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ABSTRACT 

 

 

The conversion of natural vegetated landscapes into impervious surfaces causes a shift in the urban 

climate know as the Urban Heat Island (UHI) Effect. The magnitude of and mitigation strategies 

for this phenomenon are place specific. The projected population increase in the San Francisco 

Bay Area will likely prompt further relative warming of local urban centers. This study aimed to 

understand whether vegetation in Bay Area park spaces can be a net positive mitigator of UHIs. 

Using atmospherically corrected Landsat imagery of parks from nine dates in 2014, I built linear 

regression models of each month to look at the overall trends of how Normalized Difference 

Vegetation Index (NDVI) values correlate with thermal intensity values, which are a proxy for 

surface temperature. To better understand the year-round dynamics of urban vegetation and 

ground-level temperature, I performed a pair-wise comparison of the slopes across seasons. 

Regression analysis suggests a negative relationship between NDVI and thermal intensity; 

increased incidence of green vegetation is associated with lower surface temperatures (r2 = 0.20). 

Further, I found a marginally significant difference among the slopes of the different seasons, with 

the strongest association between variables occurring in summer. While these findings suggest that 

urban vegetation can be effective in mitigating the UHI Effect, particularly in summer, when 

temperatures are highest, further study is required to explore what types of vegetation would 

increase this net positive effect in addition to the best ways to design future parks to enhance UHI 

mitigation. 
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INTRODUCTION 

Higher urban temperatures in mid- and high-latitude cities than in surrounding rural areas 

is widely known as the Urban Heat Island (UHI) effect (Taha 1997). This temperature differential 

is largely attributed to the historic discovery that the increased vertical dimension of cities such as 

taller buildings promotes an increased absorption of latent heat, furthermore increasing the average 

temperatures of cities (Howard 1833). Changes in land-cover, from open grasslands and 

woodlands to built cities increases the amount of impervious surfaces and simultaneously 

decreases natural vegetation and soil coverage (Simpson & McPherson 2007, Arnold and Gibbons 

2007) thus decreasing the vegetative evaporative cooling process (Grimm et al. 2008). These 

ecological and climatic shifts, that have increased thermal intensity, have proven to also impact 

human well being (Jones et al. 2007). Prolonged exposure to elevated urban temperatures has been 

known to cause heat distress and higher mortality rates due to heat-driven atmospheric pollutant 

formation (Watkins et al. 2007). Additionally, higher thermal intensity increases peak summer 

energy demands for air conditioning buildings (Yuan and Bauer 2007) creating a positive feedback 

loop that relies on a continuously growing energy demand and subsequent temperature increases, 

ultimately perpetuating UHIs.  

Understandings of the science concerning UHIs was slow to develop due to unknown site 

variability (Oke 1982) however, through large-scale satellite assessments of urban areas there have 

been improvements in the understanding of both UHIs and their potentially negative implications 

(Taha 1997; Voogt and Oke 2003). Because of the development of high-resolution, remotely 

sensed images, data can be used to increase the precision of land cover mapping, landscape 

analysis, and other factors (Huang et al., 2014). High-precision maps provide information on 

spatial and textural features, including vegetation cover assessment abilities and thermal analysis. 

With the improvement of this technology has come a greater understanding of surface-level 

influences on the UHI effect (Huang et al., 2014). Since the creation of the Landsat government 

satellites in 1983 (Landsat 1-8) studies have been able to use “more appropriate data for land cover 

analysis” (Haack 1987). Through access to seven or more bands that capture data along the 

electromagnetic spectrum within each satellite image, Landsat allows for the derivation of the 

Normalized Difference Vegetation Index value which measures the “greenness” of vegetative 

cover (i.e., its degree of photosynthetic and evapotranspirational activity) and thermal intensity. 

While the correlation between NDVI and thermal intensity has been explored previously, the 
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studies are site specific and only explore single dates making the transferability of the results less 

significant.  

The goal of this study was to apply the initial understanding of the negative relationship 

between NDVI and thermal intensity to parks in Berkeley and Oakland, California through the use 

of satellite imagery, in addition to understanding how this correlation changes in response to the 

seasonal shifts. This study focuses more specifically on parks as singular governmentally-defined 

entities to increase our understanding of parks beyond their recreational value, to assess their 

potential positive environmental benefits. Through a trans-temporal one-year study, the 

relationship between NDVI and thermal intensity can be further analyzed by seasonal trends. By 

understanding the seasonality of the cooling processes, further assumptions can be made regarding 

which vegetation would be better suited for maximizing the cooling effect during times with high 

energy demands.  

 

METHODS 

 

Study site 

 

Berkeley and Oakland, California are situated in eastern side of the San Francisco Bay 

area. The two cities experience cool summers and mild winters with consistent fog inundation due 

to the upwelling in the ocean that occurs along the California coast. Berkeley and Oakland average 

roughly 27 inches of rain per year with July typically being the hottest month and January being 

the coldest. The two cities experience an average low temperature of 42 degrees Fahrenheit, and 

an average high temperature of 74 degrees Fahrenheit. There are over one hundred parks in the 

cities of Berkeley and Oakland, California ranging from baseball fields to lush green regional 

parks.  
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Figure 1. The black line shows the city borders of Oakland and Berkeley, California. The black polygons in the 

middle are the parks that were tested. 

 

Data collection 

 

This study examined 146 city and regional parks in Oakland and Berkeley (Figure 1) that 

are between 30 square meters and 82,000 square meters due to the 30 meter resolution constraint 

of the Landsat dataset. To find the park boundaries I extracted shapefiles from the city of 

Berkeley’s website, Data.acgov.org, and Oakland’s data catalogue. Within these shapefiles was 

information regarding the park name, area, and address.   

For the imagery I used Landsat 8 OLI imagery which came from the United States Geologic 

Survey (USGS), specifically from the Level 1 (LT1) terrain-corrected Landsat product converted 
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to top-of-atmosphere reflectance. The Landsat images of the East Bay fall in Path 44 and Row 34 

and cover the whole study site of Oakland and Berkeley. I collected the Landsat images that are 

representative of Spring, Summer and Fall, from the following dates in 2014: March 18th, April 

19th, May 21st, June 6th, June 22nd, July 8th, September 10th, October 12th, and October 28th.  These 

dates were chosen due to the absence of cloud cover over the study site. In order to derive the 

Normalized Different Vegetation Index (NDVI) values, I performed a band math equation on the 

imagery using band 5 (Near-Infrared) and band 4 (red) to extract the proportional relationship 

between the two: ((Band 5-Band 4)/(Band 5+Band 4)). This provides a value between zero and 

one where higher NDVI values correspond to more photosynthetic activity. For the thermal 

intensity image, I used band 11 from the Landsat 8 OLI. Using these images and the aggregated 

park shape file, in ESRI’s ArcGIS version 10.2 I used the zonal statistics tool to extract the mean, 

the minimum, the maximum, and the standard deviation NDVI and thermal intensity values for 

each park on each date.  

 

Data analysis 

 

I exported the zonal statistics table from ArcGIS into text files which were then exported 

into .csv files for further analysis. In order to understand the relationship between NDVI and 

thermal intensity within the parks, I performed two part analysis. I first performed a linear 

regression analysis on each dates’ NDVI values versus their thermal intensity values as well as on 

the collective set of data points from all of the parks on all of the dates using the lines-plot function 

in the R statistical analysis software.  

Secondly, to explore how the correlation between NDVI and thermal intensity varies over 

time I performed a Tukey’s Range Test pair-wise comparison between the different seasonal slopes 

in the R software’s R-commander package. For the Tukey’s Range Test I split up the months into 

seasons: March, April and May were categorized as Spring. The two images in June and the image 

from July were categorized as Summer. Lastly, the September image and the two images from 

October were categorized as Fall.  
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RESULTS 

 

Greenness-temperature correlation 

 

I found a consistent, negative correlation between NDVI and surface temperature 

throughout all of the months. The linear regression using annual mean NDVI and thermal 

intensity values from each park indicated that NDVI levels explain 20% of the variance in 

thermal intensity based on the  value of 0.2001 (Figure 2). As the sample year progressed 

from March 2014 to October 2014, NDVI values decreased while thermal intensity tended to 

increase (Figure 3). Single-variable linear regressions for each month demonstrated a significant 

(p-value < 0.001) and negative relationship between the two variables in each sampled month 

(Table 1).  values ranged in size from 0.154 to 0.506, with the combined regression 

coefficient  indicating that a 0.1 unit increase in NDVI would lead to a 1.18 degrees Kelvin 

decrease in surface temperature. (See Appendix A for a complete set of regression models for all 

months.) 

 

Table 1. Monthly Results. This table displays the Equation of the regression line, the p-value, and  value for 

each month.  

 

   

R2

   

R2

   

R2

Date Equation of the Line p-value  value  

March 18th  8.19e-12 0.280 

April 19th  2.2e-16 0.395 

May 21st  2.2e-16 0.506 

June 6th  2.2e-16 0.393 

June 22nd  2.2e-16 0.456 

July 8th  1.04e-6 0.154 

September 10th  2.21e-12 0.292 

October 12th  2.6e-11 0.268 

October 28th  9.33e-16 0.364 

Combined Model 



y  11.81x 299.38 2.2e-16 0.200 

   

R2

  

y = -8.48x +295.45

  

y = -12.15x +297.82

  

y = -14.13x + 301.30

  

y = -13.21x + 301.05

  

y = -12.90x + 302.07

  

y = -8.37x +297.48

  

y = -7.35x + 300.79

  

y = -6.60x + 300.03

  

y = -6.18x +291.68
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Using the park means from the different dates, I performed a linear regression where the 

p-value was 2.2e-16 and the  value was 0.2001. Figure 2 shows all of the relationship between 

NDVI and surface temperature for the parks in a hexagonal bin formation. The darker spots 

represent a higher density of parks that fall in that hexagonal value. Based on the graph and the 

significant p-value, I can reject the null hypothesis that there is no correlation. Figure 3 

demonstrates the change in NDVI and surface temperature with seasons based on the mean NDVI 

and surface temperature value for the whole dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overall Linear Regression: This graph is a hexagonal bin distribution graph where the darker the 

hexagon, the more parks there are the have the same NDVI and Thermal values. 
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Figure 3. NDVI/Thermal Relationship Versus Time: This graph shows the changes in NDVI and surface 

temperature over time (the X-axis is month of the year). 

 

Based on an initial visual assessment of Figure 4, I noticed a difference in the slope 

steepness primarily between the months. To statistically assess the variation, I used the Tukey’s 

Range Test to perform a pair-wise comparison between the aggregated months into seasons and 

their collective slopes. Figure 4 shows the results of the pair-wise comparison with the p-value 

for the test being 0.0672. While this does not satisfy a p-value < 0.05, it does show that with a 

roughly 93% confidence level, there is some variation between seasons occurring. This indicates 

that there is variation amongst the seasons. 
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Figure 4. Seasonal NDVI/Thermal Intensity Relationship: This graph shows the individual months regression 

models plotted in a singular graph. The regression models were performed using the park values for NDVI and 

thermal intensity for each month individually.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Tukey’s Range Test Seasonal Comparison: This graph shows the results of the pair-wise comparison 

between the seasonal slopes. The p-value for this graph is 0.0672 
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DISCUSSION 

 

With an expected global urban population growth of 2.5 billion people by 2050 (UN World 

Urbanization Prospects, 2014), the Urban Heat Island (UHI) effect is expected to increase as well 

due to increase in impervious surfaces and energy stresses from the built environment (Imhoff et 

al. 2010). Additionally, UHI mitigation strategies gain in importance as more awareness of the 

adverse human health implications of rising temperatures comes to light (McMichael et al. 2006). 

Increasing coverage of urban vegetation is one such potential mitigation strategy. By testing the 

Normalized Difference Vegetation Index (NDVI) against thermal intensity I was able to explore 

how differences in photosynthetic activity as represented by NDVI were correlated with a lower 

thermal intensity. The results of this study showed that thermal intensity is negatively correlated 

with NDVI and furthermore that this correlation varies between seasons. My findings suggest that 

it is valuable to utilize public green spaces as a tool for future urban planning due to the potential 

for thermal intensity reductions, as well as the indirect benefits for human health. This study, 

although limited in its spatial scope, serves to fortify previous understandings of the negative 

relationship between surface temperature and NDVI as well as to further understand how that 

relationship varies seasonally, specifically in Berkeley and Oakland, California.  

 

Greenness-temperature correlation 

 

The negative correlation between NDVI and thermal intensity implied that increasing the 

amount of vegetation will decrease thermal intensity within the parks. Since the mean NDVI and 

thermal intensity values were calculated for whole park polygons, it is likely that the monthly 

regression slopes were biased more positively in favor of parks with higher ratios of impervious 

surfaces to vegetated areas. By using parks that were previously delineated by the cities and the 

counties I was limited by the land cover types that already fell in those shapefiles. To improve the 

 value, the vegetation and the impervious surfaces that are adjacent to one another, should be 

classified into separate categories and studied as separate entities. Imhoff et al. (2010) determined 

that with a further delineation of urban areas based on biome type, elevation and Impervious 

Surface Area, increasing the amount of impervious surfaces due to development primarily drives 

the increase in thermal intensity.  

   

R2
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Other studies show the same trend between vegetated areas and surface temperature (Yu 

2006; Weng 2004; Buyantuyev and Wu 2010; Chen et al. 2006), however they used metrics other 

than remote sensing such as localized ambient air instruments and Leaf Area Index to explore this 

relationship. While using metrics that require on the ground testing are accurate at the test location, 

they cannot account for large scale system-wide dynamics (Imhoff et. Al 2009). Using remote 

sensing allows for large scale studies of the relationship between thermal intensity and the desired 

vegetation metric can be derived from band compositions, which in this case was NDVI. 

 

Seasonal variation 

 

 By visual and statistical comparison, the regression models for each month showed seasonal 

variation. Visually (Figure 4), it is apparent that the months of  April, May and June showed steeper 

slopes when compared with the other months. Table 1 shows that April, May and June have the 

steepest slopes in addition to the highest  values. With  values for those months ranging 

from 0.393-0.506, roughly 40% to 50% of the thermal intensity value for those months can be 

explained by the values for NDVI. Additionally, Figure 5 shows the results for the Tukey’s Range 

Test, which displays a nearly statistically significantly difference (p-value = 0.0672) in the slopes 

for the different seasons. This variation indicates that the correlation varies throughout the seasons. 

The lack of a statistically significant difference can be potentially attributed to the subjective nature 

of deciding which dates fall into which seasons in this case, such that there were an equal number 

of dates in each season. Additionally, if this analysis were to be performed over multiple years, 

the range test would have a larger sample size, and thus the p-value assigned would be more 

substantiated with evidence.  

 This seasonal variation has been shown in other studies (Lawrence & Slingo 2004) that 

explore the seasonal NDVI and thermal intensity relationship.  With higher rates of 

evapotranspiration occurring during the summer months (Lawrence & Slingo 2004) helps to 

explain that increase in the value, as with more evapotranspiration occurring more cooling 

occurs (Oliveira et al. 2011). The decrease in this cooling in the winter months has been previously 

attributed to both a lack of leaves for the evapotranspiration to occur through, in addition to the 

lack of leaves creating different shading effects as well as producing different sub-canopy soil 

reflectance patterns (Lawrence & Slingo 2004). While the vegetation has not been delineated in 

   

R2

   

R2

   

R2
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the study site parks as being evergreen and deciduous, it is safe to infer that based on the nature of 

parks as being recreationally based, evergreen trees do not dominate the landscape. Thus it is 

plausible that the shift in evapotranspirational processes due to variation in leaves is causing this 

less explanatory regression model for the winter months. 

 

Limitations and future directions 

 

The Urban Heat Island effect is a highly dynamic phenomena that varies from city to city 

and the intensity of the effect is impacted by a range of climatic properties that are native the site 

(Chen et al. 2006). Additionally, within a city, variation can occur based on the land types present 

in the city, even by a difference between a park and the sidewalk within the park (Oliveira et al. 

2011). The large number of variables that contribute to the UHI effect reduce our ability to create 

a one-size-fits-all mitigation strategy primarily due to a current lack of a singular all encompassing 

understanding of the ways in which sites vary from one another. More specifically within this 

study, the physical scope of this study limits the implications to just the cities of Berkeley and 

Oakland as the physical characteristics such as being between a waterfront and a set of hills impacts 

the climate variables such as airflow, more than if the site were located on a flat plane. In the hopes 

of creating a better model to address the complex issues in urban remote sensing, it is important 

that the resolution of the imagery be high enough to help distinguish features at an object level, 

rather than multiple objects falling inside of one pixel. It has been suggested by another study 

(Weng et al. 2004), that spectral unmixing processes be utilized to help break down images into 

further components beyond the pixel size to account for more spatial variability within a single 

image.  

Another limitation of this study is the use of NDVI as a metric for vegetation greenness. 

NDVI measures greenness topologically but provides no information on the density of the 

vegetation. Higher levels of vegetation biomass have been associated with lowering thermal 

intensity more, due the increased amount of evapotranspiration (Nichol & Lee 2005). Parks that 

are less for recreational use, such as tennis courts and soccer fields, are going to have higher levels 

of trees in comparison to grasses, which would mean that the NDVI values are most likely skewed 

for those parks. NDVI’s underlying assumption that a consistent relationship holds between the 

amount of vegetation coverage and what is being represented by the outcome-pixel values, NDVI 
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does not address vertical density heterogeneity. This inhibits creating a distinction between more 

dense urban forests impact on surface temperatures and thinner urban forests. Future studies might 

consider using newer high resolution three-dimensional mapping tools, which capture both the 

physical properties of the land cover, as well as the Red, Green and Blue wavelengths (Dandois & 

Ellis 2013). This could be useful for looking at parks in the future, as with more dense vegetation, 

the surface level imagery cannot fully capture what kind of impact that vegetation could potentially 

have.  

Examining the relationship between NDVI and thermal intensity provided a good 

understanding of one potential UHI mitigation strategy. However, there are other questions that 

should be explored in order to further our understand of UHIs. Some questions, for example, are: 

How does airflow impact the travel of lower surface temperatures from highly vegetated areas to 

more built areas; Is there a buffer at which the impacts of cooler surface temperatures do not 

continue; What is that buffer; Does the size of the cluster of vegetation as well as the distance 

between vegetation clusters impact the effectiveness of the cooler surface temperatures; How do 

these relationships vary during years of drought? Using these research questions, a more holistic 

understanding of UHI mitigation strategies can be created and more informed urban planning 

design can come into fruition.  

 

Broader implications  

 

As urban densification continues to increase, the need to preemptively address Urban 

Heat Island Effect via mitigation strategies grows increasingly important. With regional 

implications regarding energy demand, air quality, and public health (Rosenzweig 2006), the data 

showed that during the times of peak energy demand in summer (Newsham & Bowker 2010), the 

correlation between NDVI and thermal intensity was the strongest. This means that vegetation can 

help mitigate the Urban Heat Island effect in Berkeley and Oakland during the most critical 

months. Additionally, vegetation has been shown to, through its evapotranspiritive processes, to 

cool the air and slow down photochemical reactions, in addition to reduce pollutants in the air 

(Taha 1996).  

Specific recommendations can be made in the cities of Berkeley and Oakland, to increase 

the amount of green spaces, favoring woody vegetation, in the cities to reduce the surface 
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temperature by, on average, another 1.18 degrees for every 0.1 increase in NDVI. Management 

strategies need to be further explored, as the types of vegetation have shown to have an impact on 

the pollution aspect of the urban ecosystem. With some types of vegetation increasing the amount 

of hydrocarbons in the air which create ozone (Taha 1995), the types of vegetation that are put in 

have an effect on overall health of the urban atmosphere. 

 In addition to the UHI mitigation effects, there are socio-economic benefits to increasing 

the amount of trees in urban areas such as increased economic investment in lower income 

neighborhoods (Iverson & Cook 2000). Lastly, the notion of biophilia, that humans have a high 

affinity for green areas, such that it increases happiness (Kellert & Wilson, 1995), is another 

positive implication of increasing green spaces.  

This study has shown that based on the negative correlation between NDVI and thermal 

intensity, management strategies should be developed to mitigate the Urban Heat Island in 

Berkeley and Oakland that incorporate more vegetation into currently existing parks, as well as 

that create more parks to aid in this overall cooling process. Additionally, the seasonal shifts in the 

relationship NDVI and thermal intensity can be further exploited to help mitigate the UHI effects 

during the summer when we see the high energy demands that perpetuate the UHI effects. 

Furthermore, there are more nuances associated with this study that need to be explored in order 

to maximize the benefits of the vegetation both environmentally and economically. This study 

aimed to fortify the previous research on vegetation as an Urban Heat Island effect mitigation 

strategy, and to hopefully add to our understanding surrounding the benefits of our city parks to 

go beyond just recreational value, and to recognize that the park system could have a net positive 

effect on UHI mitigation. 
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APPENDIX A: Regression Models 
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Figure A1. March NDVI/Temperature Correlation: This graph shows the linear regression for the image from March 18th. 

The equation of the line is  

 

 
Figure A2. April NDVI/Temperature Correlation: This graph shows the linear regression for the image from April 19th. 

The equation of the line is  
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Figure A3. May NDVI/Temperature Correlation: This graph shows the linear regression for the image from May 21st. The 

equation of the line is  

 

 
 

Figure A4. June 6th NDVI/Temperature Correlation: This graph shows the linear regression for the image from June 6th. 

The equation of the line is  
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Figure A5. June 22nd NDVI/Temperature Correlation: This graph shows the linear regression for the image from June 

22nd. The equation of the line is  

 

 
 

Figure A6. July 8th NDVI/Temperature Correlation: This graph shows the linear regression for the image from July 8 th. 

The equation of the line is  
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Figure A7. September 10th NDVI/Temperature Correlation: This graph shows the linear regression for the image from 

September 10th. The equation of the line is  

 

 

 

 
Figure A8. October 12th NDVI/Temperature Correlation: This graph shows the linear regression for the image from 

October 12th. The equation of the line is  
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Figure A9. October 28th NDVI/Temperature Correlation: This graph shows the linear regression for the image from 

October 28th. The equation of the line is  


