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ABSTRACT 

 

Expanding geospatial databases offer new opportunities for correlating landscape characteristics 

(LCs) with water quality metrics, thereby improving stream management. CEDEN (California 

Environmental Data Exchange Network) is an online data portal with many public databases, 

including benthic macroinvertebrate (BMI) data. This study used four years of SWAMP BMI data 

(Surface Water Ambient Monitoring Program) alongside National Land Cover Data to examine 

correlations between BMI metrics and LCs within the San Francisco Bay Area. LCs were sampled 

in ArcGIS using 100m, 500m, and 1000m point buffers, and catchment areas around BMI 

sampling locations. Catchment-scale landscape data were more normally distributed, but 500m 

and 1000m buffers returned the strongest correlations. Linear regression revealed land cover type, 

% canopy cover, and slope as most predictive of BMI metrics, while road-based metrics, % 

impervious surface coverage, and population data were not correlated for this dataset, likely due 

to selection biases during BMI site selection. 
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INTRODUCTION 

 

Urbanization induces change in habitat, biota and physiological stressors by physically 

modifying the natural and built environments (1). These changes can be extremely harmful to 

biotic assemblages, and alterations to urban landscape factors have been extensively linked to 

deteriorating stream ecological function (2 - 4). Urbanization inflicts "urban stream syndrome," 

wherein habitat quality is negatively impacted by elevated nutrient and contaminant levels, 

increased periods of water stress, and flash floods (3, 4). These changes are driven by a variety of 

stressors, including sedimentation, altered runoff patterns, altered geomorphology, and runoff 

borne contaminants (5). These stressors and landscape changes threaten biological communities 

essential for ecosystem functioning. 

Bottom-dwelling aquatic insects, or benthic macroinvertebrates (BMI), are widely used as 

bioindicators of stream ecological functioning and water quality (6). BMI are ideal bioindicators, 

because they are well-studied, ubiquitous, and vary widely in size and ecological role (7). Variation 

in survivorship, size, and growth conveys information about potential stressors such as 

sedimentation, pollutants, or abnormal flow conditions (6). The orders Ephemeroptera, Plecoptera, 

and Trichoptera (EPT) are three widely used bioindicators that effectively gauge water quality 

because of their sensitivity to pollutants (8). In the last several decades the use of benthic 

macroinvertebrates as indicators of stream quality in rapid bioassessment protocols has increased 

dramatically (6). Combining biotic data with landscape characteristics such as vegetation or 

population density can help estimate the impact of stressors on stream health (9, 10).   

Many studies examine the effects of urbanization on ecosystem functioning (3), from 

studies testing for correlation between one landscape variable and multiple bioindicator effects (9) 

to studies testing multimetric urbanization indices urbanization against multiple bioindicator 

effects (11, 10, 12). These studies have found significant and meaningful correlations between 

bioindicator responses and landscape variables such as road and population density (12) and land 

cover type and use (13). However, there are relatively few published studies using existing public 

datasets regarding factors of urbanization to predict stream water quality (14, 13), and there are no 

published studies regarding this SWAMP dataset in the San Francisco Bay Area. Extant studies 

tend to use independently sample data rather than examining publically available data (15, 16, 17). 
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The primary objective of this study was to assess how well landscape characteristics can 

predict the relationship between stream health and ecological functioning in urban creeks in nine 

counties of the San Francisco, California Bay Area. I used landscape variables drawn from federal 

and state sources and BMI data from the CA State Water Resources Control Board (SWAMP). To 

that end I sampled mean values of landscape characteristic variables around each BMI sample 

location using buffer polygons and catchment basins. I then ran single and multiple linear 

regressions between these means and BMI health metrics.  

 

METHODS 

 

My thesis project used preexisting federal data sources and benthic macroinvertebrate 

(BMI) data from the Surface Ambient Water Monitoring Program (SWAMP) to determine which 

urban landscape characteristic (LC) variables best predict benthic macroinvertebrate health in 

urban streams in the Bay Area. In ArcGIS I sampled data from LC layers surrounding each BMI 

sampling point using two different techniques, circular buffers and watershed areas. I used 5 BMI 

metrics (Table 1) and 8 landscape-level LC variables in this study (Table 2). The project had three 

overarching phases:   

I. Data acquisition consisted of locating, procuring, and processing LC data.  

II. Data sampling involved the extraction and averaging of data values from LC layers.  

III. Data analysis consisted of testing for normality and differences between treatment 

groups, and running linear and multiple linear regressions. 

 

I. Data Acquisition 

 

I used 444 BMI sample events from 2001 – 2004 of the total 517 sample events from 2001 

– 2008 in the SWAMP dataset. The sample sites include a wide variety of microclimates, stream 

orders, and environments. Due to time and manpower constraints, local environmental conditions 

were not considered. I used five of 132 BMI metrics in the SWAMP dataset (Table 1). 

Except land cover, all layers were continuous data layers from publicly available 

governmental sources (Table 2). I derived elevation and slope from 10 meter resolution Digital 

Elevation Models (DEMs) available through the United States Geographical Survey (USGS)’s 
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National Map Viewer. USGS’ National Land Cover Dataset (NLCD) provided LC data (Table 2). 

I obtained population density data from the US Census, and created both a road density raster and 

a distance to nearest roads raster from US Census TIGER road shapefiles. Data layers not already 

in Universal Transverse Mercator Zone 10 North projection, North American Datum 1983 were 

converted into it to avoid area distortion errors. 

 

II. Data Sampling 

 

I used two sampling methods to obtain mean and median LC data values for areas 

surrounding each of the 444 BMI sampling points. First, I created circular fixed-distance buffers 

at multiple distances (100m, 500m, 1000m) to allow analysis of the extent of the modifiable areal 

unit problem (MAUP), which can skew results (18). Second, I used ArcGIS hydrology tools on 

10m resolution DEMs to generate catchment basins for each sample point. Both buffers and 

catchment basins were converted into individual rasters and used as inputs for the zonal statistics 

tool in ArcGIS, which used them as “cookie cutters” to extract data from underlying LC data 

layers. The resulting statistics were collated into tables for analysis.  

 

III. Data Analysis 

 

 I ran boxplots, histograms, and basic statistical analysis tests in the statistics program R. I 

used a Shapiro-Wilks test and a D’Augustino-Pearson test to check normality. To test whether 

MAUP bias created any significant difference between sampling groups, I ran Friedman tests and 

Kruskal-Wallace tests, which are appropriate for non-normal data. To determine if any 

relationships existed between the LC and the BMI variables, I ran a set of linear regressions 

comparing each LC variable to all BMI variables. I used an ANOVA to determine the strength of 

variation between land cover type and BMI scores. I then created multi-variable linear regression 

models to determine which LC variables explained the most variation. 

 

RESULTS 
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Transect-introduced distortion in the BMI data  

 

The landscape data did not significantly differ on the basis of whether BMI samples at a 

site were taken at one transect or at three transects (Table 5, Table 6). However, I removed single-

transect sample events due to the differences in the medians between the two groups (Table 6). Of 

the total 517 samples, 444 (86%) were from sites with three transects, and 73 (14%) were from 

sites sampled at one transect.  

 

Normality 

 

 The bulk of the sampled LC data were non-normal. The Shapiro-Wilks test found seven 

treatments were potentially data (Table 3), but of these only two appeared normal from visual 

heuristics and statistical summaries. The ten treatments with a W statistic between 0.8 and 0.9 

(Table 3) appeared non-normal and left-skewed. A D’Agostino-Pearson normality test found all 

data non-normal with p values < 0.000001.  

Overall, catchment level treatment sampled data had the most normality, with %CC, RDI, 

EV, and SL all possessing W statistics above 0.9 (Table 3). The circular buffer treatments of RDI 

and SL also had elements of normality, as indicated by a W statistic above 0.9 (Table 3). In 

addition, %CC, RDE, EV, and SL all had circular buffer treatments with W > 0.8 (Table 3), which 

appears non-normal in histograms. 

 

Sampling Zone Selection Effects 

 

I found significant differences in scatter, skewness, and distribution between sampled mean 

values in watershed and in circular buffer treatments for all variables (Table 8). However, these 

trends only appeared in %CC, RDI, EV, LCO, and SL. RDE, IM, and PD did not change 

dramatically between circular buffer and watershed treatments. 

In LCO, urban land cover types decreased in frequency and forest types increased in 

frequency as sampling size increased (Table 8). %CC, EV, and SL all switched from a right-tailed 

distribution under circular buffer sampling to a normal distribution under watershed sampling. 

RDE, %IM, and PD all retained a right-tailed distribution for all sampling treatments. 
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The distribution of %IM also changed drastically as sampling size increased. With circular 

buffer sampling methods, around 30% of the data (133 of 444 sites) possessed greater than 10% 

impervious surface coverage; yet, with the watershed sampling method only 5% of the data (22 of 

444 sites) had greater than 10% impervious surface coverage. 

For each landscape variable, a Kruskal-Wallis chi-squared test (Table 10) and a a Friedman 

rank-sum chi-squared test showed that every sampling technique generated data that were 

significantly different from one another (Table 9, Table 10). 

The majority LCO type changed between each treatment, moving from a dataset with a 

more diverse mix of land cover types at smaller sampling sizes to a dataset possessing three main 

categories with small numbers of additional LCO types (Table 11). 

 

Sampled Landscape Characteristic Data Summary 

 

Given the lack of normality in the circular buffer results, this sub-section refers exclusively 

to watershed-level sampled landscape data. 

 

Population Density 

 

429 of 444 BMI sampling sites (97%) of BMI sampling sites were located in areas with a 

mean sampled population density of less than 2000 people per square mile. The mean population 

density of all sampled sites was 451.6 ± 1271.8 (± SD), while the median value was 64.9 people 

per square mile (Table 8). There were no significant correlations between population density and 

other LC or BMI variables (Table 12). 

 

% Impervious Cover 

 

 The %IM data was concentrated at the lower bound, with 95% of the data (421 of 444 sites) 

below 10% impervious surface coverage. The data’s mean and median were 3.8% (± 6.8% 

standard deviation) and 0.49% (Table 8, Figure 2a). %IM had a weak correlation with %CC, where 

higher %IM values occurred at lower %CC values (Figure 3b, R2 = 0.1379, p < 0.000001). 
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There were also higher %IM values at lower SL values (Figure 3f). 

 

% Canopy Cover 

 

 %CC had peaks between 0% and 10% and between 30% and 40% coverage, while the 

median was at 35% (Table 8). RDE, RDI, PD, and %IM all showed no relationship. %CC and EV 

showed a semi-linear relationship (Figure 3a, R2 = 0.2922, p < 0.000001), while %CC and SL 

showed a stronger correlation (Figure 3c, R2 = 0.4967, p < 0.000001). 

 

Land Cover 

 

Forests (67%, 297 of 444 sites) and Grasslands (27%, 119 of 444 sites) made up the bulk 

of the data, with the rest of the data evenly distributed throughout all four categories of urban sites 

(5%, 22 of 444 sites) (Table 8, Figure 2g).  

 

Road Density and Road Distance 

 

RDE was distributed mostly at the left bound, with high right-tail skewedness (Figure 2e). 

The only LC variable that showed correlation with RDE was RDI, which showed an inverse 

relationship (Figure 3e, R2 = 0.3892, p < 0.000001). RDI was almost normally distributed (Figure 

2b), although left skewed (Table 8).  

 

Elevation and Slope 

 

 Elevation and slope both appear normally distributed (Figure 2D and 2F). They correlated 

well with each other (Figure 3d, R2 =0.5441, p < 0.000001), while EV correlated slightly with 

%CC (Figure 3a, R2 = 0.2922, p < 0.000001) and SL correlated slightly with %CC (Figure 3c, R2 

= 0.4967, p < 0.000001). 

 

Relationships between Landscape and BMI variables 
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Bias in BMI Sampling Site Locations 

 

The BMI sampling sites were uniform with respect to their RDI and RDE values, due to 

the selection of sampling sites within walking distance of roads. Low %IM and PD values show 

that the sites selected are also predominantly far from highly developed urban areas (Table 8).  

 

Linear Regressions and ANOVAs  

 

Single-variable linear regression returned highly significant results (p < 2.2 * 10-16), yet 

generated models that fit the data poorly (R2 < 0.6 in nearly all cases). LCO, %CC, and SL best 

predicted BMI health metrics, with R2’s averaging over 0.50, 0.40, and 0.40 (Table 10). RDE and 

%IM averaged R2 values above 0.30, while RDI, PD, and EV averaged R2 values below 0.20 

(Table 12, appendix A). 

 Across all treatments, EPT Index, PI, and Simpson’s Index were less well explained by LC 

variables than EPT Taxa, and Shannon’s Index. Additionally, LC variable sample from 500m and 

1000m buffers were better at explaining variation in BMI metrics than the 100m buffer or the 

watershed buffer (Table 8). 

LCO’s 500m buffer performed the best, with EPT Taxa and Shannon’s Index scoring above 

R2 = 0.60 and PI scoring above R2 = 0.50 (Table 12). After that, %CC’s 1000m buffer treatment 

was well correlated with EPT Taxa (Figure 4a, R2 = 0.53, p < 0.000001), PI (Figure 4b, R2 = 0.52, 

p < 0.000001), and Shannon’s Index (Figure 4d, R2 = 0.52,  p < 0.000001). Slope’s 1000m buffer 

treatment was well correlated with EPT Taxa (Figure 4e, R2 = 0.49,  p < 0.000001) and Shannon’s 

Index (Figure 4f, R2 = 0.54, p < 0.000001).  

I found variability in R2 values for certain treatment and LC variable combinations. For 

example, the R2 values of RDE stayed constant across all circular buffer treatments, but dropped 

precipitously for the watershed treatment (Table 14 / Appendix A). In contrast, R2’s for LCO, 

%CC, and SL varied more for each treatment (Table 12). 

 

Multi-Variable Linear Regressions (MLR) 
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I used stepwise multiple linear regression with all variables and treatments to generate 

optimal MLRs for each BMI metric (table 13). 100 meter circular buffer treatments were 

insignificant, except for %IM. Several LC variables were highly significant as long as other 

treatments of that variable were present, for example EV 1000, EV 500, and EV watershed, 

however once alone they were less significant. This also occurred for related variables such as 

RDI/RDE and EV/SL. 

 

DISCUSSION 

 

In this study, I identified the primary trends in relationships between land characteristic 

variables and benthic macroinvertebrate health metrics in the San Francisco, California, Bay Area. 

I showed that the size of the sample area across which the land characteristic is sampled 

significantly affects results, with 100m buffers and watershed buffers performing worse than 500m 

and 1000m buffers at all spatial scales. Land cover type, percent canopy cover, and slope were the 

most important LC variables for predicting BMI water quality metrics. 

 

Landscape Characteristic Variables & Models 

 

The most explanatory LC variables were LCO, %CC, and SL (Table 12). These variables 

not only contain information reflecting stressors that affect stream water quality (9, 10, 14, 19), 

but are also the most efficient for this dataset at reflecting the extent of human development, with 

the capacity to detect human impact even at low levels of human activity (9). 

Slope not only illustrates areas that are difficult to build on and thus less settled, but can 

discriminate between intensely and less-intensely developed areas if the data resolution is high 

enough. Further, slope also can be used locally as a proxy to measure erosion, channelization, and 

other stressors that directly affect BMI bioindicators (6). 

Land cover also distinguishes between areas with no human settlement impact and areas 

with human settlement impact. However, this measure was most effective because it includes 

breaks urban and non-urban down into further land types, including forests, grasslands, cropland, 

shrub, and pasture (20). 
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%CC also reflects both human activity and natural processes that affect water quality in 

streams. Roads, buildings, and power lines require a footprint of cleared land, and this represents 

itself in the canopy coverage pattern. Further, %CC not only measures this aspect of human 

settlement, but also contains information regarding BMI environmental conditions: many species 

of BMI rely on terrestrial inputs such as fallen tree leaves for nourishment (21). 

While variables such as %IM can highlight large human settlements, they fail at 

discriminating between rural areas and smaller residential enclaves that have a smaller impact. 

Since nearly all of the sampled areas were remote from urban or suburban centers with large 

populations or paved surfaces, %IM and population density were all around the same level and 

inefficient at predicting BMI water quality metrics (Table 14,). Arnolds and Gibbons found that 

stream degradation from %IM related stressors occurs at 10% or higher impervious surface 

coverage (9), yet my results showed 95%  (421 of 444 sites) of the watershed-sampled data were 

below 10% IM coverage, while 70% (310 of 444 sites) of the buffer-sampled data were below that 

threshold. Even taking more sensitive theories about the impact of impervious surface coverage 

into account (22), 79% (350 of 444 sites) of the watershed-sampled IM data and 62% (275 of 444 

sites) of the IM data is below that threshold.  Therefore, the sampled region was not enough of an 

urban-rural gradient for %IM to correlate well with BMI health. 

EV was ineffective because while correlated with some measures that affect water quality, 

it does not actually affect water quality, and the sample sites were largely at a similar band of 

elevations (Table 14). 

 

Benthic Macroinvertebrates 

 

EPT Taxa and Shannon’s Index were the most responsive measures to variation in LC 

variables (Table 10), while EPT Index, PI, and Simpson’s Index were less responsive to LC 

variables (Table 14). EPT Taxa and Shannon’s Index likely performed better due to their absolute 

nature, given the variety of site environments and the variety of benthic macroinvertebrate 

assemblages at each site. For a selection of sites with similar environments and assemblages, EPT 

Index, PI, and Simpson’s Index would be more useful measures. 

 

Spatial Sampling Issues (Buffer & Watershed) 
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The 500 and 1000m buffer sampling zones were the best predictors, with the 100m buffer 

and watershed sampling zones proving the least useful sampling size for this dataset (Table 12). 

The 1000m buffer was slightly more accurate in all cases except for with LCO. While Sliva and 

Williams found that catchment-scale analysis was slightly more accurate than 100m buffers, they 

did not test any buffers larger than 100m (14). However, their finding that catchment-level analysis 

was slightly more accurate than 100m buffers was replicated in this study (Table 10). 

The watershed analysis would likely be most useful for study areas closer to settled areas 

in the urban – rural gradient, while the 500m and 1000m buffers seem useful for site-specific 

restoration planning. Another potential alternative that could merge the strengths of both these 

approaches is a distance-based buffer around the stream itself (14). 

 

Limitations and Future Directions 

 

The main limitation of this study was that its study design was intentionally broad so as to 

take advantage of the entire BMI dataset. This limited the power, accuracy, and applicability  of 

its findings, as site conditions such as stream order, elevation, or adjacent terrestrial environment 

were ignored. The breadth of the study also reduced opportunities for detailed analysis of 

landscape characteristics interrelationships and the use of more specific BMI metrics or site 

condition measures. Finally, it introduced a reliance on the BMI data and its sampling procedure, 

which selected sites which were predisposed to a certain proximity to road networks and distance 

from urban areas, which limited the range of landscape characteristics.    

There are some limitations related to the statistical distribution of the LC data, as they were 

largely non-normal, highly skewed, and leptokurtic. This reduced the number of options for 

statistical tests, and the number of treatments that could be used for linear regression. Large 

numbers of zero values or extremely low values also biased the linear regression and other values, 

but removing these values was not an option within the scope of the study. While some of these 

statistical limitations may be due to the resolution of the source datasets, it is unlikely that all of 

this variation originates from the low resolution of the source data. Given the low %IM and RDE 

values (Table 8), rural areas were more predominantly sampled than urban or suburban areas, 

creating a bias in sampling site selection and thus in LC values.  
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This study also had several methodological limitations with regards to the GIS component. 

The study did not calculate error accumulation, either inherent in NLCD or SWAMP datasets, or 

propagated through ArcGIS analysis.  

In addition, land cover type was underused relative to the other continuous data layers. The 

Anderson land cover classification proposed in 1976 (23) has long become the standard land cover 

classification system, but such one-dimensional systems have accumulated their share of criticism 

(24 – 27). 

The results in this study also point to significant potential future research. Splitting the 

dataset into subsets based upon the BMI water quality data would allow more precise analysis of 

specific relationships between BMI and LC values. Land cover could be better integrated into the 

study by using patch dynamics to break land cover down into quantitative metrics such as patch 

density, patch size, and shape indices (28), or by reclassifying continuous LC variables into 

discrete, categorical variables as in suitability analysis (29, 30). Alternatively, a more focused 

approach could take a single LC variable and examine its relationships to functional feeding groups 

and other site characteristics such as water chemistry or the physical form of the site.  

 

CONCLUSION 

 

This study examined new BMI data available for the San Francisco, California, Bay Area. 

Sites with high and low BMI scores often shared the same range of landscape characteristic values. 

This reinforces that multiple variables need to be considered in any analysis of BMI scores (19). 

Sites may possess landscape characteristics that would create a good environment for benthic 

macroinvertebrates, but which are counterbalanced by the shortcomings of another LC variable 

(31).  

Higher scores of %CC, slope, and non-urbanized values of LCO were the main factors 

associated with high BMI scores, particularly Shannon’s Index and EPT Taxa. This suggests 

expanding planting of tree cover over and near non-vegetated creeks could improve stream water 

quality and assemblage health (31, 32) and would also improve property values (33). Given the 

presence of previous restoration of culverted and underground creeks in the Berkeley area (34), 

and the presence of creek stewardship groups like The Urban Creeks Council, Friends of Five 
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Creeks, The Watershed Project, and the East Bay Chapter, these findings or findings from future 

research may prove useful to these groups for decision making.  
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Table 1. BMI metrics used in this study. These metrics are standard metrics commonly used in benthic 

macroinvertebrate studies that are easy to calculate and use, while communicating different information. 

 

Metric Description Use 

EPT Taxa 

(abundance) 

Total number of Ephemeroptera, 

Plecoptera, and Trichoptera (EPT) found 

Indicate general level of water quality 

at site. 

EPT Index 

(richness) 

Number of different taxa of 

Ephemeroptera, Plecoptera, and 

Trichoptera (EPT) given as % of total 

Indicate general level of water quality 

at site. 

 

BMI richness (PI) Number of different taxa of Benthic 

Macroinvertebrates found given as % of 

total 

In combination with EPT data, helps 

identify whether EPT data results are 

due to water pollution conditions or 

environmental conditions 

Shannon-Weaver 

Diversity Index  

The proportion of a single species relative 

to the total number of species, multiplied 

by natural logarithm of that proportion. 

Diversity indices account for 

abundance (how many individuals 

there are), richness (how many 

species there are), and evenness (how 

a species is distributed) of a single 

species in relation to the community. 

Simpson’s Diversity 

Index  

The reciprocal of the summed squared 

proportions of a single species relative to 

the total number of species. 
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Table 2: LC variables used in this study. These variables were freely available as part of the NLCD on the National 

Map Viewer ( http://nationalmap.gov/viewer.html ). * SRTM = Shuttle Radar Topography Mission, USGS = US 

Geological Survey, DEM = Digital Elevation Model. 

Landscape 

Variable Abbreviation Units of Variable Associated Factors 

Percent Canopy 

Cover 

%CC Area with canopy cover / 

total area of cell 

Terrestrial inputs, temperature 

effects through shade 

Road Density RDE km of road / km2 of area Pollutants, run-off, vibrational 

disturbance 

Distance to Nearest 

Road 

RDI Distance to nearest road from 

cell center point in meters 

Pollutants, run-off, vibrational 

disturbance 

Elevation EV Distance from SRTM* 

USGS DEM designated zero 

elevation (sea level) in 

meters. 

Stream order, stream 

geomorphology 

Percent Impervious 

Surface Coverage 

%IM Area with impervious surface 

cover / total area of cell 

Urbanization impacts, run-off 

Population Density PD People per mile2 Urbanization impacts 

Slope SL Degrees rise per cell Stream order, stream 

geomorphology, erosion, 

channelization 

 
 

 

 

 

 

 

 

 
 

 

  

http://nationalmap.gov/viewer.html
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Table 3: Median mean values, χ², and p-values of landscape variables per transect and Kruskal-Wallis Test 

Result (df = 3, crit value = 7.815). This test shows that while there are differences in the landscape variables between 

transect sampling methods, these differences are not significant. (* = significant results; x = groups were similar,✝ = 

groups were different). 

 

Medians 

Three Transect 

Samples 

X (Single 

Transect) Result (χ²) p-value Result 

%CC 27.2 24.0 0.2362 .9722 ✝
 

RDE 2.90 4.06 37.50 < .00001 x  * 

RDI 123 60.9 17.65 .0005 x  * 

EV 135 131 0.9657 .8095 x  * 

%IM 1.31 4.43 28.48 < .00001 x  * 

PD 93.8 60.0 3.221 .3588 ✝
 

SL 12.2 13.0 4.52 .2100 ✝
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Table 4: Normality of data per landscape variable and treatment type. All data were explicitly non-normal, 

although watershed treatments were more normal than circular buffer treatments. All p-values are less than 0.00001 

unless otherwise stated. W = Shapiro-Wilks statistic denoting degree of normality with 0 = non-normal and 1 = 

perfectly normally distributed. (✝ = potentially normal, ✝✝ = relatively normal). 

 

Distance of 

Buffer 

Circular Buffer Treatment 
Watershed 

Treatment 100m 500m 1000m 

Population 

Density 

W = 0.389 

 

W = 0.5377 

 

W = 0.5982 W = 0.3487 

% Impervious 

Cover 

W = 0.6977 

 

W = 0.6896 

 

W = 0.7059 

 

W = 0.3754 

 

% Canopy 

Cover 
W = 0.8552

✝
  

 

W = 0.8603
✝

 W = 0.8841
✝

 W = 0.9598
✝✝

 

Road Density W = 0.8452
✝

 W = 0.8456
✝

 W = 0.845
✝

 W = 0.5974 

Road Distance W = 0.5375 

 
W = 0.8281

✝
 W = 0.9353

✝✝
 W = 0.9252

✝✝
 

Elevation W = 0.8345
✝

 W = 0.8699
✝

 W = 0.8974
✝

 W = 0.9885
✝✝ 

p-value = 0.001434 

Slope W = 0.8961
✝

 W = 0.9396
✝✝

 W = 0.9384
✝✝

 W = 0.92
✝✝
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Table 5: Numerical summaries of LC variable data. STD = standard deviation, cv = coefficient of variation 

(standard deviation divided by mean), IQR = interquartile range. Skew measures the distortion of a probability 

distribution’s spread from the mean; kurtosis measures  how distorted a probability distribution’s magnitude is. 

 
Landscape 

Variable 

Sampling 

Buffer Size mean STD median IQR cv skew kurtosis 

% Canopy 

Cover 

0100m 32.6 30.1 22.1 60.5 0.920 0.368 -1.5 

0500m 29.6 28.3 20.0 47.2 0.955 0.539 -1.2 

1000m 28.8 26.7 20.5 43.4 0.928 0.592 -0.95 

watershed 35.3 22.5 34.8 33.0 0.638 0.185 -0.89 

Road Density 0100m 5.44 4.75 3.66 5.79 0.873 1.20 0.518 

0500m 5.38 4.68 3.49 5.68 0.868 1.19 0.468 

1000m 5.26 4.55 3.44 5.50 0.865 1.16 0.338 

watershed 3.01 2.74 2.26 1.98 0.909 3.89 18.4 

Distance to 

Nearest Road 

0100m 64.3 87.1 36.0 26.9 1.35 3.68 16.0 

0500m 115. 88.2 109 97.1 0.765 2.06 6.57 

1000m 159. 109. 145 141. 0.686 0.831 0.441 

watershed 264. 124. 263 150. 0.469 1.11 3.28 

Elevation 0100m 97.5 90.1 73.3 111. 0.925 1.87 5.23 

0500m 120. 102. 106 119. 0.844 1.60 3.87 

1000m 139. 109. 135 135. 0.782 1.35 2.91 

watershed 292. 126. 290 163. 0.433 0.0907 0.0162 

% Impervious 

Cover 

0100m 10.9 16.5 2.79 12.5 1.52 1.73 1.98 

0500m 12.2 18.6 1.58 16.2 1.52 1.52 0.965 

1000m 12.3 18.4 1.26 19.2 1.49 1.52 1.10 

watershed 3.76 9.58 0.490 4.37 2.55 5.36 31.2 

Population 

Density 

0100m 1205. 3398. 69.9 743. 2.82 5.18 31.3 

0500m 1120. 2541. 93.9 849. 2.12 3.26 12.8 

1000m 1246. 2344. 111 1512. 1.88 2.72 8.49 

watershed 397. 1096. 64.9 355. 2.76 6.11 43.5 

Slope 0100m 8.07 7.14 6.26 10.5 0.884 0.942 0.257 

0500m 10.4 7.36 10.9 12.6 0.709 0.277 -0.947 

1000m 10.9 6.89 12.3 11.9 0.630 -0.0545 -1.18 

watershed 15.4 5.02 16.7 5.98 0.326 -1.01 0.743 
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Table 6: Breakdown of land cover types per treatment. Buffer-sampled data were consistent between the three 

distances, excepting Urban – Open, while watershed-sampled data had less data spread across multiple categories. 

 Treatments 

Land Cover Types 100m 500m 1000m Watershed 

Cropland 7% 4% 3% 1% 

Forest - Evergreen 22% 26% 26% 37% 

Forest - Mixed 11% 11% 14% 30% 
Grassland 15% 28% 28% 27% 
Pasture - - 1% - 

Shrub 1% 2% 2% 1% 
Urban - High - 1% - 1% 

Urban - Medium 10% 14% 14% 1% 

Urban - Low 7% 6% 5% 1% 

Urban – Open 25% 9% 7% 2% 
Woody Wetlands  1% - - - 

 



Christopher Pavia  Biotic Measures and Landscapes in the SF Bay Area  Spring 2011 

22 

Figure 1: Distribution of data for LC Variables. Histograms displaying data distribution for variables: (a) %IM, 

(b) Distance to Nearest Road, (c) % Canopy Cover, (d) Elevation, (e) Road Density, and (f) Slope. 
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Figure 2: Correlations between LC variables. Scatterplots of the watershed-sampled LC variables against one 

another, with a) %CC against EV, (b) %IM against %CC, (c) %CC against SL, (d) EV against SL, (e) RDE against 

RDI, and (f) SL against %IM. 

 

 

a) 

 

 

b) 

 

 

 

c) 

 

 

d) 

 

 

 

e) 

 

 

f) 

 

 

 

 

 



Christopher Pavia  Biotic Measures and Landscapes in the SF Bay Area  Spring 2011 

24 

Table 7: R2 values of linear regression for LCO, %CC, and SL. Light blue cells have an R2 above 0.50, light green 

cells have an R2 above 0.40, light orange cells have an R2 above 0.30, and dark red shaded squares have an R2 below 

0.20.  
 

  Adjusted R2  

 

Sampling 

Zone Sizes 

EPT 

Taxa 

EPT 

Index 

Shannon’s 

Index 

Simpson’s 

Index PI 

Average 

R2 

L
C

O
 

100.00 0.43 0.35 0.46 0.40 0.38 0.40 

500.00 0.61 0.49 0.60 0.47 0.58 0.57 

1000.00 0.63 0.45 0.58 0.43 0.55 0.55 

wtr 0.53 0.27 0.44 0.32 0.41 0.42 

Average R2 0.55 0.39 0.52 0.40 0.48  

C
C

 

100.00 0.38 0.41 0.44 0.32 0.40 0.39 

500.00 0.50 0.45 0.52 0.36 0.52 0.48 

1000.00 0.53 0.45 0.52 0.36 0.53 0.49 

wtr 0.49 0.33 0.43 0.33 0.39 0.41 

Average R2 0.48 0.41 0.48 0.34 0.46  

S
L

 

100.00 0.27 0.32 0.34 0.24 0.28 0.29 

500.00 0.44 0.42 0.51 0.39 0.43 0.44 

1000.00 0.49 0.45 0.54 0.42 0.47 0.48 

wtr 0.33 0.28 0.34 0.29 0.27 0.31 

Average R2 0.38 0.37 0.43 0.34 0.36  

D
E

 

100.00 0.43 0.30 0.41 0.37 0.30 0.37 

500.00 0.43 0.31 0.41 0.37 0.31 0.37 

1000.00 0.44 0.31 0.42 0.38 0.31 0.38 

wtr 0.16 0.12 0.18 0.20 0.12 0.15 

Average R2 0.37 0.26 0.36 0.33 0.26  

%
IM

 

100.00 0.34 0.34 0.39 0.42 0.24 0.34 

500.00 0.39 0.34 0.40 0.38 0.28 0.36 

1000.00 0.41 0.35 0.41 0.39 0.29 0.37 

wtr 0.14 0.12 0.17 0.19 0.10 0.14 

Average R2 0.32 0.29 0.34 0.34 0.23  

D
I 

100.00 0.06 0.04 0.05 0.03 0.04 0.05 

500.00 0.26 0.15 0.23 0.17 0.18 0.21 

1000.00 0.36 0.19 0.32 0.25 0.25 0.28 

wtr 0.09 0.06 0.08 0.08 0.07 0.08 

Average R2 0.19 0.11 0.17 0.13 0.13  

E
V

 

100.00 0.08 0.15 0.11 0.07 0.11 0.10 

500.00 0.13 0.20 0.17 0.12 0.17 0.16 

1000.00 0.19 0.25 0.24 0.16 0.22 0.22 

wtr 0.21 0.21 0.19 0.12 0.22 0.20 

Average R2 0.15 0.20 0.18 0.12 0.18  
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P
D

 

100.00 0.09 0.06 0.06 0.04 0.06 0.07 

500.00 0.19 0.13 0.16 0.13 0.13 0.15 

1000.00 0.26 0.18 0.22 0.18 0.18 0.21 

wtr 0.11 0.09 0.13 0.14 0.08 0.11 

Average R2 0.16 0.12 0.15 0.12 0.11  
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Figure 3: BMI variables plotted and regressed against LC variables. Scatterplots with box plots showing data 

distribution for: (a) EPT Taxa against %CC, (b) PI against %CC, (c) EPT Index against %CC, (d)Shannon’s Index 

against %CC, (e) EPT Taxa against SL, and (f) Shannon’s Index against SL. 
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Table 8: Stepwise minimal multiple linear regression. The stepwise regression was calculated manually, with non-

significant factors with largest p-values removed first, then with least significant factors duplicating a single LC 

variable removed until a single model with only one treatment for each LC variable was left. All models have p-value 

< .000001. 

BMI 

Metric 

LC Variables used in MLR model Adjusted 

R2 Circular Buffer Watershed 

EPT Taxa CC 500 

RDI 1000 

RDE 1000 

 

EV watershed 

 

 

 

0.6428 

EPT Index IM 0100 

CC 500 

RDI 500 

RDE 1000 

EV watershed 

 

 

 

0.5476 

Shannon’s 

Index 

CC 500 

EV 500 

RDI 1000 

SL 1000  

RDE watershed 

 

0.6452 

Simpson’s 

Index 

IM 100 

CC 500 

SL watershed 

 

0.5510 

PI CC 500 

SL 1000 

RDE watershed 

IM watershed 

0.5895   

 

 

 


