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ABSTRACT 

 

Over the last two centuries, humans have transformed the San Francisco Estuary system. Marshes 

have been altered for agricultural, hunting, and development needs. One major concern is the 

spread of invasive species. Because wetland systems are fragile and difficult to survey, they have 

not been well studied. This study examines the distribution of two upland marsh plants, the native 

Sarcocornia pacifica (perennial pickleweed) and the invasive Salsola soda (oppositeleaf Russian 

thistle), in a Suisun Bay marsh using a combination of field and remote sensing methods.  First, I 

used the object-based image analysis software eCognition Developer to classify an aerial 

photograph by vegetation type. I compared four supervised classification methods and found that 

the Bayes classifier algorithm produced the highest overall accuracy of 83%. Accuracies varied 

between classes, but the classifier was able to distinguish the invasive S. soda with 97% producer’s 

accuracy. In the second part of the study, I created a multiple regression model that would predict 

measured LAI (leaf area index) values from object-level spectral data derived from the aerial 

photograph. I used twelve predictor variables and created models using original values, log-

transformed values, and squared values. The best model used log-transformed values and yielded 

an adjusted R-squared value of 0.42, which indicates some correlation exists, but the predictability 

of the model is limited. Nevertheless, the fair classification accuracy suggests that S. soda can be 

distinguished from other marsh vegetation using spectral signatures. Therefore, future landscape 

change studies can monitor the spread and influence of S. soda. 
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INTRODUCTION 

 

 The San Francisco Bay Estuary system is one of the most transformed waterscapes in the 

world, partially due to invasive plant and animal species (Callaway 2011). Since the 1800s, people 

have been transforming the wetlands for agriculture, hunting, and development (Callaway 2011). 

In just the past century, two-thirds of California’s coastal salt and brackish marshes have been 

diked or filled (Lewis 2000). As human mobility increased, people introduced invasive species to 

the estuary system. Invasive species are often able to establish themselves because of a lack of 

competitors or native predators. When invasive species have similar ecological adaptations or 

requirements as native species, there is a potential for competition and pressure on the native 

population. One pair of species that may be of concern are native Sarcocornia pacifica (perennial 

pickleweed) and invasive Salsola soda (oppositeleaf Russian thistle).  

 Perennial pickleweed is a plant endemic to the Americas, where it is found in all coastal 

US states (ESF). In northern California, it covers more area than any other salt marsh plant 

(Josselyn 1983), often forming extensive monospecific stands in the upper intertidal zone (Griffith 

2010, ESF). A number of studies have examined changes to pickleweed abundance associated with 

diking tidal marshes. Normally, tidal exchange keeps the tidal inlet open to the ocean, renewing 

water and allowing particular organisms to reproduce. When tidal marshes are restricted, the 

environment sometimes becomes hypersaline or hyposaline (Zedler et al 1980, Jossleyn 1983, St 

Omer 1994). In hyposaline diked wetlands of the San Francisco Bay, pickleweed is one of the few 

plant species able to establish dominance (Griffith 2010). Other studies in Northern California also 

support that pickleweed grows less vigorously when tidal exchange is limited (Seliskar 1985, St. 

Omer 1994). Although pickleweed has been found in sediments with salinities ranging from 3.4 

ppt to 1966 ppt, it can be outcompeted by other plants better adapted to hyposaline environments 

(Griffith 2010). Zedler (1982) found that pickleweed dominates areas with high sediment salinities. 

Due to human encroachment into wetlands, they are grazed and trampled by human or animals, 

which also compact soil. The resulting increase in salinity levels can promote lower marsh species 

like pickleweed to move up to higher elevations, which have lower salinities (Bakker 1985, Kiehl 

et al. 1996).  

 Along with altered biophysical factors, invasive species may also affect the distribution of 

the native pickleweed. Salsola soda (oppositeleaf Russian thistle) is one such species starting to 
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encroach on pickleweed-dominated areas (because S. soda utilizes tumbleweeds as a mode of 

dispersal, I will heretofore refer to the plant as tumbleweed.) Tumbleweed was introduced from 

Syria in 1969 as an experimental range plant (CDFA). The California Invasive Plant Council 

currently classifies tumbleweed’s potential impact on native ecosystems as moderate (Calflora). It 

has been found along water body edges, levees in dry soil, along sloughs, and in disturbed areas 

(Tamasi 1998, CIPC). To distribute its seeds, tumbleweed relies on wind and tidal currents. When 

conditions are windy enough, tumbleweed stems will break and disperse seeds (CDFA). 

Tumbleweed is heavily favored by disturbance, therefore it can be found in overgrazed areas, 

habitat boundaries, waste areas, and disturbed natural or semi-natural plant communities (CDFA). 

It has been speculated to have a strong ability to persist in an area and potentially replace the native 

pickleweed (Tamasi 1998). To date, not many studies have looked specifically at tumbleweed (S. 

soda) and its interactions with native species in estuarine systems. 

 In general, it is difficult to monitor estuarine systems like wetlands because of their inherent 

heterogeneity (Kelly et al. 2011, Martinez-Lopez et al. 2014). What is observed in one part of a 

wetland may be hardly be representative of the rest of the wetland. On-the-ground monitoring is 

time-consuming, labor-intensive and often involves trampling fragile habitats and ecosystems (Lee 

and Yeh 2009, Martinez-Lopez et al. 2014). Repeated data collection may disturb habitats 

significantly, and may even facilitate the colonization by invasive species. Some areas may not be 

accessible by wading or boating. Indirect approaches, like remote sensing, can therefore play a 

major role in capturing a comprehensive picture of wetlands whilst minimizing disturbance. In the 

past, remotely sensed images had coarser spatial resolution and were analyzed by a pixel-based 

approach. However, as high resolution imagery have proliferated in recent decades, an object-

based approach has become more applicable. Because high resolution imagery contain many more 

pixels, any one pixel does not contain very informative data. As a result, grouping pixels into 

objects, which share similar spectral properties, size, shape, or texture, can be a more useful way 

to analyze the landscape. Studies have shown that object-based image analysis (OBIA) can be 

more useful when analyzing high resolution imagery (Blaschke et al. 2014, Jawak et al. 2015). 

OBIA, when applied to UAV (unmanned aerial vehicle) imagery, for example, is more 

reproducible and more effective for land management purposes than when using satellite images 

(Laliberte and Rango 2009).  
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 Along with determining where vegetation of interest occurs across a landscape, it is equally, 

if not more, important to describe key ecosystem parameters of plant cover. Leaf area index (LAI), 

defined as the ratio of leaf area in a canopy per unit ground area, is one such ecosystem parameter. 

Since canopy leaf area serves as the dominant control over primary production, transpiration, 

energy exchange, and other physiological attributes, LAI has become a basic descriptor of 

vegetation condition (Asner et al. 2003). Comparing average LAI values of pickleweed and 

tumbleweed may give a general idea of the level of similarity and productivity of the two species. 

 The objectives of this study were (1) to determine the distribution of pickleweed and 

tumbleweed through the use of remote sensing and (2) to examine how leaf area index varied 

between the two species as well as across the site. To determine distributions of the two species 

using remote sensing, I produced a vegetation classification map from a high resolution aerial 

image using OBIA software eCognition (Trimble Inc.). Subsequently, I looked for any patterns of 

tumbleweed and pickleweed occurrence and tested the accuracy of my classification. At the site, I 

also collected leaf area index (LAI) measurements at a plot level along transects. I conducted a 

means comparison test for LAI values of the two species and then created a regression model that 

predicted LAI from spectral variables derived from the classification map. I applied this model to 

the rest of the image, and created a map of LAI across the site. Through the classification and LAI 

maps, I analyzed distribution patterns and the ability to distinguish tumbleweed from pickleweed. 

 

METHODS 

 

Study system 

 

I selected Salsola soda and Sarcocornia pacifica for this study because they are 

morphologically similar broadleaf plants. Because S. soda is an invasive plant and S. pacifica is 

an important native plant, I speculated that they would face competition for resources. To study 

the distribution of the two plants, I selected a diked salt marsh site where both species were found. 

Since the marsh is diked, the lack of natural tidal hydrology may facilitate establishment of the 

upland invasives (Herrick and Wolf 2005). Located in Hill Slough, Suisun City, Solano County, 

California, the study site covers 120 acres with center of the site at coordinates: 38.239796 N, 

122.024596 W (Figure 1).  
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  Figure 1. Map of field site. Study site was located just east of Suisun City, CA. 

 

The site is a portion of the 10,000-acre Grizzly Island Wildlife Area managed by the 

Department of Fish and Game (DFG). The DFG manages this wildlife area in order to enhance 

habitat for fish and wildlife and provide public recreation. Years ago, the DFG made attempts to 

manually remove the invasive S. soda, but it is still present throughout the site. Not much is known 

about how S. soda (the only plant established in portions of the site) might affect native marsh 

plant species. 

 

Study period 

 

 To map and analyze distributions of S. soda and S. pacifica, I performed GIS-remote 

sensing and LAI (leaf area index) analyses. To produce a vegetation classification map, I processed 

an aerial photo that was acquired on August 15, 2014, by Eagle Digital Imaging Inc. (at 15 cm 

resolution, covering red, green, blue and near-infrared spectral regions) as part of the larger study 

of regional wetland vegetation (I. Dronova, unpublished data). On October 3, 2014, I visited the 

site to take GPS points to use in assessing accuracy of the plant classification. In order to create 
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the LAI map, I collected leaf area index (LAI) data from 112 points along 4 north-south transects 

across the site. 

 

Remote sensing overview 

 

One objective of this study was to generate a classification map of vegetation from an aerial 

image using object-based image analysis (OBIA). This is accomplished in two general steps, 

segmentation and classification. First the image is fed into an OBIA software which segments it 

into objects of similar spectral properties, size, or other attributes. It has been noted that when 

using high resolution imagery, an object-based approach is more effective than a traditional pixel-

based approach (Blaschke et al. 2014). Some objects are then manually selected as representative 

samples for classes of interest. Once selected, the OBIA software can apply algorithms to the rest 

of the image so all objects are classified.  

Generating a classification map is only useful if it is reliably classifies the landscape. As a 

result, one conducts an accuracy assessment by ground truthing, which means gathering actual 

data to serve as a reference for the classification. In this study, GPS measurements and information 

about the species that occurred at those points were collected at the marsh site. With reference data 

and classification data, one can set up an error matrix, which enumerates every combination of 

correctly classified or misclassified vegetation. From the error matrix, one can determine the 

source of classification errors and make refinements. 

 

Data collection 

 

 To determine the distribution of the plant species, I gathered two types of data: plot-level 

LAI and GPS data and applied those to the analysis of aerial imagery of the site.  

 When gathering plot-level field data, I first set up four north-south transects across the site. 

Each transect ranges from 250 meters to 550 meters long and are 150 meters apart. Across all four 

transects, there were 112 1-square meter plots each spaced 15 meters apart. I labeled each plot with 

landscaping flags. I chose to sample using transects because other researchers were conducting a 

parallel study on the endangered salt marsh harvest mouse in the same site. The transects cover 

the relatively large study site efficiently and avoid oversampling of very extensive patches of 
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marsh plants. After setting up the transects, I collected three forms of plot level field data, GPS 

points, dominant and subdominant species information, and LAI data. 

 To ground truth the plant classification map I created, I used a GeoExplorer 6000 Series 

GeoXH Handheld GPS receiver (Trimble Navigation Ltd) to collect 1 GPS point at each of the 98 

plots. I took an additional 30 GPS points wherever S. soda and S. pacifica occurred off of the 

transects in order to improve the groundtruthing capabilities. I also noted the dominant and 

subdominant plant species in each of the 98 1x1 square meter plots. I took photos of any plots that 

contained an unknown dominant or subdominant species so I could identify these plants later with 

the help of the professor. To collect leaf area index (LAI) data for the regression model, I used a 

LAI-2200C Plant Canopy Analyzer (LICOR Inc.). I took two above-canopy and three below-

canopy measurements for each of the plots. The tool computes one LAI value from these five 

measurements. Consistent with the radiative transfer theory, I covered the optical sensor of the 

LICOR instrument with the shadow because it could not take reliable measurements in direct 

sunlight.  

 To collect remotely sensed field data, I used an aerial photograph from Eagle Digital 

Imaging Inc. acquired in a related study (I. Dronova, unpublished data). One image was adequate 

for the snapshot analysis because it covered an area greater than the study site. Eagle Digital 

Imaging Inc. conducted the flight on August 15, 2014, and took one photograph in the four-spectral 

region (red, green, blue, and infrared). They pre-processed and geo-registered the photograph 

beforehand. The image had a 0.1524 meter resolution, which is considered very high resolution 

(VHR). 

 

Figure 2. Schematic of methods of the study.  
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Data processing 

 

Classification  

 

In order to analyze distributions, I first created a map that classified vegetation cover in an 

aerial photograph. I selected an object-based image analysis (OBIA) as opposed to a pixel-based 

method because OBIA is very suitable for very high resolution photographs (Blaschke et al. 2014). 

I used eCognition Developer 9.0 (Trimble Navigation Ltd) to classify the image. I tested 4 different 

supervised classification methods: nearest neighbor, K nearest neighbor (KNN), support vector 

machine (SVM), and Bayes classifiers. Supervised classification implies that eCognition is first 

trained by selecting representative sample objects for each vegetation class. The software 

subsequently classifies the rest of the objects in the image based on user-selected features of the 

sample objects. Nearest neighbor is the basic supervised classification method. The KNN, SVM, 

and Bayes classifiers are three other statistical classification algorithms considered machine 

learning approaches to classification.  

For each classification method, I wrote a rule set that first segmented the image into 

appropriately-sized objects at a scale of 40. Then, I applied a threshold to split the image into green 

vegetation and dead vegetation, because the study focus was green vegetation. With the aid of GPS 

points and a broad vegetation classification map created by the Department of Fish and Game in 

2009 (CA DFG 2012), I designated 160 objects as samples for the four classes. These classes were 

S. pacifica, S. soda, other green vegetation, and dry vegetation. After training eCognition with the 

samples, I used object-level features like spectral band mean values, standard deviation values, 

and vegetation indices to classify the remaining image objects into four classes using each of the 

four supervised classification methods. Following the first round classification of the image, I 

checked for accuracy in ArcGIS v.10.2 (ESRI Inc.) by setting up a testing sample of at least 50 

GPS points per class and checked if eCognition classification matched on-site identification. To 

determine accuracy of the classification, I set up error matrices that tallied how many objects were 

misclassified or correctly classified in a table. Until the accuracy was about 85%, a universally 

accepted standard (Congalton and Green 2009),  I located the classification errors in the image, 

revisited the rule set and refined the choices of discrimination features and rules. After I assessed 
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the accuracy of the results of each of the four classification methods, I compared the resulting 

maps. Ideally, the best classification map has an accuracy of at least 90%.  

 

Leaf area index  

 

 Along with visualizing the distributions of S. pacifica and S. soda with a classification map, 

I wanted to see how leaf area index varied between the two species and across the site. LAI can be 

used as an indicator of the productivity of an ecosystem (Asner et al. 2003). The higher the LAI, 

the more productive the system is.  

 To determine whether mean LAI significantly differed between S. pacifica and S. soda, I 

conducted a t-test in R 3.1.1 (R Core Team 2014) using 80 measurements derived from field plots. 

I wanted to see whether there were any differences in light attenuation. To produce an LAI map 

for the study area, I generated multiple linear regression models to predict LAI from spectral data 

in the aerial photograph. I used a combination of twelve raw spectral variables and vegetation 

indices: GNDVI, green/blue, green divergence, max difference, mean red layer, mean green layer, 

mean blue layer, NDVI, simple ratio, standard deviation, mean infrared layer, and brightness. I 

first segmented the image at 8 different scales: 11, 15, 20, 25, 30, 40, 50, and 70. To determine the 

best scale to work with, I performed univariate regression between PAI and each of the twelve 

variables for each segmentation scale. For a top few variables like NDVI, max difference, and 

simple ratio, I graphed adjusted R-squared values over scale (Figure 3). From this analysis, I 

determined that a scale of 15 was most optimal for generating an LAI model. 
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(a) (b)  

(c)  

Figure 3. A graph of univariate R-squared values over different segmentation scales. The three variables shown 

are most related to LAI. From the three graphs, a segmentation scale of 15 appears to yield the highest R-squared.  

  

Using spectral data from the objects produced from a segmentation scale of 15, I ran a 

backwards elimination stepwise regression R 3.1.1 (R Core Team 2014) to reduce the twelve 

variables to the most important predictor variables. I used the stepwise regression method on the 

original variables, squared variables and log-transformed variables. Once the best model was 

generated, I applied it to the rest of the image using Field Calculator in ArcGIS v.10.2 (ESRI Inc.) 

and generated a map of LAI. I merged adjacent polygons of the same species and then created a 

histogram of patch sizes for each species. I looked for any differences in patch size and distribution 

between the two species. 

 

 

 

 

 

 



Clifford Wang Remote Sensing in Upland Marshes Spring 2015 

11 
 

RESULTS 

 

Classification and accuracy assessment 

 

I created four classification maps of S. pacifica and S. soda distribution using four 

classification methods: nearest neighbor, K nearest neighbor (KNN) classifier, support vector 

machine (SVM) classifier, and Bayes classifier. Using a combination of ground truth GPS points 

collected in the field as well as informed visual assessment, I measured overall accuracy, 

producer’s accuracy and user’s accuracy with error matrices. Figure 4 shows the map produced 

using the Bayes classifier, which had highest overall accuracy. 

 

                 Figure 4. Classification map using Bayes method. 

 

Table 1 is an example of an error matrix I created to assess accuracy for the nearest 

neighbor method. The four vegetation classes I used were pickleweed, tumbleweed, dry vegetation 

and other green vegetation. The reference data are the actual classification values for the objects 

in the image, summed vertically in the column totals. A good classification concentrates the 

majority of data in the diagonal that goes from top left to bottom right. Wherever classified data 
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match reference data, the classification method has correctly classified the object of interest. The 

producer’s accuracy indicates the percentage of reference data (in each class) were classified 

correctly. The user’s accuracy tests how effective the classification algorithm is in identifying 

objects in each class. 

 

Table 1. Accuracy assessment for nearest neighbor method. 

 
Ground 

truth           

Class pickleweed tumbleweed dry veg 
other 
green veg row total 

user's 
accuracy 

pickleweed 27 3 2 1 33 82% 

tumbleweed 5 44 0 7 56 79% 

dry veg 15 13 52 0 80 65% 

other green veg 8 1 3 52 64 81% 

column total 55 60 57 60 232   

producer's 
accuracy:  49% 73% 91% 87%     

          
overall 
accuracy: 75% 

 

 

 

Table 2. Accuracy assessment for KNN classifier method. 

  
Ground 

truth           

Class pickleweed tumbleweed dry veg 
other 
green veg row total 

user's 
accuracy 

pickleweed 31 2 5 1 39 79% 

tumbleweed 8 57 1 7 73 78% 

dry veg 13 0 44 0 57 77% 

other green 
veg 8 2 9 52 71 73% 

column total 60 61 59 60 240   

producer's 
accuracy:  52% 93% 75% 87%     

          
overall 
accuracy: 77% 
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Table 3. Accuracy assessment for SVM classifier method. 

  
Ground 

truth           

Class pickleweed tumbleweed dry veg 
other 
green veg row total 

user's 
accuracy 

pickleweed 36 1 10 1 48 75% 

tumbleweed 12 60 0 3 75 80% 

dry veg 6 0 45 0 51 88% 

other green 
veg 5 0 4 56 65 86% 

column total 59 61 59 60 239   

producer's 
accuracy:  61% 98% 76% 93%     

          
overall 
accuracy: 82% 

 

 

Table 4. Accuracy assessment for Bayes classifier method. 

  
Ground 

truth           

Class pickleweed tumbleweed dry veg 
other 
green veg row total 

user's 
accuracy 

pickleweed 32 2 1 0 35 91% 

tumbleweed 8 59 2 1 70 84% 

dry veg 10 0 43 0 53 81% 

other green 
veg 7 0 9 59 75 79% 

column 
total 57 61 55 60 233   

producer's 
accuracy:  56% 97% 78% 98%     

          
overall 
accuracy: 83% 

 

 

Given the overall accuracy results (Table 5), the classified map derived from Bayes 

classifier yielded the most accurate classification. The mutual confusion column indicates the total 

percentage error contributed by pickleweed misclassified as tumbleweed and vice versa. The 

nearest neighbor algorithm had the lowest mutual confusion rate as well as the lowest overall 

accuracy. The Bayes algorithm had the highest overall accuracy and an average mutual confusion.  
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Table 5. Compilation of accuracies of all four classification methods. The mutual confusion column denotes the 

percentage of test objects that were tumbleweed misclassified as pickleweed or picklweed misclassified as 

tumbleweed. 

METHOD OVERALL ACCURACY (%) MUTUAL CONFUSION (%) 

Nearest Neighbor 75 3.4 

KNN classifier 77 4.2 

SVM classifier 82 5.4 

Bayes classifier 83 4.3 

 

Leaf area index 

 

LAI model 

 

Before creating a LAI prediction model to apply across the whole site, I compared mean 

LAI values of pickleweed and tumbleweed. There was no significant difference between the two 

species, given the p-value of 0.3559. 

 

Figure 5. Boxplots comparing mean LAI of pickleweed and tumbleweed. P-value: 0.3559, t(26.432): -0.9397. 

 

 To generate a map that predicted LAI across the whole image, I performed multiple linear 

regression between LAI values of objects containing ground truth points and twelve spectral 
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features of the original image. I had 80 data points across the site. The twelve spectral features 

were GNDVI, green/blue, green divergence, max difference, mean red layer, mean green layer, 

mean blue layer, NDVI, simple ratio, standard deviation, mean infrared layer, and brightness. I 

compared the R-squared values of 3 backward elimination regression models: (1) using the original 

variable values, (2) using log-transformed variable values, and (3) using squared and original 

variable values. The second method produced the best model, using 6 variables. The 6 features 

were log(brightness), green divergence, log(max difference), mean red layer, log(standard 

deviation), and GNDVI.  

MODEL: 

LAI =  11.33827*log(brightness)  + 0.03060 *green_divergence – 3.63720 *log(max_difference) 

- 0.09146 *mean_red  - 0.86056 *log(standard_deviation) + 28.57778*GNDVI – 50.29069 

 

LAI map 

 

 I applied the above model to all polygons in the image. Wherever there was negative 

predicted LAI, I converted it to a value of 0 because LAI only exists as a positive ratio. Areas 

where LAI was 0 were designated regions of dry vegetation. The upper bound of LAI range was 

3.7. 

 

Figure 6. Map of LAI across the site. 
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LAI patches 

 The two figures below show the range of patch sizes for tumbleweed and pickleweed. 

There were 2037 total tumbleweed patches and 2516 total pickleweed patches. Both species appear 

to have maximum number of patches occurring at 10 square meters. Tumbleweed had a greater 

proportion of its patches under 10 square meters than pickleweed did. 

 

Figure 7. Distribution of tumbleweed patch sizes on log scale. 

 

Figure 8. Distribution of pickleweed patch sizes on log scale. 
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DISCUSSION 

 

 Remote sensing is increasingly being used in natural resource management, in part because 

of technological advances that have made tools more accessible to the average researcher and 

because of the potential and efficiency of remote sensing tools. This study utilized the spectral data 

in a high-resolution aerial photograph for upland marsh vegetation classification and for leaf area 

index (LAI) prediction. The results suggest that a reasonable classification accuracy of 83% can 

be produced using spectral data and the Bayes classifier algorithm. On the other hand, the best 

multiple regression model for predicting LAI had an adjusted R-squared value of 0.42, which 

indicates some relationship exists between LAI and spectral variables, but not enough to predict 

LAI reliably. Consequently, the sampling design and model will need further refinement. As 

previous studies have found, remote sensing methods show promise in management settings. The 

high classification accuracy suggests that very high resolution imagery can be used for change 

detection in wetland landscapes. If there is a shift from field methods to more remote methods to 

measure and manage wetland environments, wetland managers can better preserve the fragile 

landscapes. 

 

Marsh vegetation classification and patch areas 

 

 The four supervised classification methods produced accuracies between 75% and 85%, so 

there are substantial differences in classification capabilities. The Bayes classifier method 

produced the highest overall accuracy of 83%. Depending on where ground truth points are 

selected, a classification may be more accurate or less accurate. From a quick overview of all the 

error matrices, pickleweed tended to be the most misclassified. There were difficulties 

distinguishing actual pickleweed from all of the vegetation categories, particularly from dry 

vegetation. For the Bayes method, there were also significant difficulties distinguishing actual dry 

vegetation from other green vegetation. One explanation for the difficulty with classifying 

pickleweed is that I included both younger, forest green pickleweed as well as older, purple 

pickleweed in the class ‘pickleweed’. Because both green and dead pickleweed patches were 
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presented in the mapped area, this class exhibited higher spectral variation, so it is difficult to select 

representative samples for discriminating it from other vegetation types. 

 In terms of distribution, most pickleweed does not occur near water or roads, unlike 

tumbleweed. Pickleweed appears to be more widespread, from northwest to central to southwest 

portions of the site. There is a large monospecific pickleweed patch in the center of the site. 

Tumbleweed, on the other hand, tends to occur nearer to bodies of water throughout the southern 

part of the site. There is also an extensive patch of tumbleweed on the southeast portion of the site. 

Similarly, other green vegetation occupies a large swath of the western portion of the site. 

Pickleweed and tumbleweed tend to coexist at the confluence of these two species and other green 

vegetation. This suggests that the boundaries of large patches may be susceptible to multispecific 

competition. Tumbleweed has established itself well in the southeast portion of the site and appears 

to be spreading northward and westward (based on patch distribution and comparison with 2013 

observations by Dronova (unpublished)). If it can outcompete pickleweed or other native 

vegetation, then larger tumbleweed patches can potentially develop from the current distribution 

of monospecific patch boundaries.  

I expected tumbleweed patches to be more variable in area than pickleweed patches 

because tumbleweed is a non-native species in the process of invading. Mean patch areas were 

similar between the two species: pickleweed had an average patch size of 28.3 square meters, 

whereas tumbleweed had an average of 20.7 square meters. Pickleweed had a maximum patch size 

of 56,000 square meters, more than three times the maximum tumbleweed patch (16,000 square 

meters), however. Standard deviation of pickleweed patch size was 1160 square meters, compared 

to tumbleweed’s 385 square meters. If I exclude the maximum pickleweed patch, pickleweed’s 

standard deviation becomes 329 square meters. Contrary to what was expected, the area of 

tumbleweed patches did not have a noticeably larger standard deviation than that of pickleweed 

patches.  

 

LAI model 

 

 The LAI model I created aimed to predict LAI values from a mixture of spectral data and 

vegetation indices calculated from the raw spectral values. I used backward elimination regression 

in R with three sets of variables: raw, log, and squared values. The best model was a log-
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transformed model using the features log(brightness), green divergence, log(max difference), and 

mean red layer, log(standard deviation), and GNDVI. The adjusted R-squared value of the model 

was 0.42 and the AIC value was 41.12. The models I produced using the different sets of variables 

all had R-squared values within 0.05 of 0.40, which suggests that there may be a limitation 

presented by the values in the dataset. I only used spectral data from a 4-band (R, G, B, NIR) 

photograph to produce a regression model. The future work in this direction may benefit from 

including soil moisture data, elevation data, or potentially using hyperspectral imagery to predict 

LAI more effectively. Overlaying the classification map on the LAI map, tumbleweed appears to 

have slightly higher LAI than pickleweed, which may be explained by the fact tumbleweed grows 

taller than pickleweed on average. 

 

Limitations and future directions 

 

Marsh vegetation classification 

 

 The main limitation to this study were classification difficulties presented by spectral 

confusion. As noted earlier, pickleweed turned out to be difficult to distinguish from dry vegetation, 

most likely due to the inclusion of dead pickleweed in this study. Similarly a number of dry 

vegetation objects were misclassified as other green vegetation. Misclassifications reduce the 

classification accuracy, which in turn reduces the reliability of the classification rule set. The 

amount of data contained in the very high resolution imagery presented another difficulty in 

vegetation classification. Since the imagery is at a 15 cm resolution, it captures a lot of detail and 

noise in the landscape. While eCognition Developer can handle large amounts of data, the 

introduction of very ‘noisy’ imagery means there is more information for the software to sort 

through. Some segmentations and analyses take a long time to run because of the amount of data 

within an image. For management purposes, it would be ideal to split a landscape region into 

smaller more manageable pieces if working with sub-meter resolution photographs. 

 Also, the scope of this study was small in spatial extent. I worked with a marsh site around 

Suisun Bay that was 120 acres. I cannot say with confidence the classification methods can be 

applied to the rest of the wetlands in Suisun Bay. From working in the field and with the eCognition 

software, I realized the level of heterogeneity present on such a small scale. I conducted a pilot 
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study on a subset of the aerial photograph before trying to classify the entire image and found that 

the classification accuracies dropped significantly when applying the pilot study rule set to the 

whole image. The goal when conducting a pilot study is to find a representative sample of the 

larger study sample. In the photograph of the site, this proved to be difficult. The uneven patchiness 

of the site meant that the subset would have to be virtually as large as the original image to capture 

the heterogeneity. 

 In future studies, one might obtain photographs taken at other times of the growing season. 

The image in this study was taken in August, which was late in the growing season for perennial 

pickleweed, but right in the middle of the growing season for oppositeleaf Russian thistle. 

Depending on what is the major plant(s) of concern, changing the time of growing season when 

the aerial photograph is taken may affect how well one can distinguish that plant from the rest of 

the landscape. In this study, the spectral signature from the Russian thistle was very distinct during 

August. As a result, I was able to produce an average of producer’s accuracy and user’s accuracy 

of 91%, the highest of all the classes. 

 

LAI model 

 

 The goal was to create a multiple regression model that could predict leaf area index (LAI) 

across the extent of the site. I was only able to use 80 out of the original 112 data points, because 

some measurements were taken in areas of dry or dead vegetation. Since the site is not too large, 

the study could have benefited from taking more LAI measurements in the field. Another factor 

that may have affected the limited ability of the model to predict LAI is sampling effort. Our 

sampling effort consisted of 4 transects with evenly spaced points along each transect. Given that 

the site was inherently very heterogeneous, if an LAI measurement was taken at the boundary of 

different species patches, it may not have been representative of either of the patches. When I 

segmented the photograph using spectral data, the image object that contained the LAI point may 

have been comprised mostly of one species, instead of a combination of them. Thus, there might 

have been a discrepancy between the segmented image object and the LAI measurement that was 

supposed to represent that object.  
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CONCLUSIONS 

 

 This study suggests that remote sensing image classification algorithms are promising for 

applications in marsh landscapes to determine the distribution of S. soda and S. pacifica. Among 

the four supervised classification methods tested in this study, the most successful was the Bayes 

algorithm, which produced 83% classification accuracy. For the LAI model, spectral variables 

cannot predict LAI very well, but there is a promising relationship. To further develop this model, 

other physiological variables measured in the field should be included. 

Depending on the applications of vegetation classification, one might opt for different 

spatial resolution of the input image data. This study has shown that sub-meter resolution 

photographs have good potential for classifying a heterogeneous marsh landscape broadly into 

vegetation types and even species like Salsola soda and Sarcocornia pacifica. A next step would 

be to figure out the appropriate level of resolution is suitable for one’s analyses or studies. It is 

likely that, due to the level of heterogeneity of marsh sites like the one in this study, the image 

resolution cannot be too coarse, otherwise changes may not be detected.  

In terms of distribution, S. soda and S. pacifica both have areas that are largely 

monospecific. Tumbleweed was concentrated in southeastern portions of the site, whereas 

pickleweed was concentrated in a long strip right across the center of the site. At the boundaries 

of large patches, however, multiple species were found. To monitor the spread of S. soda, one 

should focus landscape change studies in these bordering regions. Management implications are 

many, and this study is a small but encouraging stepping stone into more marsh studies using a 

combination of field and remote sensing methods.  
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