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ABSTRACT 

 

Tidal wetlands provide a large variety of important ecosystem services, but are extremely 

vulnerable to environmental changes and have experienced high losses globally. Without 

intervention, these losses will increase because of stresses from climatic events and urban 

development. Many efforts have been made to conserve and restore wetlands around the San 

Francisco Bay, but the progress of restoration projects have been seen to be highly variable and 

difficult to monitor. Remote sensing and change analysis can alleviate some of those difficulties 

and provide information on long-term monitoring. I used Object Based Image Analysis (OBIA) 

on 1 meter resolution IKONOS imagery and performed change analysis to assess the patterns of 

vegetation change between 2009 and 2011 in two breached restoration sites managed by the 

South Bay Salt Pond Restoration Project: Pond A21 in Alviso and North Creek Marsh (NCM) in 

Eden Landing. NCM experienced increases in vegetation throughout the site, while vegetation 

growth in A21 remained limited to areas near water channels. Image segmentation based on 

scale parameter was variable between sites, but other parameters within segmentation and 

classification rule sets can be saved and applied to monitor additional restored wetlands. This 

information gives adaptive management projects greater insight on the effectiveness and 

limitations of using these remote sensing methods to monitor wetland response to environmental 

changes.  
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INTRODUCTION 

 

 Tidal marshes and coastal wetlands provide a variety of ecosystem services. These 

wetlands improve storm and wastewater quality, mitigate climate change through carbon 

sequestration, and provide habitat for many endangered species (Zedler and Kercher 2005, 

Crooks et al. 2011, Demers and Robinson-Nilsen 2012). However, freshwater and brackish water 

ecosystems are highly sensitive to environmental changes such as sea level rise and drought 

(Thomas et al. 2011).  Globally, the land cover area of tidal marshes have been reduced by 50%, 

and these habitats are projected to decrease even further from environmental stress caused by 

land use change (Crooks et al. 2011). In South San Francisco Bay, 85% of the historical tidal 

marsh areas have been lost to urban development along with other ecosystem engineering 

projects (Trulio et al. 2007). Currently there are many efforts being made to restore and conserve 

the remaining wetlands.  

Wetland restoration projects on the West Coast of the United States began only recently, 

leaving much more to learn about how these ecosystems function.  Prior to the 1970s, tidal 

marshes were recognized as areas in need of conservational efforts, because they are complex 

ecosystems at risk of being forever lost in their entirety (Williams and Faber 2001). Early San 

Francisco Bay restoration efforts used approaches originally developed for wetlands on the 

Atlantic Coast; however these new restoration projects faced many problems. As a result, Pacific 

Coast wetland restoration became very experimental to address these differences. Issues included 

the accidental introduction of non-native Atlantic Coast cordgrass, which now is treated as an 

invasive species and is a focus of current restoration efforts (Williams and Faber 2001). 

Vegetation establishment on restoration sites is also highly variable between wetlands. A decade 

after restoration projects began, a summary study on the early progress of these projects 

concluded that restored marshland around San Francisco Bay still required monitoring, continued 

experimentation, and long-term documentation to determine the success of these projects (Race 

1985). 

With recent climatic changes in California, restoration projects require even more 

monitoring to ensure the resiliency of restoration efforts. Factors such as sedimentation rates, 

which are dependent on hydrological flows for particle transport, can be greatly affected by 

hydrological changes caused by both natural events, like drought and El Niño, and anthropogenic 
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modifications. These rates are highly important to the survival of tidal marsh ecosystems, 

because the inflow of new sediment is required for maintaining sediment quality (McKee et al. 

2013). Changes in water salinity also affects the types and rates of vegetation re-establishment in 

the area, because of the differing salinity tolerances between wetland plant species and overall 

increased stress to vegetation caused by increased salinity (Thomas et al. 2011). Variables as 

simple as sediment dispersal patterns can cause some locations to be much more ideal for 

restoration than adjacent sites (Brand et al. 2012, Shellenbarger et al. 2013). Because each 

wetland has different characteristics, each may respond differently to the same restoration 

approach.  

The past management of wetlands in South and East San Francisco Bay makes restoration 

on these sites unique. As mid 1800’s industrialization and urbanization spread around San 

Francisco Bay, many tidal wetlands were blocked and converted to salt ponds for salt production 

(California Research Bureau 2002). Salt production expansion continued through the 1950’s, by 

which half of the wetlands in the South Bay were already lost to salt production. In the late 

twentieth century, wetlands became protected areas and the previous industrial salt production 

sites were returned to wildlife habitat. Currently the South Bay Salt Pond Restoration Project 

manages wetland conservation and restoration from salt production activity on these sites.  

Restoration strategies of these areas include the elimination of some of the constructed ponds to 

return to tidal marsh, while strategically preserving some pond ecosystems to support the wildlife 

that has established (Trulio et al. 2007, Athearn et al. 2012). The breaching process, or the 

opening up of the constructed ponds to allow inflow of seawater, will affect the sedimentation 

rates and salinity of the wetlands (Rey 2015). The change in salinity will in particular affects the 

conditions of the areas in which vegetation is re-establishing; increases in salinity causes stress 

on the vegetation in the area (Callaway et al. 2007). In addition to the changes caused by natural 

events, these newly breached tidal wetlands are facing sudden new changes in tidal activity, 

erosion, and sedimentation, which all affect the rates and patterns of vegetation re-establishment 

in the different former pond areas. 

Long term progress monitoring is in itself a major challenge for wetland restoration projects. 

Areas within project sites could be inaccessible for fieldwork due to natural conditions, such as 

tides, or habitat sensitivity to disturbances (Tuxen et al. 2008, Klemas 2013). Remote sensing 

and geographical information systems (GIS) provide the ability to include inaccessible areas in 
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analysis, and the advantages of being time and cost effective. Surface heterogeneity in wetlands 

can increase the difficulty in classifying land cover for restoration monitoring by creating noise 

in remote sensing imagery, but Object Based Image Analysis (OBIA) can eliminate some of 

those effects (Dronova 2015). Using remote sensing in monitoring wetland restoration is a 

growing field, and can provide great advantages in adaptive management projects. 

To monitor the progress of vegetation re-establishment in areas breached and restored from 

pond to tidal marsh, I used IKONOS remote sensing data from 2009 and 2011 and OBIA to 

classify changes in vegetation cover, water channels, and mudflats for Pond A21 in Alviso and 

North Creek Marsh (NCM) in Eden Landing over this 3-year period. Both sites are managed by 

the South Bay Salt Pond Restoration Project (SBSPRP). These changes were visually assessed 

with proximity to water channels, and compared to expected site differences to estimate their 

impacts on vegetation re-establishment behavior. In addition, I assessed the replicability of 

OBIA processes across multiple SBSPRP sites. I hypothesized that both sites will have more 

vegetation re-establishment closer to the water channels, but NCM will have less overall 

vegetation than pond A21 because of higher salinity. This study improves the understanding of 

the variables that cause differences in response to restoration practices in tidal marshes, and of 

the effectiveness of using OBIA in monitoring SBSPRP project sites. 

 

METHODS 

 

Study Site 

 

 The South Bay salt ponds are located along the Tidal Terrestrial Transition Zone of San 

Francisco Bay. Its northern-most ponds are located just south of the Hayward San Mateo Bridge 

entrance, extending south through the cities of Fremont, Milpitas, Mountain View, and Palo Alto. 

SBSPRP manages 15,100 acres South Bay salt ponds (SBSPRP 2009). They are divided between 

three complexes: Eden Landing Ecological Reserve, Alviso, and Ravenswood (Figure 1).  
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Figure 1. South Bay Salt Pond Restoration Project Map. The South Bay Salt Pond Restoration Project manages 

Alviso, Eden Landing, and Ravenswood. North Creek Marsh and A21 are highlighted in orange.   

 

 Pond A21 in Alviso and North Creek Marsh in Eden Landing were selected as study sites 

because of their similarities in management practices. This allows for easier isolation of factors 

that affect vegetation re-establishment within each pond from restoration methods used by 

SBSPRP. Both ponds were breached to become tidal wetland in 2006. Eden Landing is among 

the northern-most sites of the South Bay Salt Ponds, just south of the San Mateo Bridge and 

Hayward Shoreline (a salt marsh restoration site not managed by SBSPRP). The Alviso ponds 

are located in the south-most area managed by the SBSPRP. Pond A21 in particular was 

breached at two points to Coyote Creek (Callaway et al. 2013). The freshwater from the creek 

causes the salinity of the salt marsh to decrease (Saiki and Mejia 2009).  
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Imagery 

  

 I obtained IKONOS imagery and a polygon shapefile of the South Bay salt ponds from 

my mentor, Dylan Chapple (University of California, Berkeley), who received the data from the 

San Francisco Estuary Institute (http://www.sfei.org/). The image data covers three years: 2009, 

2010, and 2011. The 2010 dataset was omitted from this study because of poor data quality. 

These images have three 4m resolution bands (red, green, and blue) and one 1m resolution 

panchromatic band (Fulfrost et al. 2012). Images were taken in June or July for each year, when 

water levels were closest to the Mean Lower Low Water, or the average height of the lowest tide 

recorded for the area. This timing allows for the images to be taken during the period of 

maximum vegetation growth in the study area, when marsh and mudflat are fully exposed from 

the tide. The imagery is a composite of three snapshots taken over three days, one for each of 

three passes of the satellite.   

 Using ArcGIS 10.3 (Environmental Systems Research Institute 2014), I converted the 

project ponds polygon map and imagery to the same projection: GCS WGS 1984. Using the Clip 

(Data Management) tool, I exported the data for each individual pond polygon along with 

corresponding clipped images from the original IKONOS imagery. To include only the 

restoration project area, I used the Extract by Mask tool to create boundaries around each pond. 

 To compare different project sites, I used supervised classification and Object Based 

Image Analysis to categorize areas of water, vegetation, and mudflat after normalizing and 

correcting the imagery. This was done using eCognition software (Trimble Geospatial 2013), 

with a rule set similar to that used by my mentor in previous trials for NCM. A 4-3-2 band false 

color display was used with the Histogram Equalization stretch to allow for interpretation of 

vegetation and water from mudflat. The Multiscale Resolution Segmentation tool was used with 

different parameters to produce objects that captured the vegetation patterns in the images. An 

Image Layer weight of 1 was placed for bands 1 (blue) and 2 (green), and a weight of 2 was 

placed on bands 3 (red) and 4 (near-infrared). Because the previous analysis on NCM was unable 

to detect smaller surface water channels, smaller scale parameters were tested to improve 

delineation of water (Moffett and Gorelick 2013). In the final segmented images, the scale value 

of 5 was used for both NCM images to more effectively capture smaller water channel details 

that had been missed previously, while the higher scale value 7 was used for A21 to smooth 
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some of the variation caused by the greater amount of water and algae on the mudflat areas of 

this site.     

 After segmentation, training samples were collected in North Creek Marsh for mudflat, 

water/channels, roads, and Salicornia pacifica (commonly known as Pickleweed, the dominant 

colonizing vegetation type), while in A21 training samples were collected for mudflat, 

water/channels, Salicornia pacifica and Spartina foliosa (or California cordgrass, a native 

colonizing vegetation type). Spartina foliosa was differentiated from Salicornia pacifica based 

off its distinct circular growth patterns (see Appendix A1). However, it was only classified for 

the 2011 imagery because differences in color between the two sets of A21 imagery made it 

difficult to visually determine cordgrass from Pickleweed in the 2009 image. The images for 

both sites were then classified using the nearest neighbor configuration algorithm with features 

Brightness, Mean NIR, and Standard deviation Red.    

 To assess the accuracy of these classifications, sets of 100 random points covering the 

extent of each classified image were generated using ArcGIS. The 4-3-2 band display images 

and historical Google Earth (Google Earth 2015) images were used to verify the classifications 

of the collection points. The class values from the classified image were extracted to each point, 

and the frequency tool was used to create a table with the frequencies of each predicted class 

matching with each actual class. The pivot table tool was used to generate a confusion matrix to 

assess classification accuracy.      

 The 2009 and 2011 classified images for each pond were combined using the Combine 

tool to produce a table of unique combinations of input and output values. These combinations 

were grouped by no change, change (+) of vegetation, change (-) of vegetation, and non-

vegetation class changes. For the 2011 A21 image, Pickleweed and cordgrass were analyzed 

together as one class: vegetation. Symbology was adjusted to emphasize the patterns of 

vegetation gain and loss. 

 

Comparisons with other factors 

  

 To compare factors within the individual study sites with vegetation patterns, data for 

salinity, water channel cover, and Spartina foliosa cover was downloaded or extracted from the 

imagery. Salinity data was acquired from the USGS data archive 
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(http://sfbay.wr.usgs.gov/access/wqdata/overview/examp/charts/salin.html) for San Francisco 

Bay. The average elevation for each site was calculated using Google Earth Engine (Google 

Earth Engine Team 2015). Using the USGS National Elevation Dataset available within Google 

Earth Engine, each site was clipped to polygon outline layers of A21 and NCM and processed 

through the reducer (mean).  

The water channels were extracted by converting the raster image into a vector shapefile, 

then exporting the polygons of selected water channel areas. The water shapefile was visually 

compared with the original imagery to assess how well the smaller water channels were captured 

by the classification. The Spartina foliosa data was extracted in a similar way, with confirmation 

from the Invasive Spartina Project (http://www.spartina.org/) that the vegetation classified is the 

native cordgrass species (D. Chapple, personal communication).  

  

RESULTS 

 

Alviso Pond A21 

 

Between the years 2009 and 2011, the change analysis for Pond A21 in Alviso (Figure 3) 

resulted in a net loss of vegetation habitat by -10.002156%, while mudflat experienced a small 

increase (Figure 2). 99076 pixels of mudflat and water transitioned to vegetation, but this gain 

was smaller than the loss of 115101 pixels of vegetation to mudflat and water. The accuracy of 

classification for 2009 was 82% with a Kappa statistic of 0.673024523, and the accuracy for 

2011 was 89% with a Kappa statistic of 0.83899297 (see Appendix B1 and B2 for confusion 

matrices). 
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 Unclassified Vegetation Mudflat Water Row Total Class Total (final) 
Unclassified 572005 160 298 343 572806 572806 
Vegetation 409 42465 68908 30168 141950 141950 

Mudflat 189 73583 307464 120593 501829 501829 
Water/Channels 358 41518 108311 84249 234436 234436 

Class Total 
(initial) 572961 157726 484981 235353   

Class Changes 956 115261 177517 151104   
Image Difference -155 -15776 16848 -917   
Percent Change -0.02705% -10.002156 3.474% -0.389%   

 

Figure 2. Alviso Pond A21 Area (pixels) and Percent Change. Columns represent initial state classes (2009) 

while Rows represent final state classes (2011).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Change Analysis of A21. Classifications for A21 in 2009 (top left), 2011 (top right), and change analysis 

map highlighting areas of vegetation gain and loss between 2009-2011 (bottom)  
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North Creek Marsh 

  

For the same time period, North Creek Marsh (Figure 5) experienced an overall increase 

in vegetation habitat. There was a 52.9% increase in vegetation (Figure 4). However, water and 

roads experienced large losses of -46.3% and -65.97% respectively. 1284 pixels that had been 

classified in 2009 became unclassified pixels in 2011. The accuracy of classification for 2009 

was 84% (Kappa = 0.80941) and the accuracy for 2011 was 83% (Kappa = 0.764934) (see 

Appendix B3 and B4 for confusion matrices).  

 
 Unclassified Vegetation Mudflat Water Roads Row Total Class Total (final) 

Unclassified 199744 266 241 162 931 201344 201344 
Vegetation 43 55724 132933 22740 6178 217618 217618 

Mudflat 168 75177 191707 32747 14518 314317 314317 
Water 0 9427 12981 14951 755 38114 38114 
Roads 105 1698 772 414 7014 10003 10003 

Class Total 
(initial) 200060 142292 338634 71014 29396   

Class 
Changes 316 86568 146927 56063 22382   

Image 
Difference 1284 75326 -24317 -32900 -19393   

Percent 
Change 0.641807% 52.9376% -7.181% -46.3% -65.97%   

 

Figure 4. North Creek Marsh Area (pixels) and Percent Change. Columns represent initial state classes (2009) 

while Rows represent final state classes (2011).   
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Figure 5: Change Analysis of North Creek Marsh. North Creek Marsh in 2009 (top left), 2011 (top right), and 

change in vegetation between 2009-2011 (left)  
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 The average elevation of A21 was lower than the elevation of NCM (Table 1). Although 

A21 was breached to a freshwater creek, the average and median salinity of San Francisco Bay at 

the monitoring station nearest to the site was generally similar to the salinity at the monitoring 

station near NCM (see Appendix C for additional information on salinity values).  
 

Table 1. Summary of Differences between A21 and NCM.  Data was acquired from Google Earth Engine (United 

States Geological Survey National Elevation Dataset), personal communication, and United States Geological 

Survey San Francisco Water Quality database  

 
 

Factors 
 

 

A21 
 

NCM 

 
Average Elevation (m) 

 
1.430668 

 

 
1.565355 

 
Colonizing Vegetation 
Type 
 

 
     Spartina foliosa and Salicornia pacifica 

 

 
Salicornia pacifica 

 
Water Source 

 
SF Bay, possibly mixing with  
freshwater from Coyote Creek 

 

 
SF Bay 

 
Annual Salinity (psu) 

 
Average, median 

 
Average, median 

2009 26.7275, 26.6083 
 

28.67674, 2.584231 
 

2010 24.80187, 26.58714 
 

26.36975, 26.91 
 

2011 (Jan-Jul 22) 18.3721, 1.751833333 
 

19.29723, 21.38117 
 

 

DISCUSSION 

 

 Wetland restoration attempts along the California Coast have had differing degrees of 

effectiveness. By monitoring the progress of vegetation re-establishment in response to varying 

environmental factors in individual ponds, restoration managers can make more informed 

decisions in prioritizing sites and choosing restoration practices. NCM experienced faster rates of 

vegetation re-establishment than A21, despite being breached in the same year. Of the 

parameters used in the OBIA rule set, scale value had the greatest variability between each site. 

Besides adjustments to the scale parameter, the rule set was able to classify imagery in multiple 

restoration sites relatively effectively for use in change analysis.   
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Trends in Vegetation Re-establishment 

  

 In the multiple classifications and change assessments run on the imagery, A21 tended to 

have lower rates of vegetation re-establishment than NCM. Visually we can see that there is 

more widespread vegetation development across NCM (Figure 5), while the patches of 

vegetation development in A21 (Figure 2) remain near the west regions of the site along the 

water channels. This is likely attributed to A21 being at a lower elevation than NCM (Table 1), 

because plant development occurs at targeted elevations (Callaway et al. 2013, Williams and Orr 

2002). In restored wetlands, vegetation tends to begin establishing near water channels because 

of the high rates of sedimentation in those areas (Callaway et al. 2013, Newcomer et al. 2013). 

Vegetation development in areas further away from these channels indicates that a site has 

reached later stages of restoration (Tuxen 2008). The more widespread vegetation covering 

NCM indicates that the site has experienced a faster rate of vegetation re-establishment 

compared to A21. Although it was expected that A21 would have faster rates of vegetation re-

establishment due to lower salinity, elevation appears to have greater impact on the site. The 

salinity levels of San Francisco Bay at monitoring stations closest to the sites show that average 

water salinity was similar near the two sites (see Appendix C). However, the data was measured 

from the bay rather than within the project sites, where the impact of freshwater directly entering 

from the Coyote Creek breach points would have a greater impact on salinity.  Assessment of 

salinity could be improved with measurements taken within each wetland site and comparing 

with the change maps to measure the possible impact salinity may have on vegetation re-

establishment.  

 

Using OBIA and IKONOS imagery 

 

 Object Based Image Analysis has many strengths for use in wetland monitoring, but it 

also has challenges. In the previous study on NCM, there was false change noticeable along 

some of the main water channels caused to tidal effects and variability during the day the images 

were collected (Fulfrost 2012). There was also difficulty in distinguishing smaller, finer water 

channels from vegetation, as well as shallow areas within the water channels where the channel 

banks were more exposed and appeared similar to mudflat (Appendix A2). Many initial attempts 
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at classifying these sites lead to high overestimations of water. One study found that while high 

resolution imagery, such as this set of 1m resolution IKONOS imagery of the SBSPRP sites, was 

effective at mapping vegetation, water channels required imagery at even higher resolutions to be 

accurately mapped (Moffett and Gorelick, 2012). When analyzing vegetation change maps using 

this data, the inaccuracies of water should be taken in consideration. However, these maps can 

still be highly informative for assessing relative changes in spatial structure of vegetation 

patterns (Kelly et al. 2011). Because many restoration projects use remote sensing to monitor 

vegetation change, it would be more useful to use a larger scale parameter to accurately map 

vegetation changes at the expense of inaccuracies in mapping surface water channels. 

 Another effect of using a smaller scale parameter in segmentation was confusion between 

mudflat and vegetation. Some areas of mudflat ended up over segmented and small algae patches 

were mistakenly classified for colonizing vegetation. The over segmentation also caused 

difficulty in quantifying accuracy because many of the random testing points landed between 

areas where mudflat and vegetation objects were small and heterogeneous in the classified image, 

making it difficult to match with the test point classifications based on the false color and Google 

Earth imagery (Figure 7). The subjectivity and bias with using expert knowledge to perform 

supervised classification of land cover can also contribute to the inaccuracies in the classified 

images, bringing them below the 85% accuracy benchmark (Dronova 2015). To minimize the 

effects of this confusion between classes, validation with field work, groundtruthed data, and 

expert knowledge from the field can be used to more accurately distinguish between difficult 

areas like patches of algae from vegetation (Tuxen 2008). Taking these extra steps to ensure 

better map accuracy will improve the quality of information we can extract from remote sensing 

data.  

 Variations in the results of segmentation and classification occurred between each 

different site. A21 appeared to have higher amounts of noise from water and algae on the 

mudflats because it is at a lower elevation, so it required a different scale parameter than NCM. 

While the need to use trial and error in finding the ideal scale parameter for each new site makes 

it more difficult to apply the same segmentation and classification process across many ponds, 

the other parameters used in segmentation and classification for NCM worked successfully for 

A21. Finding the ideal scale parameter for other sites to monitor can be time consuming, but the 
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ability to save rule sets within the eCognition software helps with setting up other parameters to 

make the process of applying OBIA to new restoration sites easier.  

           

Figure 7. Accuracy Error in NCM: Because the scale parameter of the objects was smaller to capture finer water 

channel details, validation point classifications created by assessing the original imagery were difficult to match 

with areas classified as a heterogeneous mix of mudflat and vegetation. The yellow points in these images show 

pixels that had been classified as vegetation based off Google Earth imagery and the false color display of the 

original IKONOS imagery, but were classified as mudflat with the nearest neighbor configuration algorithm.  

 

Limitations  

This study had considerations for differences in proximity to water channels, elevation, 

salinity, and major colonizing cover types as factors that affect vegetation re-establishment 

patterns; however there are many other factors that can be compared with the change analysis 

results to find the influence they have on restoration sites. For example, nutrients such as 

nitrogen and phosphorus mobilized in runoff may increase the rates of vegetation growth.  

The timing of the available high-resolution imagery also limits the usefulness of this 

analysis to managers. Because the 2010 IKONOS imagery was omitted in this study because of 

the quality of the data, it is possible for there to be small changes missed that could have been 

informative to why the change analysis resulted in a loss of vegetation between 2009 and 2011 

(Tuxen 2008). The assessment of only a two year data timespan also limits detection of longer 

term trends, such as increases in vegetation cover in A21 observed in field assessments occurring 

after 2011 (Tuxen 2011, Callaway et al. 2013).  

Since the year of the most recent image, California has experienced a multi-year drought 

and El Niño, both which affect the hydrology of the sites. If high resolution imagery were 
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available of these sites taken during the drought period and before El Niño, and again after the El 

Niño period, the change analysis process using OBIA rulesets can be used with same methods as 

the 2009-2011 imagery to assess the changes to vegetation colonization.  

 

Conclusion 

 

Many factors affect ecosystem responses to restoration practices in California coastal 

wetlands. Comparing vegetation re-establishment patterns in breached salt pond restoration sites 

to major factors is especially informative for ongoing, adaptive management restoration projects 

of these unique systems. With the many variables affecting wetland vegetation response, it is 

difficult to predict the effectiveness of restoration work in different sites. Remote sensing with 

OBIA is an effective tool in assisting with monitoring for these restoration projects. Analysis of 

high resolution remote sensing data, such as IKONOS imagery, can give meaningful information 

on how vegetation patterns change over time in different restoration project sites. Understanding 

how different factors can affect patterns of vegetation re-establishment can help managers decide 

on project sites to prioritize. Depending on funding and available resources, this information 

helps managers choose between areas where vegetation re-establishment is likely to occur faster, 

because it is cheaper, or slower, because the site needs more assistance in returning to a tidal 

wetland ecosystem (D. Chapple, personal communication). A greater understanding of 

vegetation re-establishment trends will allow for restoration efforts to be more effective in 

restoring and conserving the remaining wetlands in San Francisco Bay.  

  

ACKNOWLEDGEMENTS  
 

To the ESPM 175 team: Patina Mendez, Kurt Spreyer, Anne Murray, and Abby Cochran for 

their constant support. Thank you to my mentor, Dylan Chapple, for your expertise and endless 

guidance through the process of this research project, and for the opportunity to visit the field 

with the UC Santa Cruz class. Thank you to Save the Bay for giving me the opportunity 

participate in wetland restoration through their community-based restoration volunteer program. 

Professor Iryna Dronova for allowing me to join her graduate remote sensing course and 

teaching me the remote sensing skills needed for this project, and to the Geospatial Innovation 

Facility for providing the tools, resources, and expert guidance necessary for this project. Kaleen 



Manda V. Au Salt Pond Restoration Vegetation Re-establishment Patterns Spring 2016 
	

17	
	

Juarez and Robert Schlipf for furthering my interest in Bay Area water issues. Thank you to the 

Spatial Cadets: Annika Min, Ryan Avery, and Adrian Lee, for your helpful peer review feedback, 

and to Samantha Ov for being there through this entire thesis process.  

 

REFERENCES 

 
Athearn, N.D., J.Y. Takekawa,  J.D. Bluso-Demers , J. M. Shinn, L.A. Brand, C.W. Robinson-

Nilsen, and C. M. Strong. 2012. Variability in habitat value of commercial salt 
production ponds: implications for waterbird management and tidal marsh restoration 
planning. Hydrobiologia 697:139-155. 

 
Brand, L.A., L.M. Smith, J.Y. Takekawaa, N.D. Athearn, K. Taylor, G.G. Shellenbarger, D.H. 

Schoellhamer, and R. Spenst. 2012. Trajectory of early tidal marsh restoration: Elevation, 
sedimentation and colonization of breached salt ponds in the northern San Francisco Bay. 
Ecological Engineering 42:19-29. 

 
California Research Bureau. 2002. Background Report on the Cargill Salt Ponds. 

http://www.southbayrestoration.org/Cargill%20background%20report.html#_ednref3 
(version 10/25/2015).  

 
Callaway, J.C., V.T. Parker, M.C. Vasey, and L.M. Schile. 2007. Emerging issues for the 

restoration of tidal marsh ecosystems in the context of predicted climate change. 
Madroño 54:234-248. 

 
Callaway, J.C., L.M. Schile, E.L.Borgnis, M. Busnardo, G. Archbald., R. Duke. 2013. Sediment 

Dynamics and Vegetation Recruitment in Newly Restored Salt Ponds: Final Report for 
Pond A6 Sediment Study. United States Geological Survey.  

 
Crooks, S., D. Herr, J. Tamelander, D. Laffoley, and J. Vandever. 2011. Mitigating Climate 

Change through Restoration and Management of Coastal Wetlands and Near Shore 
Marine Ecosystems. Environmental Department Papers Marine Ecosystem Series 121:1-
59. 

 
Demers, S.A., C.W. Robinson-Nilsen. 2012. Monitoring western snowy plover nests with remote 

surveillance systems in San Francisco Bay, California. Journal of Fish and Wildlife 
Management 3:123–132. 

 
Dronova, I. 2015. Object-Based Image Analysis in Wetland Research: A Review. Remote 

Sensing 7:6380-6413. 
 
Trimble Geospatial. 2013. eCognition Developer version 8.9.1. Trimble Incorporated, Sunnyvale, 

California, USA.   
 



Manda V. Au Salt Pond Restoration Vegetation Re-establishment Patterns Spring 2016 
	

18	
	

Environmental Systems Research Institute. 2014. ArcGIS 10.3. Environmental Systems 
Research Institute, Redlands, California, USA.  

 
Fulfrost, B., D. Thompson, G. Archbald, C. Loy, W. Fourt. 2012. Habitat Evolution Mapping 

Project Final Report. South Bay Salt Pond Restoration Project. Brian Fulfrost and 
Associates. Oakland, California, USA.   

 
Google Earth. 2015. Google Earth version 7.1.5.1557. Google, Mountain View, California, USA.  
 
Google Earth Engine Team. 2015. Google Earth Engine: A planetary-scale geo-spatial analysis 

platform . Google. Mountain View, California, USA.  
 
Kelly, M., K.A. Tuxen, and D. Stralberg. 2011. Mapping changes to vegetation pattern in a 

restoring wetland: metrics that are consistent across spatial scale and time. Ecological 
Indicators 11:263-273. 

 
Klemas, V. 2013. Using Remote Sensing to Select and Monitor Wetland Restoration Sites: An 

Overview. Journal of Coastal Research 29:958-970.  
 
McKee, L.J., M. Lewicki, D.H. Schoellhamer, and N.K. Ganju. 2013. Comparison of sediment 

supply to San Francisco Bay from watersheds draining the Bay Area and the Central 
Valley of California. Marine Geology 345:47-62. 

 
Moffett, K.B. and S.M. Gorelick. 2013. Distinguishing wetland vegetation and channel features 

with object-based image segmentation. International Journal of Remote Sensing 34:1332-
1354. 

 
Newcomer, M.E., A.J.M. Kuss, T. Ketron, A. Remar, V. Choksi, and J.W. Skiles. 2014. 

Estuarine sediment deposition during wetland restoration: A GIS and remote sensing 
modeling approach. Geocarto International 29: 451-467. 

 
Race, M.S. 1985. Critique of Present Wetlands Mitigation Policies in the United States Based on 

an Analysis of Past Restoration Projects in San Francisco Bay. Environmental 
Management 9:71-82. 

 
Rey, C.A. 2015. Mud Dynamics in a Tidal Channel: The Impacts of Opening Salt Ponds on 

Channel Deepening. Thesis. UNESCO-IHE Institute for Water Education, Delft, 
Netherlands. 

 
Saiki, M.K., F.H. Mejia. 2009. Utilization by fishes of the Alviso Island Ponds and Adjacent 

Waters in South San Francisco Bay Following Restoration to Tidal Influence. Galifornia 
Fish and Game 95(1):38-52. 

 
Shellenbarger, G.G., S.A. Wright, and D.H. Schoellhamer. 2013. A sediment budget for the 

southern reach in San Francisco Bay, CA: Implications for habitat restoration. Marine 
Geology 345:281-293. 



Manda V. Au Salt Pond Restoration Vegetation Re-establishment Patterns Spring 2016 
	

19	
	

 
SBSPRP [South Bay Salt Pond Restoration Project]. 2009. South Bay Salt Pond Restoration 

Project Status Report. South Bay Salt Pond Restoration Project. California, USA.   
 
Thomas, P.V., J.C. Callaway, L.M. Schile, M.C. Vasey, and E.R. Herbert. 2011. Climate Change 

and San Francisco Bay – Delta Tidal Wetlands. San Francisco Estuary and Watershed 
Science 9:1-15.  

 
Trulio, L., D. Clark, S. Richie, and A. Hutzel. 2007. Adaptive Management Plan: Science team 

report for the South Bay Salt Pond Restoration Project. 
 
Tuxen, K.A., L.M. Schile, M. Kelly, S.W. Siegel. 2008. Vegetation Colonization in a Restoring 

Tidal Marsh: A Remote Sensing Approach. Restoration Ecology 16:313-323. 
 
Tuxen, K.A., L. Schile, D. Stralberg, S. Siegel, T. Parker, M. Vasey, J. Callaway, M. Kelly. 2011. 

Mapping changes in tidal wetland vegetation composition and pattern across a salinity 
gradient using high spatial resolution imagery. Wetland Ecology Management 11:263-
273. 

 
Williams, P.B. and Phyllis B. Faber. 2001. Salt marsh restoration experience in San Francisco 

Bay. Journal of Coastal Research, Special Issue 27:203-311. 
 
Williams, P.B. and M.K. Orr. 2002. Physical Evolution of Restored Breached Levee Salt 

Marshes in the San Francisco Bay Estuary. Restoration Ecology 10:527-542. 
 
Zedler, J.B. and S. Kercher. 2005. Wetland Resources: Status, Trends, Ecosystem Services, and 

Restorability. Annual Review of Environmental Resources 30:39-74. 
 

 

 

 

 

 

 

 

 

 

 

 

 



Manda V. Au Salt Pond Restoration Vegetation Re-establishment Patterns Spring 2016 
	

20	
	

APPENDIX A: Spartina foliosa 

 

 
   

Appendix A1. Spartina foliosa. Patches of native California cordgrass can be seen in the 2011 A21 using a 4-3-2 

band false color display.   

 
 

Appendix A2. Water Channel and Mudflat Confusion. An area in the NCM 2011 imagery, shown here as the 

false color display, that had difficulty classifying water channels from mudflat because areas of water channel had 

areas with exposed banks.  
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APPENDIX B: Classification Accuracy Assessment 

 
  Reference Classes     

Map Classes Unclassified Vegetation Mudflat Water Row 
Total 

User’s 
Accuracy 

Commission 
Error 

Unclassified 39 0 0 0 39 100% 0% 
Vegetation 0 7 4 1 12 58.33333% 41.66667% 

Mudflat 0 2 29 1 32 90.625% 9.375% 
Water 0 2 8 7 17 41.17647% 58.82353% 

Column Total 39 11 41 9    
Producer’s 
Accuracy 100.00% 63.64% 70.73% 77.78% 

Kappa 
Statistic  =  0.673024523 

Omission Error 0.00% 36.36% 29.27% 22.22% 
Total 

Accuracy  =  82% 

 
Appendix B1. Confusion Matrix, Pond A21 2009. Classifications were reviewed to confirm their accuracy. Rows 

represent predicted classifications, while columns represent the actual classes of the samples 

 

  Reference Classes     

Map Classes Unclassified Vegetation Mudflat Water Row 
Total 

User’s 
Accuracy 

Commission 
Error 

Unclassified 38 0 0 0 38 100% 0% 
Vegetation 0 10 1 0 11 90.909% 9.090909% 

Mudflat 1 2 34 1 38 89.47368% 10.52632% 
Water 0 4 2 7 13 53.84615% 46.15385% 

Column Total 39 16 37 8    
Producer’s 
Accuracy 97.44% 62.50% 91.89% 87.50% Kappa 

Statistic = 0.83899297 
 

Omission Error 2.56% 37.50% 8.11% 12.50% Overall 
Accuracy = 89% 

 
Appendix B2. Confusion Matrix, Pond A21 2011. Classifications were reviewed to confirm their accuracy. Rows 

represent predicted classifications, while columns represent the actual classes of the samples 
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  Reference Classes      

Map Classes Unclassified Vegetation Mudflat Roads Water Row 
Total 

User’s 
Accuracy 

Commission 
Error 

Unclassified 35 0 0 0 0 35 100% 0% 
Vegetation 0 13 4 1 2 20 65% 35% 

Mudflat 1 2 27 1 0 31 87.09677% 12.90323% 
Roads 0 1 0 2 0 3 66.66667% 33.33333% 
Water 0 3 1 0 7 11 63.63636% 36.36364% 

Column 
Total 36 19 32 4 9    

Producer’s 
Accuracy 97.22% 68.42% 84.38% 50.00% 77.78% 

Kappa 
Statistic = 0.80941 

 
Omission 

Error 2.78% 31.58% 15.63% 50.00% 22.22% 
Overall 

Accuracy = 84% 

 

Appendix B3. Confusion Matrix, North Creek Marsh 2009. Classifications were reviewed to confirm their 

accuracy. Rows represent predicted classifications, while columns represent the actual classes of the samples 

 

  Reference Classes      
Map 

Classes Unclassified Vegetation Mudflat Roads Water Row 
Total 

User’s 
Accuracy 

Commission 
Error 

Unclassified 28 0 0 0 0 28 100.00% 0.00% 
Vegetation 0 18 1 0 1 20 90.00% 10.00% 

Mudflat 0 11 30 0 1 42 71.43% 28.57% 
Roads 0 0 0 2 1 3 66.67% 33.33% 
Water 0 2 0 0 5 7 71.43% 28.57% 

Column 
Total 

28 31 31 2 8    

Producer’s 
Accuracy 

100.00% 58.06% 96.77% 100.00% 62.50% Kappa 
Statistic = 0.764934 

 
Omission 

Error 
0.00% 41.94% 3.23% 0.00% 37.50% Overall 

Accuracy = 83.00% 
 

 

Appendix B4. Contingency Matrix, North Creek Marsh 2011. Classifications were reviewed to confirm their 

accuracy. Rows represent predicted classifications, while columns represent the actual classes of the samples 
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APPENDIX C: Annual Salinity Comparisons 

 

 
Appendix C1. Annual Salinity 2009- July 2011 Box and Whisker plot of salinity data in San Francisco Bay, taken 

from monitoring station 30 and 36. Data was downloaded from the United States Geological Survey San Francisco 

Water Quality database. Data for 2011 was only taken up to July because the 2011 imagery was collected in late 

June-early July in 2011.  

 

 
Appendix C2. Salinity 2009- July 2011 Line graph of the same salinity data of San Francisco Bay. Annual trends 

in salinity tended to be similar for both monitoring stations.    


