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ABSTRACT 

 

Changing ocean conditions will impact the intensity and strength of upwelling and ultimately 
affect variability in phytoplankton biomass, but because estuaries are a relatively unstudied 
habitat, it is uncertain how coastal upwelling affects estuarine phytoplankton biomass. I 
examined the connection between coastal seasonal upwelling and phytoplankton biomass in San 
Francisco Bay using water quality data collected monthly from the Central Bay by the United 
States Geological Survey (1990 to 2010).  I examined water temperature, salinity, the 
concentration of dissolved oxygen, and chlorophyll a (chl a, a proxy for phytoplankton biomass).  
I separated the data into upwelling on season (May through August) and upwelling off season 
(November through February) to explore the seasonality of upwelling and the subsequent 
movement of upwelled water into the Bay.  Temperature, dissolved oxygen, and chl a were 
significantly different (p<0.05) between the on season and off season. Of three regression models 
(univariate, multiple, and principle components), multiple regression was the best model for both 
the on season (R2 = 30.2%) and off season (R2 = 34.8%) in explaining the variation in surface chl 
a based on the physical indicators.  Longitudinally, the dataset was characterized by non-
constant variance and weak correlations for all variables, suggesting naturally very variable data 
and the presence of other factors beyond imported upwelling-induced chl a that may have 
impacted the measured chl a in the Central Bay.  A baseline understanding of how upwelling 
affects estuarine phytoplankton variability will provide a basis against which to evaluate the 
impacts of future climate change.  
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INTRODUCTION 

 

Climate change is affecting our oceans and leading to shifts in physical oceanographic 

conditions such as surface temperature and wind variability, bringing into question the stability 

of marine trophic systems, a concern for both ecological integrity and future management 

planning (Rost, Zondervan, & Wolf-Gladrow, 2008). For example, the base of almost all marine 

trophic systems is phytoplankton, the photosynthetic organisms that act as primary producers. 

Phytplankton serve in an ecologically critical role of converting the sun’s energy and inorganic 

nutrients into chemical energy available to marine consumers (Hays, 2005). Consequently, shifts 

in phytoplankton populations will affect the rest of the ecosystem; the shifts are especially 

relevant in productive fisheries, which rely on phytoplankton (Hays, 2005; Brown et al., 2010).  

Sustaining these higher levels of trophic relationships require increases in productivity provided 

by phytoplankton blooms, important ecological events that consist of a rapid increase in 

phytoplankton growth and reproduction (Cloern & Jassby, 2008).  Although the exact effects of 

climate change on phytoplankton blooms are unclear, changing oceanic conditions will 

ultimately impact phytoplankton biomass.  

Upwelling is an important factor influencing phytoplankton biomass, but it is uncertain 

how the intensity or timing of upwelling will be impacted by changing oceanic conditions. 

Upwelling is a wind-driven coastal process that brings water from the deep ocean up to the 

surface (Kudela et al., 2008).  The deeper ocean water is colder, more saline, and has lower 

amounts of dissolved oxygen relative to the surface (Kudela et al., 2008) and also serves to 

replenish the nutrient supply of the surface waters where phytoplankton exist (Martin, Fram, & 

Stacey, 2007). These increases in nutrients are vital for phytoplankton growth, and an upwelling 

event usually precedes a phytoplankton bloom.  Climate change may lead to increases in 

greenhouse gas forcing and to wind intensification, potentially impacting the strength or 

frequency of upwelling (Bakun, 1990; Snyder, Sloan, Diffenbaugh, & Bell, 2003).   

Upwelling, though a coastal phenomenon, also impacts marine-influenced habitats such 

as estuaries (Cloern & Dufford, 2005).  Estuarine habitats have a wide variability in physical 

conditions, and as a result estuarine upwelling and its effect on phytoplankton are not well 

studied (Cloern, Cole, Wong, & Alpine, 1985).  For example, in San Francisco Bay (SFB), 

phytoplankton blooms have historically occurred annually during the spring, but since 1999 there 
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have been annual bloom events in both spring and autumn (Cloern, Jassby, Thompson, & Hieb, 

2007).  This change in bloom events was caused by a regime change in the Pacific Decadal 

Oscillation, a multi-decadal variation in sea surface temperature (MacDonald & Case, 2005).  In 

1999, the Pacific Decadal Oscillation shifted to a “cold phase” for the eastern Pacific, marked by 

intensified southerly flows, strengthened upwelling, and a trophic cascade that reduced the 

bivalve population and its top-down control on phytoplankton biomass (Cloern et. al, 2007). 

These irregular regime changes and the accompanying impacts on the marine ecosystem underlie 

the importance of a long-term study on phytoplankton variability (Cloern et. al, 2007).   

Understanding how upwelling affects estuarine phytoplankton variability will give a 

baseline that can be used to evaluate the effects of climate change in the future.  Tracking the 

historic seasonality of physical and biological indicators of upwelled water inside the Bay can 

help explore how upwelling affects phytoplankton biomass. A long-term dataset of water quality 

inside the Bay has been produced by the United States Geological Survey (USGS), which has 

been continuously sampling SFB every month over the last 20 years (USGS, 2010). Upwelled 

water enters the bay through gravitational circulation, where denser, high salinity water tends to 

flow into the bay at depth while fresh water tends to flow seaward at the surface (Monismith, 

Kimmerer, Burau, & Stacey, 2002). Because of this phenomenon, the physical signature of 

upwelled water would appear near the bottom of the water column, whereas the strongest 

signature of phytoplankton biomass would be near the surface of the water column where 

phytoplankton thrive (Cloern, 1996).  The effect of seasonal upwelling on phytoplankton 

biomass has not been studied in SFB.   

In this study, I examine the relationship between seasonal upwelling and phytoplankton 

biomass in the Central Bay of SFB.  I use USGS data on physical oceanographic variables 

(temperature, salinity and dissolved oxygen concentration) and a biological oceanographic 

variable (phytoplankton biomass), collected over the past two decades.  I seek to answer the 

questions: (1) Are there non-biological (physical) signals of upwelling in SFB? (2) Are there 

biological signals of upwelling in SFB? And (3) Is there a change in the reflected seasonality 

after 1999?  I expect that there will be non-biological signs of upwelling (lower temperature, 

higher salinity, and lower DO) in the bay, but the biological indicators of upwelling (increased 

phytoplankton biomass) will not necessarily be transported into the bay. The biological indicator 
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of upwelling will be less distinct because the North and South Bays are also sources of 

phytoplankton. 

METHODS 

 

Study site 

 

SFB is an estuary system on the west coast of California, along the eastern boundary of 

the Pacific Ocean, bordered by the Golden Gate Bridge.  SFB is composed of three embayments, 

South, North, and Central.  The estuary system is influenced by both freshwater inputs from land 

and marine input from the Pacific Ocean (Cloern, 1996).  The main source of freshwater is 

through the North Bay, and includes water collected in the Sacramento and San Joaquin Rivers.  

Input of marine water, primarily influenced by the tide, enters through the channel; the majority 

of marine input influence on phytoplankton takes place in the Central Bay (Cloern, 1996).   

 

Data sources  

 

I downloaded water quality and phytoplankton datasets from a government agency 

internet data source, the USGS. The SFB Water Quality dataset has monthly data available from 

January 1990 through December 2010 for both physical water quality variables and biological 

phytoplankton biomass data (http://sfbay.wr.usgs.gov/access/wqdata).  The water quality 

variables I examined were (a) water temperature, (b) salinity, and (c) dissolved oxygen (DO) 

(Table 1). The biological variable I studied was chl a, a proxy for phytoplankton biomass.  All 

water quality and phytoplankton biomass data was collected by the USGS along a single 

transect, from Calaveras Point in the South Bay to the mouth of Sacramento River in the North 

Bay.  For this study focusing on the Central Bay, I downloaded data from “Station 18” (37° 

50.8'N, 122°2536'W), which is located east of Golden Gate Bridge and in the vicinity of Point 

Blunt.  The data was collected from the surface to approximately 45 meter depth at 1-meter 

depth intervals.  

 

 

 

http://sfbay.wr.usgs.gov/access/wqdata�
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Table 1. Summary of oceanographic variables used in the study. Data was downloaded from the United States 
Geological Survey San Francisco Water Quality database. Chlorophyll a is a proxy for phytoplankton biomass.  
 

Category Variable (units) Depth (m) used to 
calculate median 

Physical water quality data 

Temperature (°C) 

30-34 Salinity (psu) 

Dissolved oxygen concentration  (mg/L) 

Biological data Chlorophyll a (mg/m3) 1-5 

 

I also used the NOAA Upwelling Index to define the upwelling “on season” and “off 

season.”  I downloaded a graph of the smoothed daily NOAA upwelling index from the past 18 

months (October 2009 to March 2011) at 36N latitude (see Appendix A for upwelling index, 

http://www.pfel.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/daily_upwell_graphs.h

tml#p10daily.gif ). The upwelling index is calculated based on Ekman’s theory of mass transport 

by wind stress: a combination of wind parallel to the shore and the Coriolis effect from the 

Earth’s rotation cause a net movement of water perpendicular to the shore (Pacific Fisheries 

Environmental Laboratory, n.d.; Mann & Lazier, 2006).  The volume of upwelled water is based 

on six-hourly surface pressure analysis (Pacific Fisheries Environmental Laboratory, n.d.). The 

pressure gradient is used to approximate upwelling by calculating wind speed because wind 

flows down the pressure gradient, and a larger gradient indicates a higher wind speed, creating a 

larger wind stress. A large positive upwelling index over several days indicates a prolonged 

period of high wind stress and therefore the upwelling “on season”, whereas a negative or zero 

upwelling index indicates the upwelling “off season.” I defined the on season as May, June, July, 

and August of all years, and the off season as January, February, November, and December of all 

seasons.  

 

Data processing 

 

I separated the 4 variables into the upwelling on and off seasons. Chl a, temperature, 

salinity, and DO measurements from May, June, July, and August from every year 1990 through 

2010 was considered to be part of the upwelling on season dataset.  Chl a, temperature, salinity, 

and DO measurements from January, February, November, and December from every year 1990 

through 2010 was considered to be part of the upwelling off season dataset.  

http://www.pfel.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/daily_upwell_graphs.html#p10daily.gif�
http://www.pfel.noaa.gov/products/PFEL/modeled/indices/upwelling/NA/daily_upwell_graphs.html#p10daily.gif�
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This study used the measurements of temperature, salinity, and DO near the bottom of the 

water column and the measurements of chl a near the surface of the water column to capture the 

transport of coastally upwelled water into the Central Bay.  Low water temperature, high salinity, 

and low levels of dissolved oxygen are characteristic of deep upwelled waters (Hickey & Banas, 

2003).  Because of the lower temperature and higher salinity, upwelled water is denser than 

surface water; consequently, upwelled water would first enter the Central Bay near the bay floor 

before being mixed with the rest of the water column inside the Bay (Monismith et al., 2002). I 

used a bin of 30-34 meters to calculate the median of temperature, salinity, and dissolved oxygen 

(Table 1). At this depth, the measurements are still representative of bottom water while still 

taking into account most of the sampling dates over the 20 year sampling period (J. Cloern, 

personal communication, March 21, 2011). Station 18 is 45 meters deep, but the slightly 

shallower bin was used to calculate the medians of temperature, salinity, and DO because not 

every single sampling date had taken measurements to 45 meters. Out of 226 samplin dates, 21 

sampling dates were not coded for temperature, salinity, and DO because the maximum depth of 

sampling on those dates was less than 34 meters. I calculated the median of chl a from a depth of 

1-5 meters of the water column on most of the sampling dates (Table 1).  On 14 sampling dates 

when sample measurements did not begin until a depth of 2 meters, I calculated the median of 

chl a using a bin of 2-5 meters (see Appendix B for all sampling dates that were not used or were 

used with unusual bins).  

 

Analysis 

 

Assumption checking and transformations of chl a 

 

To check for functional form and constant variance, I created plots of standardized 

residual and fitted values for all regression models, using both the year-long, on season, and off 

season  datasets for each variable.  Because of non-constant variance in all of the physical and 

biological oceanographic variables in the year-long and on season datasets (as shown by the 

megaphone shape in the standardized residuals vs. fitted values plots), I performed a natural log 

transformation on the independent variable, chl a, for use in the year-long and on season 

regression models (see Appendix C for standardized residuals vs. fitted value plots for both non-
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transformed and transformed chl a).  I retained the non-transformed chl a in off season 

regression models. 

 

Year-long data 

 

Regressions and best-fit model. To investigate how each physical water quality variable 

separately affects phytoplankton biomass, I performed linear regressions in Stata 11 (StataCorp, 

2009) to examine the relationship between the transformed ln(chl a) (the dependent variable) and 

each physical water quality variables (the independent variable).  I performed both univariate 

regression and multiple regression to determine if a full model using all the physical water 

quality variables together could better explain the variation in chl a than the univariate models. I 

produced three individual-variable univariate regression models: (1) ln(chl a) with temperature, 

(2) ln(chl a)  with salinity, and (3) ln(chl a)  with DO.  I created one multiple-regression model: 

the independent variables were all of the physical oceanographic variables (temperature, salinity, 

and DO) with the single dependent variable of ln(chl a). 

Examining the four physical variables separately to pinpoint periods of upwelling can be 

cumbersome.  To simplify the independent factors in the study system, I used Principal 

Component Analysis (PCA) with Stata 11(StataCorp, 2009) to create a single indicator that is a 

linear combination of the physical water quality variables (temperature, salinity, and dissolved 

oxygen) to represent upwelled water.  I then performed a linear regression between the essential 

principal components and ln(chl a) to determine the proportion of the variation in ln(chl a) that 

the principal components could explain.  I compared measurement of goodness of fit (R2) values 

of the six models generated to determine the best-fit model out of four individual-variable 

models, one multiple regression model, and one PCA model.  

 

Seasonal data 

 

Differences between on and off season. To explore the movement of upwelled water into the 

bay, I used a 2-sample t-test to determine if the four variables (temperature, salinity, DO, and chl 

a) were significantly different between the upwelling on and off seasons.   
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On and off season regression models and best-fit model.  To test if the variation in surface chl 

a could be explained by the physical indicators measured near the bottom of the water column, I 

also performed univariate and multiple regressions, as well as regression with principal 

components in Stata 11 (StataCorp, 2009). The univariate regressions produced six individual-

variable models: (1) ln(chl a) with temperature during the on season, (2) chl a with temperature 

during the off season, (3) ln(chl a)  with salinity during the on season, (4) chl a  with salinity 

during the off season,  (5) ln(chl a)  with dissolved oxygen during the on season, and (6) chl a 

with dissolved oxygen during the off season.  I created two multiple-regression models, one 

during the on season and one during the off seasons:  (1) on season ln(chl a) with the physical 

variables during the on season, and (2) off season chl a with the physical variables during the off 

seasons.  

I used PCA with Stata 11 (StataCorp, 2009) to create two indicators that represent a 

linear combination of the physical water quality variables to indicate upwelled water, one during 

the on season and one during the off season.  I then performed a linear regression between the on 

season essential principal components with ln(chl a) during the on season and the off season 

essential principal components with chl a during the off season to determine proportion of the 

variation in chl a that the principal components could explain.  I compared R2 values of the ten 

models generated to determine the best-fit model: six individual-variable models, two multiple 

regression models, and two PCA models. 

 

The effect of the PDO shift. To compare the physical and biological data before and after the 

shift in PDO, I divided the seasonal datasets into two periods, 1990-1998 and 1999-2010. This 

division was to explore if the 1999 change in annual bloom pattern Cloern et. al (2007) recorded 

had affected chl a  at the surface or temperature, salinity, or DO at depth.   Each variable then 

has four subsets: (1) on season before 1999, (2) on season after 1999, (3) off season before 1999, 

and (4) off season after 1999. I plotted box and whisker plots and used 2-tailed t-tests to examine 

if the medians between the four subsets were significantly different for each variable.  
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RESULTS 

Study site 

 

The sampling method had varied minimum and maximum depths of measurement.  Over 

the 20-year period, the minimum depth of measurement ranged from 1 to 3 meters and the 

maximum depth of measurement ranged from 22 to 55 meters.  Out of the total 226 sampling 

dates, 217 sampling dates had measurements for the 30-34 meter bin and were used to calculate 

the median of temperature, salinity, and DO.  76 sampling dates comprised the upwelling off 

season and 75 sampling dates comprised the upwelling on season. 

 

Longitudinal trends  

 

I found a high level of variability for the long-term time series of each variable, although 

all seemed to vary annually (Table 2).  Taking into account the whole water column, a water 

sample had median values of 13.57 °C, 31 psu, 7.6 mg DO/L and a chl a  measurement of 3.1 

mg/m3 (Table 2).  Temperature varied predictably on an annual scale, with dips during the winter 

months and peaks in the summer months of each year (Fig. 1a). Salinity was relatively constant 

from 1990 to 1993, but there were large dips in the median surface salinity in 1993, and annually 

1995-2000, and in 2006, although the salinity of the bottom of the water column remained 

relatively constant (Fig. 1b).  Dissolved oxygen was sampled beginning in 1993. It displayed the 

most variability but also seemed to follow an annual cycle, with higher values in the beginning 

months of a year. (Fig. 1c).  Chl a also displayed a high level of variability, with higher peaks in 

the periods 1999-2003 and 2006-2011 relative to the rest of the sampling period (Fig. 1d).  

Compared to the top of the water column, the bottom of the water column tended to have higher 

chl a, lower water temperature, higher salinity, and lower dissolved oxygen (Fig. 1).  

 
Table 2. Summary of variables measured from USGS San Francisco Water Quality database. 
 

Variable Range Median Standard Deviation  
Temperature (°C) 9.96 - 19.53 13.56 1.94 
Salinity (psu) 1.76 – 32.67 30.67 3.04 
DO (mg/L) 4.2 - 10.4 7.60 0.80 
Chl a (mg/m3) 0.1 – 20.5 3.1 2.63 
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Figure 1. Time series of (a) temperature, (b) salinity, (c) dissolved oxygen concentration, and (d) chlorophyll a, from 1990 to 2010.  The lighter gray line 
represents the top of the water column (calculated as median of meters 1-5), and the darker gray line represents the bottom of the water column (calculated as 
median of meters 30-34).  
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Year-long data 

 

Regressions models 

 

Univariate regression model. After log transformation of the outcome variable, I found that 

salinity and DO were significant in the univariate regression model (Table 3), rejecting the null 

hypothesis that changing the value of salinity and DO have no impact on ln(chl a). R2 values 

ranged from approximately 0.014 to 0.042 for the top of the water column, indicating that the 

individual variables predicted 1.4% -4.2% of the variability in ln(chl a) when looked at 

individually (Table 3).   

 
Table 3. Individual regression models for ln(chl a). * denotes a significant p-value (p<0.05), ** denotes a very 
significant p-value (p<0.01) 
 

 
Models Coefficient P-value R2 
Temperature 0.1646 0.096 0.014 
Salinity 0.2353 0.016* 0.029 
DO -0.6478 0.006** 0.042 

 

 

Multiple regression model. None of the explanatory variables, temperature, salinity, or DO, 

were significant in the multiple regression model, with all variables having p-values > 0.5 (Table 

4). I could not reject the null hypothesis and concluded that there was no relationship between 

ln(chl a) at the surface and the physical variables near the bottom of the water column. When 

examining year-long data, the R2 value was 0.057, explaining 5.7% of the variation in ln(chl a).  
 

Table 4. Multiple regression model for ln(chl a). R2 = 0.057 
 

Explanatory Variable Coefficient P-Value 
Temperature 0.0109 0.922 
Salinity 0.1834 0.109 
DO -0.4582 0.084 

 

PCA and regression with principal components.  In examining year-long temperature, 

salinity, and DO, I found two essential (useful) principal components.  The two essential 

principal components together explained 80.7% of the variation in the model (see Appendix D, 
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Table D1 and Equations D1, D2 for PCA details).  Both components, pc1 and pc2, were highly 

statistically significant, with p-values <0.0005 (Table 5).  Taking pc1 and pc1 together, the R2 

was 0.150, explaining 15.0%of the variance in the ln(chl a) (Table 5).   
 

Table 5.  Regression with principal components for ln(chl a). R2 = 0.150, *** denotes a very significant p-value 
(p<0.01) 
 

Explanatory Variable Coefficient P-Value 
pc1 0.1904 <0.0005*** 
pc2  -0.0847 0.139 

 

The best-fit model 

 

The best-fit models for describing the relationship between the physical and phytoplankton 

datasets using the criteria of R2 was the regression model with principle components using the 

log-transformed chl a variable.  The PCA model had the highest R2 value of 0.150 (Table 5) 

calculated relative to the other models examining year-long data: R2 values of 0.014 to 0.042 for 

the univariate regression models and R2 values of 0.057 for the multiple regression model (Table 

3, 4).   

 

Seasonal data 

 

Differences between on and off seasons 

 

Temperature, DO, and chl a  values were significantly different between the on season 

and the off season, with p-values 8 to 69 magnitudes of order smaller than the significance level 

of p=0.05 (Table 6). Salinity was not significantly different between the on and off season, with 

a p-value of 0.215 (Table 6). During the on season, temperature was 2.81°C higher, salinity was 

0.15 psu higher, DO was 0.8 mg/L lower, and chl a concentration was 1.9 mg/m3 higher relative 

to the off season (Table 6).    
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Table 6. Differences in temperature, salinity, DO, and chl a between upwelling on and off seasons. P-values 
calculated from 2-tailed t-tests to test for significant differences between the on and off season, *** denotes highly 
significant p-values (p<0.001) 
 

Variable 
Median 

P-value 
On season Off season 

Temperature (°C) 14.93 12.11 3.05E-71*** 
Salinity (psu) 31.15 31 0.215 
DO (mg/L) 7.3 8.1 2.56E-11*** 
Chl a (mg/m3) 3.7 1.8 1.37E-37*** 

 
 
 
Regressions models 
 
On and off season univariate regression models. I found that the only significant relationship 

for ln(chl a) during the on season for the individual regression model was with salinity (p-

value=0.001), but models were not significant for temperature or DO (Table 7). Salinity (p-

value=0.012) and DO (p-value<0.0005) were significant in the individual regression model 

during the off season with chl a, but temperature was not significant (p-value = 0.0410) (Table 

7).  R2 values ranged from approximately 0.028 to 0.150 during the on season, indicating that the 

individual variables predicted 2.8%-15.0% of the variability in chl a when examined individually 

(Table 8).  During the off season, I found that the R2 values ranged from 0.011 to 0.328, 

predicting 1.1% to 32.8% of chl a variability (Table 8).  
 

Table 7. Individual regression models for on season ln(chl a). ** denotes a very significant p-value (p<0.01) 
 

Models P-value R2 
Temperature 0.061 0.055 
Salinity 0.001** 0.150 
DO 0.199 0.028 

 
Table 8. Individual regression models for off season chl a. * denotes a significant p-value (p<0.05), *** denotes a 
highly significant p-value (p<0.001) 
 

Models P-value R2 
Temperature 0.410 0.011 
Salinity 0.012* 0.099 
DO <0.0005*** 0.328 

 

On and off season multiple regression models. In comparing on and off season multiple 

regression models for chl a, the explanatory variables showed differences in significance.  
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During the on season, temperature and salinity were highly significant with p-values less than 

0.01 (Table 9).  While DO was highly significant in the off season multiple regression model, the 

other variables were not significant (Table 10). The R2 value indicated that 30.2% of variation of 

ln(chl a) during the on season was accounted for by temperature, salinity and DO in the multiple 

regression model (Table 9).  During the off season, the R2 value was higher, indicating that the 

three physical variables together explained about 34.8% of the variance in chl a (Table 10).   
 

Table 9. Multiple regression model for on season ln(chl a). R2 = 0.302, ** denotes a very significant p-value 
(p<0.01), *** denotes a highly significant p-value (p<0.001) 

 
Explanatory Variable Coefficient P-Value 
Temperature -0.1251 0.004** 
Salinity 0.1780 <0.0005*** 
DO -0.0256 0.793 

 

Table 10. Multiple regression model for off season chl a. R2 =  0.348, *** denotes a highly significant p-value 
(p<0.001) 

 
Explanatory Variable Coefficient P-Value 
Temperature -.1286 0.360 
Salinity .0939 0.340 
DO -1.082 <0.0005*** 

 

PCA and regression with principal components. For both on and off season datasets, I found 

two essential principal components. Regressions with ln(chl a) during the on season and with chl 

a  during the off season were not statistically significant (p-value>0.05) (Table 11, 12).  During 

the on season, the two essential principal components together explained 17.2% of the variation 

in the model (Table 11; see Appendix D, Table D2 and Equations D3, D4 for PCA details).  

During the off season, the two essential principal components together explained 31.2% of the 

variation (Table 12; see Appendix D, Table D3 and Equations D5, D6 for PCA details).   
 

Table 11.  Regression with principal components for on season ln(chl a). R2 = 0.172, ** denotes a very 
significant p-value (p<0.01) 
 

Explanatory Variable Coefficient P-Value 
pc1on -0.0417 0.496 
pc2on 0.2287 0.001*** 
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Table 12.  Regression with principal components for off season chl a. R2 = 0.312, * denotes a significant p-value 
(p<0.05), *** denotes a highly significant p-value (p<0.001) 
 

Explanatory Variable Coefficient P-Value 
pc1off 0.4365 <0.0005*** 
pc2off -0.3986 0.023* 

 

Effect of 1999 PDO shift 

 

Salinity, DO, and chl a all showed significant difference before and after the 1999 shift in 

PDO, with chl a concentration showing the largest change before and after 1999.  Year-long 

temperature was lower, salinity was higher, DO was higher, and chl a was higher in the post-

shift period (Table 13). On season salinity, temperature, and chl a were slightly higher than off 

season salinity and temperature both before and after 1999 (Fig. 2a, b, d).  Chl a concentration 

showed much  more variability above the median during the on season after 1999 (Fig. 2d). The 

off season DO was higher than on season DO both before and after 1999 (Fig. 2c).  Between the 

two time periods (1990-1998 and 1999-2010), salinity, DO, and chl a were significantly different 

taking into account year-long and off season data, but only chl a was significantly different 

during the on season when comparing the two time periods (Table 14). 

 
Table 13. Medians of temperature, salinity, DO, and chl a. Medians are calculated separately using year-long , on 
season, and off season datasets during the two time periods, 1990-1998 and 1999-2010.  
 

Variable 
1990-1998 median values 1999-2010 median values 

Year-long On season Off season Year-long On season Off season 
Temperature (°C) 12.79 14.92 12.21 13.1 14.93 11.9 
Salinity (psu) 30.72 30.82 30.02 31.22 31.33 31.03 
DO (mg/L) 7.7 7.4 8.25 7.55 7.25 8 
Chl a (mg/m3) 1.7 2.6 1.1 3.4 4.45 2.4 
 
 
 
 



 

 
 

  
 

   
 
Figure 2. Difference between variables for on and off season before and after 1999.  Box-and-whisker plot comparisons of the four variables between the off 
and on season in two time periods, 1990-1998 and 1999-2010: (a) temperature, (b) salinity, (c) dissolved oxygen concentration, and (d) chlorophyll a. The box 
indicates the middle 50% (between the 1st and 3rd quartile) of the data, the top whisker indicates the upper 25% of the data, and the bottom whisker indicates the 
lowest 25% of the data. Outliers (values great than 1.5 times the interquartile range above the median or less than 1.5 times the interquartile range below the 
median) are included in the whiskers. 
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Table 14. Two-tailed t-tests comparing the periods 1990-1998 and 1999-2010. P-values calculated for the 
variables temperature, salinity, DO, and chl a. ** denotes very significant p-value (p<0.01), *** denotes highly 
significant p-values (p<0.001) 
 

Variable Year-long data On season Off season 
Temperature (°C) 0.128 0.545 0.16 
Salinity (psu) 0.001*** 0.08 0.005** 
DO (mg/L) 0.009** 0.113 9.11E-6*** 
Chl a (mg/m3) 6.12E-33*** 3.52E-20*** 3.48E-46*** 

 

 

DISCUSSION 

 

The objective of my study was to determine if there was a link between coastally 

upwelled water and the estuary of SFB by examining the seasonality of both physical and 

biological indicators of upwelled water inside the Bay.   Because upwelling supplies essential 

nutrients to phytoplankton, understanding the effect of upwelling on San Francisco Bay 

phytoplankton biomass is helpful in modeling and planning for potential changes in the 

phytoplankton population and the rest of the food web.  Chl a, measured at the surface, and water 

temperature and dissolved oxygen, measured near the bottom of the water column, were 

significantly different between the on and off upwelling seasons, but salinity, measured near the 

bottom of the water column, was not significantly different between seasons. During the 

upwelling on season, 30.2% of the variation in chl a could be explained by the variation in the 

physical factors, and during the upwelling off season, 34.8% of the variation in chl a could be 

explained.  

 

Seasonal trends 

 

During the upwelling on season, there were non-biological indicators of upwelled water 

of lower water temperatures and lower dissolved oxygen in the bay bottom water, suggesting that 

over the 20 years of study in this dataset the bay is influenced by seasonal upwelling.  Low 

temperature, high salinity, and low dissolved oxygen are indicative of deep ocean water (Kudela 

et al., 2008) and their presence at Station 18 appeared during the upwelling on season of May, 

June, July, and August of 1990 to 2010.  The coherence of physical signatures of upwelled 
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waters appearing inside the bay during the coastal upwelling season confirms that the bay is 

connected with the marine system outside of the bay.   

Although the upwelled waters did account for some of the variability in phytoplankton, 

there are several potential reasons why the biological and physical indicators of upwelled water 

did not have a higher association.  For example, a high phytoplankton biomass measurement in 

the Central Bay could have originated from the a bloom event in the North or South Bays that 

was then transported to the Central Bay (Cloern et al., 1985). In addition, a complicated 

sequence of events was necessary for an upwelling-produced phytoplankton bloom to travel from 

the coastal waters into the Central Bay and may not always occur. The wind needed to blow 

strongly from the north for five to six days to induce an upwelling event; then, a reversal of wind 

direction was necessary to promote water moving toward the coast and into the Bay (Roegner, 

Hickey, Newton, Shanks, &Armstrong, 2002;  J. Cloern, personal communication, March 21, 

2011).  The direct biological indicators of upwelling would be detected in our dataset only after 

the specific order of events and the appropriate phytoplankton bloom timing, which is four to ten 

days (J. Cloern, personal communication, March 21, 2011). This timing allows for 

phytoplankton to bloom after an upwelling event and for the elevated chl a signal to be 

transported into the bay and distinguished in our dataset (J. Cloern, personal communication, 

March 21, 2011).   

 

Longitudinal trends 

 

The dataset displayed non-constant variance and weak correlations for all variables, 

suggesting that the environment and phytoplankton population biomass are naturally very 

variable and that other factors other than the import of coastally upwelled-induced phytoplankton 

biomass could have impacted the measured chl a at Station 18.  One of the main factors is 

seasonality, which, though predictable, added variability to the physical and biological variables.  

The effect of seasonality can be seen in the increase of R2 values. After separating the dataset 

into the upwelling on and off season, the variation in surface chl a explained by the variation in 

physical variables increased from 5.7% (considering data from the entire year) to 30.2% (on 

season data) and 34.8% (off season data).  Besides seasonality, other factors contributing to how 

little of the variability in chl a was explained by the physical factors were (1) independent 
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variables not included in the analysis and (2) patchy distribution of phytoplankton.  An 

independent variable that could be taken into account is suspended particulate matter, a measure 

of turbidity.  Phytoplankton in SFB are generally light limited (Cloern et al., 1985; Dugdale, 

Wilkerson, Hogue, & Marchi, 2007), so adding turbidity to the regression models may yield 

higher R2 values.  Phytoplankton biomass, as a biological phenomenon, is spatially patchy with 

mesoscale variability, especially during upwelling events (Abbott & Zion, 1985).  This day-to-

day variability partly results from weather events such as rain or wind events and fluctuations in 

tidal mixing and partly from biological processes such as grazing of phytoplankton by 

zooplankton (Cloern, 1996; Lehman, 2000).  Addressing some of this spatial variability by 

collecting data from more sites would be helpful in future studies.  

There was a high level of variability for the long-term time series of each variable, 

implying that the system is naturally very patchy temporally and spatially.  Some of the temporal 

patterns can be explained: the predictability of the annual variability in temperature in the water 

column is explained by the annual patterns in solar irradiance (Thompson, Baird, Ingleton, & 

Doblin, 2009).  Chl a also varied annually, although less obviously so, suggesting that chl a was 

driven by more than physical processes – namely, the biological phenomena of phytoplankton 

blooms (Letelier et al., 1993; Cloern, 2006).  Dissolved oxygen was the most variable over an 

annual scale relative to salinity and temperature, implying that dissolved oxygen concentration 

was driven mainly by respiration of marine organisms, a biological phenomenon that is naturally 

more spatially variable compared to the physical phenomenon of solar irradiation and wind stress 

that drives water temperature and salinity (Serret, Robinson, Fernández, Teira, & Tilstone, 

2001).   

Comparing the physical and biological variables during the upwelling on season and off 

season can indicate when oceanic water is entering the bay.  Water measurements at the bottom 

of the water column during the upwelling season reflected oceanic water entering the bay, with 

statistically significant lower temperatures and lower dissolved oxygen relative to the top of the 

water column.  Interestingly, the bottom of the water column also tended to have higher chl a 

level during both the upwelling on and off seasons, which could indicate the end of a bloom 

period (J. Cloern, personal communication, March 21, 2011). At the end of a bloom period, the 

phytoplankton die and sink to the bottom of the water column, thus producing a higher chl a 

measurement at the bottom of the water column compared to the top of the water column (J. 
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Cloern, personal communication, March 21, 2011). The reflected seasonality found at Station 18 

of SFB suggests there is a link between coastal upwelling and estuarine phytoplankton biomass.  

 

Limitations  

 

To best understand upwelling, a sampling regime would need to sample on the scale of 

every three to four days. The monthly USGS sampling regime is designed for long-term 

characterization of mesoscale spatial variability along the entire estuary of SFB, on a time scale 

of weeks to years (Cloern, 1996).  Twenty years of data is very useful in looking at long-term 

trends, but having only monthly sampling frequency at one site fails to capture the spatial and 

temporal patchiness of phytoplankton, temperature, salinity and DO.  The sampling frequency is 

especially important when detecting the import of coastal phytoplankton blooms, which occur 

approximately four to ten days after an upwelling event (J. Cloern, personal communication, 

March 21, 2011). Other factors that impacted the variables may be more difficult to quantify, 

such as bathymetry, the surface features of the ocean floor, which influences the flow of water 

along the bottom of the bay floor, and the diurnal tides of SFB that change stratification and 

manipulate phytoplankton community dynamics (Cloern et al., 1985).  Finally, I only focused on 

one sampling point for this study, Station 18. Although this station is closest to Golden Gate 

Bridge and therefore experiences the most influence from marine waters, using data from only 

one station is unlikely to be representative of the spatial variability of phytoplankton.  

 

Future Directions  

 

To address some of these limitations, future studies may include more frequent sampling 

regimes, as well as examining data from more than one sampling station.  A more frequent 

sampling regime will help account for the time lag between an upwelling event and the 

phytoplankton bloom. In conjunction with data from additional stations, a more frequent 

sampling regime will help distinguish an influx of chl a from the coast, as compared to an influx 

of chl a from the North or South Bays.  From two previous studies on the effect of upwelling on 

phytoplankton, phytoplankton biomass tended to increase four to six days after upwelling 

subsides; a more frequent sampling regime would follow a similar schedule to clearly show a 
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connection between an upwelling event along the coast and the movement of chl a moving from 

the coast into the bay (Palma, Mouriño, Silva, Barão, & Moita, 2005; Vahtera, Laanemets, 

Pavelson, Huttunen, & Kononen, 2005).  Incorporating into the analysis more sites with more 

frequent sampling, but an overall shorter time-scale, will increase spatial resolution.  Using data 

from at least 2 other sites, one site representative of the North Bay and one site representative of 

the South Bay, would help differentiate blooms that occur in the North, South, and Central Bays 

of SFB.  Finally, using additional variables such as turbidity could potentially make the model 

more biologically meaningful (Cloern et al., 1985).   

 

Broader Implications  

 

Understanding how upwelling affects phytoplankton variability will give a baseline 

understanding to evaluate the impacts of climate change in the future.  Climate change can affect 

the strength and timing of upwelling, and the changes in intensity and timing of upwelling-

impacted nutrient and carbon fluxes in marine environments (Bakun, 1990).  During the 

upwelling season, the pressure gradient between a warmer land mass and a cooler body of water 

maintains a coastal wind stress necessary to induce upwelling (Bakun, 1990).  An increase in 

atmospheric carbon dioxide could lead to increased temperatures over land, thus increasing the 

pressure gradient between land and water (Bakun, 1990).  The resulting intensification in wind 

stress will accelerate upwelling, and as a positive feedback could reduce the surface temperature 

of the ocean, further increasing the pressure gradient (Bakun, 1990).  There are three way that 

changes in upwelling will impact marine ecosystems, through (1) providing a food and nutrient 

supply, (2) supporting a minimum concentration of food to sustain a population, and (3) retention 

of food supply and organisms in the same area (Snyder et al., 2003).  Intensified upwelling 

would increase nutrient resupply from the deep ocean, but the increased wind stress would lead 

to more mixing, decreasing the concentration of food and scattering organisms spatially (Snyder 

et al., 2003).  A delay in upwelling can lead to temporal mismatches among trophic levels, 

impacting fish populations and fisheries operations (Barth et al., 2007).  Additional research 

exploring connection between phytoplankton biomass and seasonal upwelling will help develop 

estuarine and marine management to maintain ecological and economic integrity along the 

coasts.   
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