 

-326.3 

% Built 9.21 x 10
-8

* -12.4*  % Crop (-2.70, p=.007) 

% River (-14.3, p=.001) 

-324.7 

% Crop .127* -1.29  % Crop (3.38, p=.038) 

% Forest (6.08, p=.001) 

-326.6 

% Bare Soil 2.28 -.387  % River (-12.4, p=.001) 

% Forest (3.51, p=.001) 

-322.4 

% River .057 -10.1*  % River (-12.6, p=.001) 

% Pond (25.6, p=.035) 

-325.7 

% Forest 22.2* 2.93*    

% Pond 4260* 12.9    

Wetness .991 -.011    

Shannon 2.41 .621    

Autocorrelation Non-converge Non-converge    
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Remotely-Sensed Proxies for Small-Scale Environmental Conditions 

Crop land cover and the topographic wetness index serve as useful proxies for thick grass 

and visible water, respectively. Built infrastructure shows no clear relationship with concretized 

ditch construction while degree slope shows an inverse correlation with fast water velocity (see 

Table 8). 

 

Table 8: Pair-wise correlations between large-scale remotely sensed features and small-scale conditions at the ditch 

using the information at or within 50-meters of snail sampling sites. (n = 2525). 

 

Large-Scale Variable Small-Scale Variable r
2
 p-value 

Crop Land Cover Thick Grass 0.226 .0001 

Built Infrastructure  Concrete Ditch Constr. 0.002 .9102 

Topographic Wetness Index Visible Water 0.165 .0001 

Degree Slope Fast Water -0.3368 .0001 

 

Discussion 

This study integrated georeferenced snail survey data and remotely-sensed environmental 

data in order to better understand O. hupensis snail ecology and more accurately predict O. 

hupensis habitats at the production group level. Below, the important small-scale ecological 

conditions and large-scale remotely-sensed landscape features associated with O. hupensis snail 

occurrence along irrigation ditch networks are described.  

 

Small-Scale Environmental Conditions  

Water conditions at the ditch scale were significant ecological determinants of snail 

occurrence (both presence and counts) along irrigation ditch networks. Low-flowing water was 

positively correlated with snail presence sites as well as snail counts at those sites. This trend 

corroborates common anecdotal accounts of O. hupensis microhabitat (Sturrock 2001). It should 

be noted that the indicator variable, slow water, also applies to dry sampling sites without any 

water in the ditch, which were associated with snail absence sites (see Table 4). Therefore, the 

fact that snail counts are predicted by both variables slow water and visible water (see Table 5) 

suggests that snails prefer microhabitats in which water is present but flowing at less than 0.15 

meters/second. Conversely, sites with fast-flowing water were correlated with snail absence sites 

and lower snail counts in general. This trend suggests that snails cannot attach to sites in which 

water flows at faster than 0.15 meters/second and are flushed downstream to areas with more 
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suitable habitat. Although prior studies have shown that snails in the mountainous regions of 

Sichuan and Yunnan are less affected by flooding than their downstream counterparts below the 

Three Gorges Dam, faster water flow may nevertheless preclude snail occurrence along the 

irrigation ditch networks (Davis et al. 2001). 

The thickness of grass is predictive of snail presence and may be predictive of snail counts. 

More thin grass sampling sites had snails present, and conversely, fewer thick grass sampling 

sites had snails present than would be expected by chance (see Table 4). This corroborates prior 

anecdotal accounts describing O. hupensis as favoring sites with emergent vegetation (Sturrock 

2001). Field observations have described snails clinging on to the base of grasses, which 

provides an “environmental buffer, protecting them from direct light, rain, and extreme 

fluctuations in temperature and moistures” (Sturrock 2001). However, counter to this study, 

which found associations between snail presence and emergent vegetation, prior research has 

found a positive correlation between grass density and snail density (Guo 1990). In fact, the 

existence of grass has traditionally been used as an indicator of snail habitat in China’s national 

schistosomiasis control program (Yang et al. 2006). However, it is possible that the effects of 

grass density on snail occurrence are confounded by the effects of soil composition. A study by 

Seto et al. (2002b) revealed that the lack of certain soil conditions potentially excluded O. 

hupensis robertsoni from some sites in the Anning River Valley.  

Ditch construction seems to play a far less significant role in the distribution of O. hupensis 

than previously thought (Seto et al. 2002a). Although soil and concrete ditch construction were 

positively and negatively correlated with snail counts, respectively, in some two-variable NB 

regression models, these variables were not recurring predictors of snail counts. The lack of any 

obvious association between ditch construction and snail occurrence (see Table 4), suggests that, 

contrary to anecdotal accounts, concretized ditches do not necessarily exclude O. hupensis (Seto 

2008, pers. comm.). 

 

Remotely-Sensed Landscape Features 

Three variables were derived from remotely-sensed elevation data at 90-meter resolution. 

Elevation was a significant predictor of snail absence sites and negatively correlated with snail 

counts in univariate regression models (see Table 6). Elevation in this study ranged from 490m 

to 517m. However, Davis et al. (2001) has described the subspecies O. hupensis robertsoni as 
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occurring at elevations ranging from 500m to 2000m, with several populations living on lower 

plateaus or basins at 200-500m. This wide range of elevation for O. h. robertsoni has been 

confirmed by other studies (Xu et al. 2004, Yang et al. 2008). Therefore, if there is an inverse 

relationship between snail occurrence and elevation it is only within the elevation range relevant 

to this study. However, it is unclear why elevation as a single variable at such a narrow range 

should affect snail habitat. The disparate resolution of snail survey data and elevation data may 

explain this trend. Whereas snail counts were surveyed every 10 meters along the irrigation 

ditch, elevation data for the study was acquired at 90-meter resolution. The analysis in this study 

did not consider the topographical heterogeneity of the several sampling sites that existed within 

each 90m x 90m elevation pixel.  

The other two features derived from elevation data, slope and a wetness index, did not show 

any significant association with snail occurrence (both presence and counts, see Table 5). The 

relationship between slope and water velocity, which was predictive of snail counts, was the 

reverse of what would be expected: lower-sloped sites were generally correlated with faster 

water flows (see Table 8). This is likely due to the relatively flat terrain in this study (mean slope 

value was 5.5 degrees, with a standard deviation of 4.9 degrees). The loose correlation between 

slope and water flow with regards to snail habitat has been noted anecdotally by Davis et al. 

(2001), who observed Oncomelania hupensis in “small, trickling perennial flows” at a slope of 

up to 25 degrees. Wetness, which has been a key indicator of snail habitat in lower-resolution 

studies (municipal or provincial level), was not a significant predictor of snail occurrence at the 

village level (Yang et al. 2006, Guo et al. 2005). This may be explained by the result that 

wetness is a poor proxy for water level at the ditch networks (see Table 8).  As with the elevation 

data, it is also likely that slope and wetness data was too coarse to explain any variability in snail 

counts. 

Three of the six land cover categories were predictive of snail counts. Percent forest cover 

was the most predictive land cover category as it was positively correlated with snail counts and 

presence sites in both univariate and multivariable regression models (see Tables 5 and 6). This 

positive association is likely due to the shading created by forest cover, which shields snails from 

intense UV radiation and prevents desiccation (Davis et al. 2001).  

Percent built infrastructure was associated with snail absence sites. Given the low predictive 

value of ditch construction on snail occurrence, it is unclear why this might be the case. Built 
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infrastructure was not associated with higher or lower snail counts in neither univariate nor two-

variable regression models. It is possible that the absence of snails in areas in proximity to built 

infrastructure is due to the implementation of snail control methods in areas in which people 

work and reside. However, disease control information within the production group was not 

available for this study. 

Percent crop cover was associated with snail absence sites but positively correlated with snail 

counts in a two-variable regression model with percent forest cover. This discrepancy is likely 

due to the heterogeneity of crop land cover in this study. Prior studies at the village level that 

have found correlations between snail occurrence and crop land cover have noted that snails are 

associated with some crop land covers and not others (Xu et al. 2004, Yang et al. 2008). The 

predictive strength of the two-variable model with land and forest cover suggests that crop 

cultivation in proximity to forested areas provides more ideal habitat for O. hupensis, likely due 

to suitable vegetation, soil composition, and shading in these areas.  

 

Broader Implications, Limitations, and Directions for Future Study 

The study of O. hupensis ecology and prediction of snail occurrence at the village scale 

constitutes a novel and important research objective (Yang et al. 2008). The purpose of these 

studies is to identify environmental determinants of snail habitat at a higher resolution. Remote 

sensing and geographic information systems have been indispensible tools for identifying 

landscape features associated with snail habitat at a municipal or provincial level. However, the 

results of this analysis suggests that a different set of remotely-sensed variables that play an 

important role in the occurrence of O. hupensis at the village level, namely, land cover classes, 

derived from IKONOS imagery at 1-meter resolution. This study also illustrates that additional 

explanatory power for snail occurrence can be attained by examining smaller-scale variables that 

cannot be remotely sensed, namely water conditions and grass density within irrigation ditches. 

Identification of these small-scale environmental determinants of O. hupensis in this analysis 

corroborates descriptions of snail habitats that have largely been anecdotal (Sturrock 2001). 

Lastly, exploring associations between variables at the two different scales, allows for a better 

understanding of the underlying ecological mechanisms of associations between remotely sensed 

features and snail occurrence. 
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Despite the novelty of this approach, this study had several inherent limitations. First, this 

study did not take into account temporal fluctuations in neither the environmental variables 

examined nor snail distribution and density. Snail surveys were carried out once in the fall of 

2007. Prior studies have shown that snail counts vary widely throughout the year and that various 

seasonal cues trigger key population processes, such as recruitment and mortality (Remais et al. 

2006). Further studies should conduct snail surveys multiple times throughout the year to 

understand how the association between ecological determinants and snail occurrence evolves 

temporally. However, higher-resolution remotely sensed data is difficult to obtain with 

regularity. IKONOS imagery at 1-meter resolution for the study site could only be obtained for 

the fall of 2002, five years prior to the time of the snail survey. During that time, it is likely that 

land cover data has changed, particularly in light of demographic shifts to urban centers and 

national afforestation programs in rural areas (Shen et al. 2005, Démurger and Yang 2006). This 

is a general limitation of high-resolution IKONOS imagery. Unlike lower-resolution satellites 

(e.g. Landsat), IKONOS satellites are not scheduled for regular acquisitions over the entire 

surface of the earth. Therefore, in order to understand seasonal variability in the relation between 

ecological determinants and snail densities, there would need to be a larger reliance on smaller-

scale field observations. 

Despite these limitations, this study constitutes an important step in predicting O. hupensis 

habitat at multiple scales. More importantly, it reaffirms the utility of remote sensing techniques 

for studying the ecology of disease vectors at higher resolutions. It is hoped that this general 

approach will inform the implementation of focal mollusciciding and other snail control 

strategies at the production group level. 
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