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ABSTRACT 

 

The stochastic nature of wind resources renders turbine energy production highly 
unstable, reducing its market value and penetration. Prior research indicates that 
increasing the geographic distribution of wind turbines reduces overall production 
variability. The objective of this research was to develop a robust methodology utilizing 
Lagrange multipliers and a moving-window penalty method to determine the optimum 
spatial allocation of turbines to minimize power fluctuations while maximizing energy 
generation. The developed models are validated against a distributed generation network 
with uniform distribution of wind turbines, as well as previous studies on interconnected 
wind farms. The results indicate that the moving-window method is fairly effective at 
minimizing both short-term and long-term variability, as well as maximizing mean power 
output and baseload power supply. 
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INTRODUCTION 

 

Wind energy is currently the fastest growing form of energy generation due to 

increasing cost-competitiveness, environmental awareness and political pressure (Kamau, 

2009). Advances in energy production technology have reduced the average cost of wind 

energy from $0.38/KWh in 1982 to $0.04/KWh in 2001, leading the European Wind 

Energy Association (EWEA) to project that 12% of the world’s power demand will be 

met by wind generation in 2020 (Kang, 2007). Meanwhile, parallel progress in the 

environmental arena regarding carbon emissions, energy security, and diminishing fossil 

fuel reserves have prompted social and economic support for wind energy development 

(Rowlands & Jernigan, 2008). However, despite decreasing production costs and 

enhanced levels of support across the socio-political spectrum, significant barriers to 

large-scale market penetration remain.  

Whereas conventional power sources produce stable electricity supplies, wind 

energy exhibits greater volatility due to its stochastic nature (Milligan & Porter, 2005). 

This temporal variation in production supply leads to reduced market value because 

wind-produced energy cannot be reliably dispatched or forecasted, allowing power 

system operators less flexibility in responding to demand fluctuations (DeCarolis & 

Keith, 2005). As a result, wind energy critics contend that system operators must limit the 

level of wind energy penetration in the energy market to maintain overall grid stability 

(Rowlands & Jernigan, 2008). Currently, additional electrical reserves in the form of 

idling conventional power plants are kept on hand to ensure adequate supplies to meet 

peak demand (DeCarolis & Keith, 2006). However, such redundancy causes operating 

inefficiencies and additional overhead costs. Therefore, production smoothing is essential 

to reduce variability and facilitate large-scale wind integration into the existing grid 

system.  

Wind resource management to smooth production can be accomplished via 

multiple methods. In recent years, extensive research has been conducted on various 

forms of energy storage to supplement power output during periods of low wind energy 

availability and divert excess capacity during periods of high availability (Ahmed, 

Miyatake, & Al-Othman, 2008). These techniques include the usage of batteries banks, 
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ultracapacitors, super inductors, flywheels, and fuel cell systems (Khalid, 2010). 

Additional methods to stabilize real-time turbine output for fixed-speed wind generators 

include active pitch control, braking resistors, static synchronous compensators 

(STATCOM), and superconducting magnetic energy storage (SMES) systems (Ali & 

Wu, 2010). The primary disadvantage associated with these stabilization techniques is the 

prohibitive costs incurred in addition to the already high capital costs for wind turbines 

(Khalid, 2010).  

An alternative to aggregate variability reduction that does not involve energy 

storage or active stabilization techniques is a distributed generation network. In a 

distributed generation system, wind developers diversify turbine locations to include 

multiple interconnected wind farms, thereby reducing the probability that wind speeds 

will drop simultaneously across all wind farm locations (Rowlands & Jernigan 2008). 

The effect of interconnected wind farms on output stability was first investigated by 

Kahn (1979), who analyzed reliability, availability, and effective load-carrying capacities 

for distributed networks of 2-13 sites in California (Archer and Jacobson, 2007). Kahn 

found that in general, as the number of sites increases, so does the output reliability. This 

finding is reinforced by Archer and Jacobson’s (2007) study of the benefits of 

interconnecting wind farms for 19 sites in the Midwestern United States. Archer and 

Jacobson demonstrated that although most wind energy parameters, including 

intermittency, improved less than linearly with the number of interconnected sites, there 

was no saturation of benefits. These findings imply that the aggregate system reliability 

only improves with additional sites within a distributed network. However, there remains 

a gap in the literature with regards to the spatial optimization of wind turbines within a 

distributed network.  

Although Cassola, Burlando, Antonelli, & Ratto (2008) developed a simplistic 

mathematical algorithm to optimize the allocation of wind turbines for minimal 

variability and maximum energy generation, the proposed methodology is limited by the 

scale and objectives of their study. For example, Cassola et al. (2008) utilize a brute force 

approach in which the proportion of wind turbines in each location is incrementally 

varied. This method is computationally expensive, offers limited resolution, and cannot 

be extended to large-scale applications involving tens or hundreds of sites. Additionally, 
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the wind speed measurements used in the study are taken at 3 h and 24 h intervals, 

thereby neglecting short-term variations in wind energy supply. Given the lack of large-

scale optimization techniques, wind developers typically optimize the layout of 

individual wind farms using heuristic methods such as genetic or evolutionary algorithms 

(Elkinton, 2005). A robust method of wind turbine spatial allocation is needed that is 

applicable to a wide range of geographical terrain and large datasets. To address this gap 

in systems-level optimization methodology, the objective of this study is to develop a 

general algorithm to determine the distribution of wind turbines over given regions that 

will minimize aggregate output variation and maximize energy generation. 

 

METHODS 

 

Study System 

 

 To determine the study system for the test sites, I used the National Renewable 

Energy Laboratory’s (NREL) color-coded U.S. Western Wind Resources map to select 

the region with the highest prevalence of large wind speeds. The wind speed datasets are 

generated using Numerical Weather Prediction (NWP) techniques to recreate historical 

weather conditions in the western U.S. from 2004-2006 (NREL 2010). The criterion of 

large wind speeds reflects a wind developer’s interest in maximizing power generation to 

enhance commercial viability. Using this guideline, I selected the mountainous region 

between Cheyenne and Laramie in southwestern Wyoming, which forms a natural 

corridor for year-round wind gusts averaging 10 m/s from the north. Although the 

relatively heterogeneous, complex terrain of sharp features and sparse vegetation may 

enhance modeling errors within the NREL Western Wind Resources dataset due to 

increased wind turbulence, such errors are inconsequential for the research of variability 

reduction. In addition, the increased terrain diversity acts to reduce statistical correlation 

between sites by introducing wind speed variability (Archer and Jacobson, 2007). Lastly, 

the presence of numerous coal-fired power plants in the region facilitates wind energy 

integration into existing grid lines. 
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Data Collection 

 

 To determine the individual locations within the study region for analysis, I 

randomly selected ten sites within the study region to simulate a distributed generation 

network. This procedure creates a scenario of high generation unpredictability to 

demonstrate proof of concept of overall power stabilization via the proposed 

methodology for spatial optimization. The average wind energy density for these sites 

ranged from 1626.8 W/m2 to 689.9 W/m2 (NREL 2010). These figures were obtained 

from simulated wind speed data corresponding to a height of 100m. The wind speed data 

used in this study, along with the rated power output (MW), SCORE-lite power output 

(MW), and corrected SCORE-lite power output (MW) for ten Vesta V-90 3MW 

commercial wind turbines, are available at ten minute intervals by NREL through the 

Western Wind and Solar Integration Study. The rated power output is the output 

determined by the manufacturer’s power curve for various wind speeds (NREL 2010).  

To reflect the stochastic nature of real wind turbines, the SCORE-lite power 

output exhibits greater short-term variability while the corrected SCORE-lite output 

accounts for wind turbine hysteresis at shut-down speeds of 25 m/s or greater (NREL 

2010). For this study, I used the corrected SCORE-lite data corresponding to the two year 

interval from 2004-2005, representing approximately 105,270 data points per site. 

 

Minimization of Power Variability while Maximizing Power Production 

 

To minimize the overall power variability across all wind turbines while 

maximizing the energy generation, I minimized the ratio of the two quantities (Cassola et 

al., 2008) 

∑ �𝑃𝑖,𝑡𝑜𝑡−𝑃𝑖−1,𝑡𝑜𝑡�𝑛
𝑖=1

∑ 𝑃𝑖,𝑡𝑜𝑡𝑛
𝑖=1

                                                (1) 

Here, the variable Pi,tot represents the total power generation in MW across all ten sites at 

any time instant i, and can be calculated by 

 

𝑃𝑖,𝑡𝑜𝑡 = 𝑁(𝑘1𝑃𝑖,1 + 𝑘2𝑃𝑖,2 + ⋯+ 𝑘10𝑃𝑖,10)                              (2) 
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where N is the total number of wind turbines, k is the fraction of wind turbines at 

locations P1, P2, …, P10, and n is the number of 10 minute time intervals from 2004-2005. 

In Eq. (1), the numerator represents the system variability, as calculated by the difference 

in total power production squared between adjacent time steps. This definition of 

variability is used to capture fluctuations in wind power output over short time intervals, 

which is of particular importance to grid system operators in supplying reliable power. 

Eq. 1 is minimized by decreasing the system variability or increasing the total energy 

generation. N is arbitrarily chosen to equal 1 to simplify calculations and calculate an 

overall proportional allocation. 

 

Mathematical Formulation—Lagrange Multipliers 

 

 Given the size of each dataset and the number of sites within the study system, a 

brute force iterative approach towards minimizing Eq. 1 would be computationally-

expensive and time-consuming. I attempted to minimize Eq. 1 using two methods—

Lagrange multipliers to obtain a closed-form solution, and a moving-window 

optimization scheme to numerically approximate the desired k-values. The Lagrange 

multipliers method was used to determine the local minima of the function  

 

                                        Λ(𝑥,𝑦, 𝜆) =  𝑓(𝑥,𝑦) + 𝜆𝑔(𝑥,𝑦) − 𝑐           (2) 

where 

                    𝑓(𝑥,𝑦) = ∑ �𝑃𝑖,𝑡𝑜𝑡−𝑃𝑖−1,𝑡𝑜𝑡�𝑛
𝑖=1

∑ 𝑃𝑖,𝑡𝑜𝑡𝑛
𝑖=1

                   (3)                                         

             𝑔(𝑥,𝑦) = 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 + 𝑘6 + 𝑘7 + 𝑘8 + 𝑘9 + 𝑘10 − 1                 (4)     

 

The function 𝑔(𝑥, 𝑦)expresses the constraint that the proportional allocation of wind 

turbines across the entire study system must add up to 1. Analysis of Eq. (2) yields the 

following simplified system of equations expressed for three study sites 

 

 𝜕Λ
𝜕𝑘1

= (𝑘1𝑦1+𝑘2𝑦2+𝑘3𝑦3)𝑥1−(𝑘1𝑥1+𝑘2𝑥2+𝑘3𝑥3)𝑦1
(𝑘1𝑦1+𝑘2𝑦2+𝑘3𝑦3)2

+ 𝜆 = 0       (5) 
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𝜕Λ
𝜕𝑘2

= (𝑘1𝑦1+𝑘2𝑦2+𝑘3𝑦3)𝑥2−(𝑘1𝑥1+𝑘2𝑥2+𝑘3𝑥3)𝑦2
(𝑘1𝑦1+𝑘2𝑦2+𝑘3𝑦3)2

+ 𝜆 = 0         (6) 

          𝜕Λ
𝜕𝑘3

= (𝑘1𝑦1+𝑘2𝑦2+𝑘3𝑦3)𝑥3−(𝑘1𝑥1+𝑘2𝑥2+𝑘3𝑥3)𝑦3
(𝑘1𝑦1+𝑘2𝑦2+𝑘3𝑦3)2

+ 𝜆 = 0         (7)   

𝜕Λ
𝜕𝜆

= 𝑘1 + 𝑘2 + 𝑘3 − 1                                     (8) 

𝑥1 = ∑ (𝑃𝑖,1 − 𝑃𝑖−1,1
𝑛
𝑖=1 )        𝑥2 = ∑ (𝑃𝑖,2 − 𝑃𝑖−1,2

𝑛
𝑖=1 )        𝑥3 = ∑ (𝑃𝑖,3 − 𝑃𝑖−1,3

𝑛
𝑖=1 )       (9) 

                              𝑦1 = ∑ 𝑃𝑖,1𝑛
𝑖=1         𝑦2 = ∑ 𝑃𝑖,2𝑛

𝑖=1         𝑦3 = ∑ 𝑃𝑖,3𝑛
𝑖=1                               (10) 

 

where n represents the length of the time series from 2004-2005. The x and y values were 

determined by using the corrected SCORE-lite values from the Western Wind Resources 

dataset in MATLAB R2009b (NREL 2010). 

 

Mathematical Formulation—Moving-Window Optimization 

 

The moving-window optimization method was used to determine the optimal k-

values that minimized Eq. 1 across multiple time steps. This was accomplished by 

defining a cost function to reformulate Eq.1 as a series of 10x10 systems of equations 

 

𝐶(𝑎) = 1
2

{𝑎}𝑇[𝐾]{𝑎} − {𝑎}𝑇{𝑅} − 𝑃∗{𝑎𝑖}    (11) 

[𝐾]{𝑎} = {𝑅}      (12) 

𝑅𝑖 = �𝑃𝑖,𝑡𝑜𝑡−𝑃𝑖−1,𝑡𝑜𝑡�
𝑃𝑖,𝑡𝑜𝑡

                       (13) 

𝐾𝑖,𝑗 = �𝑃𝑖,𝑗−𝑃𝑖−1,𝑗�
𝑃𝑖,𝑗

            (14) 

 

where a represents the optimal solution of k-values, R represents the quantity to be 

minimized for the entire distributed network at each time step, and K is the ratio in Eq. 14 

at sites j = 1, 2, … 10  for each time step. K is therefore a 10x10 matrix, while a and R are 

10x1 vectors. It is necessary to obtain 10 time steps at a time to invert the K-matrix. 

Optimization using the moving-window technique yields a large array of k-values 
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corresponding to the optimal solutions for each group of time steps. Because the physical 

distribution of wind turbines is stationary, the k-values are averaged across each test site. 

For both the Lagrange and moving-window methods, the derived k-values are normalized 

by their sum to satisfy the constraint expressed in Eq. 4. 

 

{𝑘} = {𝑘}
∑ 𝑘𝑗10
𝑗=1

      (15) 

The term optimal solution is used when referring to Eq. 2 instead of exact solution 

because the exact solution contains negative entries, which have no physical 

correspondence to wind turbine placement. Therefore, the optimal solution is the set of 

positive k-values that comes closest to minimizing Eq. 1. Determination of this solution is 

achieved through the introduction of a penalty term in Eq. 11. The penalty factor P is set 

to be large enough such that it forces negative R values to approximate 0, yet not so large 

that it renders the K-matrix un-invertible. Eq. 12 is then solved iteratively in MATLAB 

R2009b until the solution converges within a specified tolerance of 0.001 (Appendix A). 

 

Evaluation of Methodology Effectiveness 

 

To determine the effectiveness of the developed variability reduction methods, I 

compared the average system power output and generation variability for the evenly 

distributed generation scenario, the optimized generation scenario, and the single site 

scenario using the Lagrange multiplier and moving-window optimization methods. The 

evenly distributed case represents the benchmark against which improvements are 

measured, without prior optimization. I selected the reference site as the location with the 

highest average power production. This comparison quantifies the tradeoff in total energy 

production using the power smoothing method versus the theoretical maximum energy 

generation over the time period 2004-2005 for real turbines in this system. The system 

variability is analyzed using the sum of the absolute differences between adjacent time 

steps, as well as the standard deviation 
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𝑉𝑎𝑟𝑠ℎ𝑜𝑟𝑡 = ∑ �𝑃𝑖,𝑡𝑜𝑡−𝑃𝑖−1,𝑡𝑜𝑡�𝑛
𝑖=1

1
𝑛
∑ 𝑃𝑖,𝑡𝑜𝑡𝑛
𝑖=1

        (16) 

𝑉𝑎𝑟𝑙𝑜𝑛𝑔 =
�1
𝑛
∑ �𝑃𝑖,𝑡𝑜𝑡−

1
𝑛
∑ 𝑃𝑖,𝑡𝑜𝑡𝑛
𝑖=1 �

2𝑛
1

1
𝑛
∑ 𝑃𝑖,𝑡𝑜𝑡𝑛
𝑖=1

           (17) 

 

Eq. 16 represents variability resulting from short-term fluctuations in wind speed, while 

Eq. 17 represents overall long-term variability. Both metrics are ideally minimized for 

enhanced supply reliability. Eqs. 16 and 17 are both divided by the mean to reflect the 

range of fluctuations relative to the total plant output. Because wind energy integration 

requires high power output and generation stability, I analyzed the power output data for 

seasonal trends that may contribute to long-term variability. I then compared the baseload 

power generation corresponding to an 87.5% confidence interval for each distribution 

scenario. The baseload power represents the minimum power output that is available at 

least 87.5% of the time and was calculated using a Student’s t-value of 1.1504. Finally, I 

compared the performance metrics corresponding to the calculated k-values with those of 

randomly-generated k-values to verify that the proposed methodologies produce true 

optima. 

 

RESULTS 

 

Mean Power Generation and Variability within Study Sites 

 

 Using the NREL Western Wind Resources map, I found that the area bounded by 

40.83°N, 104.99°W and 42.16°N, 105.72°W experienced the highest average wind energy 

density within the study region. From this area, sites 13103, 13583, 14391, 15705, 16242, 

18345, 18559, 19149, 19379, and 19501 were randomly selected to form the distributed 

generation network. Site 19379 exhibited the highest average power output at 14.1339 + 

11.5760 MW, while site 18559 exhibited the lowest average power output at 9.1869 + 

10.4860 MW (Table 1). The mean power output of the study sites was 12.1062 + 11.2865 

MW. The wind turbines for these sampling sites had an average capacity utilization of 

41.61% for a mean wind velocity of 9.67 m/s.  
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Table 1. Individual and mean characteristics of the study sites. 

k Sites 

Mean Power 
Output 
(MW) 

Standard 
Deviation 

(MW) 

Capacity 
Utilization 

(%) 
Wind Speed 

(m/s) 
Baseload 

Power (MW) 
1 13103 12.6236 12.3050 44.2 10.8 -1.5320 

2 13583 13.5037 11.5647 46.4 10.1 0.1997 

3 14391 12.1247 11.0967 41.6 9.6 -0.6410 

4 15705 13.4455 11.4845 46.3 10.2 0.2338 

5 16242 11.9349 11.0468 41.5 9.3 -0.7733 

6 18345 10.8990 10.6182 36.7 8.7 -1.3162 

7 18559 9.1869 10.4860 32.0 8.3 -2.8762 

8 19149 11.8958 11.8127 40.6 10.0 -1.6935 

9 19379 14.1339 11.5760 48.0 10.7 0.8168 

10 19501 11.3144 10.8742 38.8 9.0 -1.1952 

Mean  12.1062 11.2865 41.61 9.67 -0.8777 

 

Variability Minimization and Generation Maximization 

 

Minimization of Eq.1 using the Lagrange multipliers and moving-window 

optimization techniques yielded the following non-uniformly distributed k-values. The 

majority of wind turbines using the Lagrange method are concentrated in study site 10 

(19501) while sites 1, 3, 5, 7, and 9 (13103, 14391, 16242, 18559, and 19379) contain the 

least number of wind turbines (Table 2). The moving-window technique produces a much 

more even distribution of wind turbines, with the largest number of turbines concentrated 

in site 9 and the least number of turbines concentrated in site 7 (Table 2). 

 
Table 2. Determined k-values for evenly-distributed, Lagrange, moving-window, and maximum 
output scenarios. 

 

k-values k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 

Even 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Lagrange 0 .1507 0 .2497 0 .0002 0 .1560 0 .4434 

Moving .0995 .0980 .1003 .1043 .0973 .0825 .0770 .1119 .1275 .1018 

Max Out 0 0 0 0 0 0 0 0 1 0 

 



Jim Gao Spatial Optimization of Wind Turbines Spring 2011 

11 

Evaluation of Methodology Effectiveness 

 

The even distribution of wind turbines within the distributed network is set as the 

benchmark for comparison in the absence of any optimization methodology. Utilizing the 

Lagrange distribution of wind turbines, the total mean power generation across the study 

sites becomes 11.7322 + 9.5055 MW. The moving-window distribution produces a mean 

power generation of 11.7473 + 9.1273 MW. The distribution that maximizes the total 

long-term power generation is concentrated in the single site with the highest average 

wind energy density. Using the k-values for maximum output yields a mean power 

generation of 14.2534 + 11.7063 MW (Table 3).  

 
Table 3. Mean power output, variability, and baseload power generation for evenly-distributed, 
Lagrange, moving-window and maximum output scenarios. Changes are referenced to the even 
distribution. 

 

Distribution Mean Power 
Output (MW) Varshort Varlong 

Baseload Power 
(MW) 

Even 12.1062 
(+0%) 

4764.5 
(+0%) 

0.7686 
(+0%) 

1.4025 
(+0%) 

Lagrange 12.2672 
(+1.33%) 

7239.6 
(+51.95%) 

0.7955 
(+3.50%) 

1.0407 
(-25.80%) 

Moving-Window 12.2237 
(+0.97%) 

4726.4 
(-0.80%) 

0.7658 
(-0.36%) 

1.4543 
 (+3.69%) 

Maximum Output 14.1339 
(+16.75%) 

9809.7 
(+105.89%) 

0.8190 
(+6.56%) 

0.8168 
(-41.76%) 

 

 Distributed generation of wind turbines according to the calculated k-values 

produces a smoother total power output profile than concentrated generation for 

maximum output (Fig. 1). The evenly-distributed, Lagrange, and moving-window 

scenarios produce 51.43%, 26.20%, and 51.82% reductions in short-term generation 

variability and 6.15%, 2.87%, and 6.50% reductions in long-term generation variability 

(Fig. 2). These variability reductions correspond to an average 13.69% decrease in mean 

total power output. All three distributed scenarios exhibit significantly higher baseload 

power production than the maximum output scenario (Table 1).  
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Figure 1.  Distributed power output vs concentrated power output. Data is averaged across one month  
intervals, with month  0 corresponding to Jan. 1, 2004. 

 

 

 
Figure 2.  Distributed output variability vs concentrated output variability. Data is averaged across 
one month  intervals.  
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The shapes of the graphs indicate strong seasonality trends for the magnitude and 

variability of wind energy density levels (Figs. 1 and 2). Power generation within the 

study system is maximized during the summer and minimized during the winter. System 

output variability exhibits an inverse relationship to the power generation, with variability 

maximized during summer and minimized during the winter (Figs. 1 and 2). The average 

power output at site 19379 is consistently higher than the other distributions, although it 

also demonstrates the highest variability. Although the Lagrange scenario roughly 

approximates the power output of the moving-window and evenly-distributed cases, it 

exhibits higher short-term and long-term variability (Figs. 1 and 2). 

Compared to randomly selected combinations of k-values, the moving-window 

spatial optimization method is the only distribution that reduces the short-term and long-

term variability while increasing the mean power output and baseload generation values 

referenced against the evenly-distributed case (Table 3). Additionally, the moving-

window method displays the lowest short-term variability of the distribution permutations 

(Table 3). The average power output is not particularly sensitive to varying k-

combinations, while the output variability is much more sensitive to differing k-values 

(Figs. 3 and 4). 

 
Table 4. Randomly-generated combinations of k-values. 

k-values k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 

Rand1 .1705 .0851 .0528 .0882 .0211 .0288 .2058 .2089 .1257 .0131 

Rand2  .0570 .0858 .1995 .0037 .0105 .0411 .1577 .1778 .1574 .1096 

Rand3 .1215 .0658 .1654 .0420 .1525 .0408 .0818 .1389 .1733 .0180 

Rand4 .1546 .1290 .0810 .0725 .0743 .0510 .0846 .0849 .1360 .1322 

Rand5 .1024 .0602 .1290 .0847 .0557 .1492 .1392 .0874 .0989 .0933 

 
Table 5. Mean power output, variability, and baseload power generation for random combinations of 
k-values. Changes are referenced to the even distribution. 

Distribution Mean Power 
Output (MW) Varshort Varlong 

Baseload Power 
(MW) 

Even 12.1062 
(+0%) 

4764.5 
(+0%) 

0.7686 
(+0%) 

1.4025 
(+0%) 

Moving 12.2237 
(+0.97%) 

4726.4 
(-0.80%) 

0.7658 
(-0.36%) 

1.4543  
(+1.35%) 

Rand1 11.9938 
(-0.93%) 

5449.3 
(+14.37%) 

0.7911 
(+2.93%) 

1.0782 
(-23.12%) 
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Rand2 11.9475 
(-1.31%) 

5450.8 
(+14.40) 

0.7927 
(+3.14%) 

1.0521 
(-24.98%) 

Rand3 12.3139 
(-1.72%) 

5223.2 
(+9.63%) 

0.7695 
(+0.12%) 

1.4132  
(+0.76%) 

Rand4 12.2971 
(+1.58%) 

4890.5 
(+2.64%) 

0.7579 
(-1.4%) 

1.5759  
(+12.36%) 

Rand5 11.8713 
(-1.94%) 

4965.7 
(+4.22%) 

0.7820 
(+1.75%) 

1.1913 
(-15.06%) 

 
 
 
 
 

 
         Figure 3.  Power production profiles for random k distributions. 
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         Figure 4.  Output variability profiles for random k distributions. 

 

DISCUSSION 

 

 Research on the spatial optimization of wind turbines is motivated by the 

recognition that wind energy intermittency represents a major barrier to large-scale 

integration into the existing electricity grid (Rowlands & Jernigan, 2008; DeCarolis & 

Keith, 2006). Such variations in wind energy generation can cause significant problems 

with frequency and voltage control, place large peak loads on transmission loads, and 

necessitate the usage of backup systems for smoothing periods of low energy production 

(Khalid, 2009). As a result of this production unreliability, grid operators typically pay 

less for wind power than energy from conventional sources (Hoste, Dvorak, & Jacobson, 

2009). Although optimization techniques currently exist for situating wind turbines, they 

generally lack sufficient scale and focus on maximizing energy generation while 

minimizing installation costs (Mosetti, Poloni, & Diviacco, 1993). To address this 

knowledge gap, the objective of this study was to develop robust, mathematical 

algorithms for determining the optimal spatial configuration of wind turbines to minimize 

production variability while maximizing output. As such, the effectiveness of the 
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algorithms has been evaluated by the resulting increase in mean power output and 

baseload power generation across the distributed network, as well the decrease in short-

term and long-term variability. 

 

Study System  

 

 The selected study sites displayed a large amount of long term, short term and 

spatial variability in average wind energy generation. For example, even the optimal 

moving-window k-values exhibited month-to-month fluctuations of up to 12.3822 MW, 

with average energy generation peaking at 21.9040 MW during the winter and dipping to 

6.8662 MW during the summer (Figs. 2 and 4). Conversely, the short-term variability 

peaks during the summer months and decreases dips during the winter months. These 

trends suggest that winter months experience sustained periods of high wind speeds, 

while summer months experience sporadic low wind speeds. The magnitude and range of 

these fluctuations over time suggests an important consideration: the distributed 

generation alone approach cannot stabilize long-term power output within this study 

region and reflects a physical limitation of wind-derived energy. As such, the natural 

seasonal variability of wind resources may require additional power reserves to provide 

consistent baseload power for grid stability (Khalid, 2009; Milligan & Artig, 2008). 

These reserve requirements will likely be greatest during the summer months when the 

baseload power supply is the lowest and energy demand is the highest (Hoste et al., 

2009). Potential avenues of further power smoothing include large-scale energy storage 

and individual turbine control (Archer & Jacobson, 2003; Ali & Wu, 2010)  

 

Variability Minimization and Generation Maximization 

 

 Variability minimization using the Lagrange multipliers and moving-window 

optimization methods yielded a closed-form and numerical approximations to a set of 

non-uniformly distributed k-values. The non-uniform distribution of wind turbines agrees 

with the brute force computational model developed by Cassola et al. (2008) in which the 

k-values are incrementally varied across the test sites for each iteration. The distribution 
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of values is an effective reality check on the functionality of the developed algorithms 

because the probability that the wind speed will drop simultaneously across multiple sites 

decreases with greater geographical variance, and non-uniform k-values are expected 

given the differing amounts of generation variability at each test location (Rowlands & 

Jernigan, 2008).  

The degree of non-uniformity within the results is related to the variability of the 

wind energy density across the study sites—with perfectly uniform and static wind 

speeds, the allocation of wind turbines across the study sites would be the same. The 

variability of wind speeds is in turn related to the homogeneity of the terrain and spread 

of the test sites. With larger test sites and more diverse terrain, the statistical correlation 

between site pairs decreases nonlinearly (Archer & Jacobson, 2007; Kahn, 1979). The 

moving-window distribution of k-values also logically follows from the physical 

parameters in Table 1: the minimum k-value (k7) corresponds to the site with the lowest 

mean power output (site 7), while the maximum k-value (k9) corresponds to the site with 

the highest mean power output (site 9) (Tables 1 and 2).  

In Table 2, the optimized sets of k-values contain positive entries that are close to 

zero. These values correspond to the negative entries in the solution when initially 

solving the system of equations. Application of the penalty method forces these entries to 

approximate zero within a specified tolerance. The observed reduction in short-term and 

long-term variability with increasing geographic diversity agrees with the body of 

literature on distributed generation (Milligan & Artig, 1998; Milligan & Porter, 2005). 

However, the marginal variability reductions diminish with increasing generation sites 

(Kahn, 1979; Katzenstein, 2010). As expected, the distribution that maximizes total 

power generation concentrates all wind turbines in the single location (site 9) with the 

highest average wind energy density (Cassola et al. 2008). It should be noted that site 9 

represents a particularly attractive location for wind turbines as it exhibits the highest 

average power generation with relatively moderate output variability (Table 1). 
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Methodology Performance 

 

Compared to the maximum output scenario, the moving-window optimization 

scheme yielded 51.82% and 6.50% reductions in short-term and long-term variability at 

the expense of a 13.52% reduction in average power output. The Lagrange distribution, 

however, only achieved 26.20% and 2.87% reductions in variability with a 13.21% 

decrease in average power output. The moving-window scenario is the only method that 

improved performance across all parameters compared to the evenly-distributed scenario, 

with increases of 0.97% and 3.69% in mean power output and baseload power 

production, along with decreases of 0.80% and 0.36% in short-term and long-term 

variability (Tables 2 and 4). Although the improvements are marginal, they are 

significant when considering the aggregate power output of large wind farms as well as 

the frequency and magnitude of wind speed fluctuations. Because each site exhibits 

varying generation profiles and output variability, the magnitude of potential 

improvements will vary depending upon the sites within the distributed network (Archer 

and Jacobson, 2007). These results indicate that the moving-window optimization scheme 

is an effective method of output maximization and variability reduction. 

It is unsurprising that a perfectly uniform distribution of k-values should be close 

to the calculated optimum, given the stochastic nature of wind availability and the large 

sampling time frame. The effect of widespread turbine distribution is reflected in the 

relatively poor performance of the Lagrange-derived k-values, which concentrated wind 

turbines in four primary locations with an emphasis on site 10 (Table 2). The 

shortcomings of the Lagrange multipliers method may be attributable to the penalty 

method itself, as well as the formulation used in Eq. 3. This arises from the sensitivity of 

the convergence rate and solution of the original matrix equation to the penalty parameter 

(Babuska, 1973). Furthermore, the x and y values used in Eqns. 5-7 are calculated over 

two years as opposed to smaller time steps. This is problematic because data resolution is 

lost with the decreasing influence of individual fluctuations. A more robust method may 

be to solve for the optimal k-values across multiple time steps and average the resulting 

values over the sampling time frame. 
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Methodology Comparison 

 

Through their brute force approach towards minimizing Eq. 1, Cassola et al. 

(2008) were able to achieve a 58% variability reduction at the expense of a 23% 

reduction in maximum power production, compared to the maximum output scenario. 

This variability, however, is defined as the sum of the absolute differences between 

adjacent time steps and does not differentiate between short-term and long-term 

variability. In addition, the authors were able to capture 16% of annual averaged wind 

power as the baseload for the electric grid (Cassola et al., 2008). In comparison, Archer 

& Jacobson (2007) were able to achieve baseloads of 14% and 23% of annual averaged 

wind power for 7 and 11 interconnected wind farms. These baseload values were 

calculated for 87.5% availability, which corresponds to the average amount of time from 

2000-2004 that coal plants in the U.S. were free from scheduled or unscheduled 

maintenance (Giebel, 2007). The moving-window k-values determined in this study 

produced an 87.5% availability baseload power of 1.4543 MW, corresponding to 

approximately 11.90% of mean annual production.  

Although the results appear similar, it is not possible to directly compare the 

methodology effectiveness because both methods utilize different sets of empirical data 

and may introduce additional error in the methodology analysis. A more effective 

comparison would be to evaluate the variability reduction achieved by both methods 

using the same data set. However, a brute force iterative method for 10 test sites is 

computationally-expensive because of the logarithmic scaling of the number of 

calculations required to assess all possible k-combinations in 0.01 increments (Cassola et 

al., 2008). Advantages of the moving-window method include greater scalability to 

accommodate more sites, as well as increased resolution of distribution proportions. 

Direct comparison to the heuristic models used for individual farm layout would 

be uninformative given the differing optimization objectives and methods of 

implementation. Traditional genetic or evolutionary algorithms as applied to wind farms 

are based on the recognition that wind turbines can affect each other during operation 

through wake formations of disrupted air flow caused by individual turbines (Mosetti, 

Poloni, & Diviacco, 1993). These algorithms attempt to maximize wind farm efficiency 
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by minimizing turbine interactions (Mosetti et al., 1993). Maximization of wind energy 

value is then achieved by combining turbine cost and wake models with an optimization 

scheme to determine the ideal layout (Elkinton, 2005).  

The advantage of genetic algorithms is that they are more likely to identify global 

optima instead of local optima (Mosetti et al. 1993). However, the objective of these 

genetic algorithms is typically to situate wind turbines within a single wind farm for 

energy maximization, as opposed to minimizing the generation variability across multiple 

wind farms (Marmidis, Lazarou, & Pyrgioti 2008). As a result, the assumptions used in 

the creation of these models vary. For example, the genetic algorithm and Monte Carlo 

models assume a single wind direction with constant wind speed and intensity instead of 

utilizing actual wind data because the wind speed variability does not significantly affect 

the occurrence of turbine interactions (Marmidis et al., 2008). Given the increases in 

baseload power and mean power output, as well as the decreases in short and long-term 

variability, I conclude that the moving-window method is an effective and scalable means 

of maximizing system output while minimizing production variability. 

  

Limitations 

 

Successful application of the optimization procedure developed in this study is 

contingent upon access to extensive wind data. In this study, the wind simulation data has 

been generously supplied by the National Renewable Energy Laboratory as part of the 

Western Wind and Solar Integration Study (NREL, 2010). However, because the 

optimization methodology relies upon accurate power generation data, sources of error 

include the modeling inaccuracies using Numerical Weather Prediction techniques 

(NREL, 2010). Additionally, this methodology assumes that two years of training data is 

a sufficient indicator of regional wind behavior patterns, and may not account for long-

term trends, which may be variable on a scale of years to decades depending on the 

regional climate trends of the proposed study area. Finally, the penalty method used to 

constrain the calculated distributions to positive values is highly sensitive to the choice of 

penalty parameter and may produce variable results depending upon the parameter used 

(Babuska, 1973). Further improvements to the study design include the use of more 
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consistent methods of constrained nonlinear optimization, as well as a direct comparison 

with Cassola et al. (2008) and Archer & Jacobson (2007) to more rigorously analyze 

methodology effectiveness.  

 

Further Research 

 

Given the observed variability reduction and baseload power increases, future 

research include combining the moving-window method with wake and cost models to 

account for turbine-turbine interactions and reflect realistic operating constraints 

(Elkinton, 2005). Wake losses are important considerations for wind farm layout 

optimization because the linearly-expanding wake behind a turbine reduces the free 

stream wind speed within that region, decreasing turbine output (Kusiak, 2010). Further 

study is also needed to investigate the spatial distribution of wind speed over complex 

terrain (Uchida, 2008). This research has important applications for turbine layout 

optimization in regions where wind speed data are unavailable. Although the brute force 

iterative method cannot be scaled to large applications involving many test sites, a direct 

comparison of the brute force and Lagrange multipliers method utilizing identical turbine 

data may also provide additional information as to which method is preferable for small-

scale applications. 

 

Broader Implications and Conclusions 

 

 This study demonstrates two novel methods for determining the optimal spatial 

allocation of wind turbines for maximum energy production and minimum generation 

variability using Lagrange multipliers and a moving-window penalty method. The 

stochastic nature of wind energy limits its market penetration resulting from unreliable 

supply and subsequent grid instability. Therefore, minimizing generation variability is 

essential towards increasing the market value and integration of wind energy into the 

existing electrical infrastructure. Currently, no robust methodologies exist to optimize the 

layouts of large-scale, distributed generation networks given high-resolution wind speed 

data. This study demonstrates that the moving-window method is fairly effective at 
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minimizing short-term and long-term variability, while maximizing power output and 

baseload supply. Implications of this research include enhanced wind energy market 

penetration stemming from increased supply reliability and reduced wind energy prices. 

The advancement of wind energy towards grid parity with coal will help enable the shift 

from a carbon-based economy.  
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