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ABSTRACT 

Climate change is predicted to negatively affect freshwater benthic macroinvertebrates as a result 

of temperature preferences. Recent warming temperatures and a persistent drought threaten the 

habitats of these species, which may result in changes in distribution and range. I randomly 

selected 174 sites and modeled the current and future distribution of Ephemeroptera, Trichoptera, 

and Plectopera species in California from 2000 to 2050 using publicly-available biomonitoring 

datasets from the California Environmental Data Exchange Network. Based on changes in EPT 

richness and genus-level tolerance values from a sampled site, I calculated the difference in 

biomonitoring metrics of benthic macroinvertebrate communities. I constructed species 

distribution models using four WorldClim’s projected annual climatic variables within MaxEnt. 

Overall, the models predicted general trends of decreasing species diversity and northward 

shifting towards cooler temperatures under projected climate change. Biomonitoring metrics, in 

terms of EPT richness and genus-level tolerance values, decreased in overall richness and 

reflected decreasing sensitivity to changing climatic conditions because tolerance values were 

higher. Despite the limitations and uncertainties involved in modeling, the projected changes in 

species distribution highlight the vulnerability of sensitive macroinvertebrates and the need to 

implement measures to protect freshwater resources against projected climate change. 
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INTRODUCTION 

 

Climate change is a global phenomenon that has impacted California especially through 

increasing average annual temperatures and irregular precipitation patterns.  Cal-Adapt estimates 

that California’s 2015 average temperature has increased 1.36% (a total of almost 1◦C) compared 

to historic 1960 average temperature (California Energy Commission, 2015) and predicts that 

California will experience an increase in frequency and magnitude of extreme warm 

temperatures from June to September. These changes in temperature and precipitation lead to 

multiple hot days in succession and a potential for longer durations of heat waves. Moreover, 

frequent heat waves can potentially lead to declines in precipitation events, depleting spring 

snowpacks and increasing summer dryness (Cayan et al. 2009). All these predicted scenarios 

explain the current California drought and endanger the quantity and quality of our freshwater 

systems. Thus, climate change severely threatens freshwater resources, reducing habitat 

availability, diversity, and available oxygen (Combes, 2003) – all of which affect many sensitive 

species, such as benthic macroinvertebrates. Therefore, with increasing temperatures, low 

precipitation, and threatened water resources, freshwater species benthic macroinvertebrates will 

be severely affected due to their temperature sensitivity.  

The presence of certain freshwater benthic macroinvertebrates towards physical and 

anthropogenic factors can reflect sensitivity to the conditions of their surrounding environments. 

For example, macroinvertebrate communities can indicate the presence of pollutants and the 

magnitude of pollution over time in a freshwater system (Mandaville, 2002). Using species to 

understand ecosystem health is known as biomonitoring, a method of surveying the environment 

by observing the presence, abundance, or behavior of an indicator (Bonada et al. 2006). Benthic 

macroinvertebrates are ideal indicators for biomonitoring as they vary greatly in life history and 

make up a diverse 39% of all freshwater species in California (Ball et al. 2013). Of the benthic 

macroinvertebrates, the three most sensitive orders are Ephemeroptera, Plectoptera, and 

Trichoptera (EPT). Families within these three orders have the lowest tolerance values to 

pollution (Mandaville, 2002). EPT species also represent a broad range of trophic levels in the 

food web, hence changes in their population and distribution will impact other species within the 

ecosystem (Bonada et al. 2006). These physical features make EPT species ideal indicators for 
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their freshwater environment, which we can census them to understand the conditions of 

freshwater systems and larger environmental systems.  

A majority of EPT species are expected to lose climatically suitable areas and experience 

decreases in population numbers, richness, and biodiversity. Past studies by Domisch et al. 

(2013) and Shah et al. (2015) incorporated the use of bioclimatic envelope models on EPT 

species in North America and projected that climatically suitable areas would shift on average 

1
○
N latitude after 2080 (Shah et al, 2015). Although species may gradually adapt, there will be a 

general decrease in general richness and biodiversity (Domisch et al, 2013). EPT species are 

especially temperature sensitive, as increasing temperatures lower hatching time and rates. For 

example, for only an increase in temperature by 0.20
○
C, the hatching success percentage for 

Ephemerella ignita, an Ephemeroptera species, dropped from 90% to 10% (Elliot, 1978). With 

EPT species shifting and disappearing in terms of diversity and abundance, the quality of our 

current freshwater biomonitoring metrics will be severely impacted. Although studies have 

examined EPT distributions in response to climate change, none have addressed the implications 

of macroinvertebrate community changes on biomonitoring metrics. It is critical to bridge this 

knowledge gap so we can project future changes in how we assess the health of our ecosystems 

for better freshwater management.  

This study aims to answer the central question: how will warming temperatures affect 

richness and tolerance of benthic macroinvertebrate communities in California. I examined the 

effects on current EPT species distribution, which in turn will suggest ways that our 

biomonitoring metrics will be impacted. Using past and present data, I will incorporate them into 

my species distribution model to determine potential outcomes of EPT species, to see if their 

populations will shift with future predicted temperatures. I hypothesized that: (1) EPT species 

diversity will decrease overall, (2) EPT species will shift northward where temperatures are 

cooler, (3) biomonitoring metrics (such as EPT richness and mean tolerance values) will decline 

in richness and sensitivity as less sensitive EPT species will be less affected by climate change 

and persist in replacement of more sensitive EPT species.  
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METHODS 

 

Benthic Macroinvertebrate Data 

 

 To obtain data for species distribution modeling, I downloaded information regarding the 

spatial locations of sampled EPT species from the California Environment Data Exchange 

Network (CEDEN) (http://ceden.waterboards.ca.gov/AdvancedQueryTool), under the Benthic 

Results Category. CEDEN is an online collaborative public data source, created by the State 

Water Resources Control Board to aggregate statewide surface water quality data in California. 

From CEDEN’s database, 70,927 individuals were collected from January 2000 to December 

2015. To build the database, I used R package ‘readr’ and ‘stringr’ data cleaning and vetting. I 

vetted data by deleting incomplete records to reduce potential errors. Relevant columns that 

contributed to my database included information regarding latitude, longitude, and final 

identifications to create a presence-absence dataset. Records without geographical coordinates 

and final identification were removed from the database.  For each of the Ephemeroptera, 

Trichoptera, and Plecoptera order, I categorized and accumulated presence data from 2000-2015, 

for a 15 year resolution into separate databases. This assumed that if EPT species have been 

found once in a site, they would be found in that same site preceding the following years for this 

15 year window. Through accumulating 15 years of species records, my databases amounted to a 

total of 30,699 Ephemeroptera points, 27,268 Trichoptera points, and 12,960 Plecoptera points 

within the California boundary. 

 

Climate Data 

 

 To observe and project California’s past, present, and future climatic conditions, I 

obtained tabular climate data from WorldClim (www.worldclim.org/). WorldClim is one of the 

most referenced and downloaded data source for obtaining current and predicted climatic raster 

data. I chose to represent climate change using four main environmental parameters: annual 

average temperature (◦C), annual minimum temperature (◦C), annual maximum temperature 

(◦C), and annual average sum of precipitation (mm). These parameters are the most commonly 

used, along with the 19 bioclimatic parameters (Shah et al, 2014). To represent current climatic 

http://ceden.waterboards.ca.gov/AdvancedQueryTool
http://www.worldclim.org/
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conditions, I downloaded 30-second resolution (~1km spatial resolution) ESRI grids for the 

climatic variables in addition to 19 bioclimatic data. For future data, I obtained 2050 annual 

climate data of the same four variables and bioclimatic variables. I selected 30-second resolution 

under the GFDL-CM3 with RCP-26 (Representative Concentration Pathways). This climate 

model was developed by the Geophysical Fluids Dynamic Laboratory (GFDL), has high climate 

sensitivity, and projects a 4.5◦C rise in annual temperature by 2070-2099 (Cal-Adapt, 2016).  

 

Species Distribution Modeling  

 

To build the species distribution models, I overlaid the previously collected specimen 

records using MaxEnt and R with environmental data. Maximum Entropy of Information 

(MaxEnt) is a species distribution modeling program, often used by government and non-

government organizations to map biodiversity and forecast distributions. MaxEnt assumes that 

the best approximation of the unknown distribution is the one that has uniform distribution, 

subjected to the constraints, agreeing with everything known and assuming little of the unknown. 

MaxEnt also assumes a pseudo-absence approach, using presence data and background 

environmental data of the entire area (Phillips et al. 2006). I ran all EPT genera under MaxEnt to 

observe percentage contribution of the four climatic variables representing climate change. 

Percentage contribution depicts variations of the degree of how the four climatic variables 

impacted each genus’s spatial distribution. This therefore leads to differently weighted climatic 

variables in the species distribution models. MaxEnt also generated ASCII maps depicting 

probabilities of each genus’ presence throughout California.  

Using MaxEnt to compare richness measures between current and future climatic 

conditions, I used predicted 2050 conditions into MaxEnt to generate future probabilities. 174 

sites were randomly chosen throughout California by creating random points through stratified 

sampling in ArcMap and recording the sampled sites (Appendix A). Three random points were 

generated within each county. To determine genus presence, I obtained binary values: 1 or 0 for 

each species that had a probability of 0.65 or higher appearing at the site. These were totaled for 

each site for current and future climatic conditions and compared to determine richness changes 

(e.g Figure 1) within each of the sampled sites. 
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Figure 1. MaxEnt generated probability of presence for E. Ameletus of current and future climatic conditions, with 

presence defined as 0.65 or above. Comparing 2015 to 2050 conditions, Ameletus experienced decreases in areas with a 

high probability of presence. Below is a binary comparison wherein white areas indicate areas with presence.  

 

Richness and Tolerance Value Analysis 

 

 To obtain a higher resolution of changes in shifts beyond order levels, I analyzed richness 

changes and geographical shifts at the genus level. Richness was plotted against rising latitudes 

for combined EPT, E, P, and T genera in both current and projected climate scenarios. To 

determine geographical shifts, current and future richness peaks were compared in terms of 
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latitude to visualize distribution changes. In addition to latitude, richness throughout 

hydrological unit code (HUC) watershed boundaries were also compared. HUC boundaries were 

developed by the US Geological Survey to determine drainage areas of a major river, closed 

basins, and combined watersheds (USGS, 2015). This depicts hydrological networks joined 

together or within close proximity to each other, representing habitat regions for EPT species. 

Besides richness, another important biomonitoring metric is the Hilsenhoff Biotic Index which 

estimates the overall tolerance of the community in a sampled area, weighted by the relative 

abundance of each taxonomic group (SAFIT, 2008). Given tolerance values for each genus, with 

0 representing very sensitive taxa and 5 or higher representing more tolerant taxa, the mean 

tolerance value for each of the 174 sampled sites was calculated for both current and future 

climatic conditions. Mean tolerance values were also plotted against latitude to observe changes 

in site sensitivity and species tolerance with different climatic conditions.  

 

RESULTS 

 

Model Performance  

 

Model performance was generally high with an average true statistical skill of 0.562, 

indicating a model performance closer to +1 than 0 (random performance) (Allouche, 2006). In 

terms of EPT breakdown, the total percentages of Ephemeroptera, Plecoptera, and Trichoptera 

species were 43.3%, 18.3%, and 38.4% respectively, of the total observations. Within three 

orders, I ran each genus under MaxEnt to obtain the percentage of climatic variable importance 

in determining species distribution in California. This high model performance thus enabled me 

to include the three benthic macroinvertebrate orders in my analyses and allowed for accurate 

predictions of changes in biomonitoring metrics. 

Individual Taxa 

Current Latitudinal Patterns  

After inputting WorldClim data for 2015 climatic variables into MaxEnt to represent 

current climatic conditions, MaxEnt generated percentages of which climatic variable 
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contributed the most during the modeling process. I repeated this procedure for each EPT genus 

(Figure 2). Overall, precipitation was the most defining climatic feature that heavily correlated 

with EPT presence, contributing approximately 64±15%. The least defining climatic feature was 

maximum annual temperature (9±13%) (Figure 2). Within each individual order, each genus had 

varying percent contributions for the four climatic variables. In all genus cases, precipitation had 

the highest standard deviation from the average percent contribution. Appendix B contains a 

complete list of all climatic variable importance for each genus.  

  

  

 

Figure 2. Percentage Contributions of Climatic Variables for Combined and Individual Ephemeroptera, Plecoptera, and 

Trichoptera Genus. For all EPT taxa, precipitation is the most important climatic variable when determining how species are 

affected by changing climates. Average percent contribution for precipitation, bioclim variables, minimum, and maximum 

temperature, are combined EPT (64±15, 13±12, 13±12, 9±13), Ephemeroptera (69±12, 11±10, 11±10, 9±10), Plecoptera (66±18, 

11±13, 14±16, 9±11), and Trichoptera (60±14, 17±12, 13±11, 10±15, respectively.  
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Alongside percent contributions, MaxEnt also generated raster files depicting a logistic 

estimate between 0 and 1 of the probability of species presence. The probability of presence uses 

the inputted species sample points along with climatic variables to interpolate across the entire 

California study site. The logistic output estimates presence probability assuming that sampling 

design is such that typical presence localities are attributed with 0.5 presence probability. In my 

model and richness calculations, I defined species presence if the probability was greater than or 

equal to 0.65 at sample sites.  

Combined EPT genera richness showed a quadratic pattern across the latitudinal range of 

California (Figure 3). Richness peaks for combined EPT taxa peaked at 36.2 ± 8◦N, including: 

Ephemeroptera (36.7 ± 1.5◦N), Plecoptera (35.7 ± 2◦N), and Trichoptera (36.5 ± 4◦N). 

Comparing to the quadratic trends of Plecoptera and Trichoptera genera, Ephemeroptera’s 

increase and decrease in genus richness along rising latitude is relatively more linear. There is 

correspondingly, a smaller standard deviation.  
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Figure 3. Spatial Patterns of genus richness for combined Ephemeroptera, Plecoptera, and Trichoptera (EPT). The best fit 

trendline (quadratic) is presented. All graphs depict a peak in richness around 36◦N latitudes. Combined EPT (R
2
 = 0.69), 

Ephemeroptera (R
2
 = 0.18), Plecoptera (R

2
 = 0.66), Trichoptera (R

2
 = 0.59).  

 

Future Predicted Latitudinal Patterns 

When comparing richness measures of current and future climatic conditions against 

latitudes, there is a decreased richness for all of E, P, T, and combined EPT genera. In terms of 

future conditions, combined EPT genera richness showed a quadratic pattern across the 

latitudinal range of California (Figure 4). Richness peaks for combined EPT taxa peaked at 37.9 

± 5◦N, including: Ephemeroptera (36.9 ± 2.2◦N), Plecoptera (37.1 ± 1.5◦N), and Trichoptera 

(37.3 ± 2.6◦N). The overall trend depicts a northward shift on average by 1.025◦N (112km) 

(Table 1).  

 

Table 1. Comparing current and future richness peaks of E, P, and T genera with respect to changing 

climates. All E, P, and T as well as combined EPT displayed a northward shift.  

 Ephemeroptera 

Genus 

Plecoptera 

Genus 

Trichoptera 

Genus 

Combined EPT 

Genus 

Current Richness Peak 36.7◦N 35.7◦N 36.5◦N 36.2◦N 

Future Richness Peak 36.9◦N 37.1◦N 37.3◦N 37.9◦N 

Latitudinal Difference + 0.2◦N + 1.4◦N + 0.8◦N + 1.7◦N 
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Figure 4. Comparison of Current and Future Spatial Patterns of genus richness for combined Ephemeroptera, Plecoptera, 

and Trichoptera (EPT) . The best fit trendline (quadratic) is presented. All graphs depict a peak in richness around 37◦N 

latitudes. Combined EPT (R
2
 = 0.49), Ephemeroptera (R

2
 = 0.51), Plecoptera (R

2
 = 0.47), Trichoptera (R

2
 = 0.39).  
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Besides declines in richness, the abundance of E, P, and T genera also experienced severe 

declines in counts throughout the 174 sampled sites. E, P, and T genera experienced count 

percentage declines by 82.9%, 87.0%, and 78.6% respectively comparing 2015 to 2050 

conditions (Figure 5). Amongst the Ephemeroptera order, 19.4% of genera disappeared. For 

Plecoptera, 27.1% genera disappeared, and Trichoptera had 10.9% genera that disappeared. In 

total, of the 112 different genera, 24 experienced a 100% decline in counts. Besides the genera 

that disappeared amongst the sampled sites, the five genera with the greatest decrease in richness 

were: Caudatella (-99.0%), Agraylea (-97.2%), Nectopsyche (-96.8%), Neothremma (-96.3%), 

and Cinygmula (-95.1%). The five genera that were least affected were: Ceratopsyche (+100%, 

doubling in numbers), Zapada (+33.3%), Perlinodes (0%, with no change), Psychoglypha (-

16.7%), and Pedomoecus (-33.3%). Comparing the three orders, Trichoptera genera have the 

greatest range of percent changes in counts with three genera experiencing the most declines in 

richness and three genera with the least declines in richness. A further comparison of the top 10 

genera with the greatest and lowest richness change is found in Appendix C.  

 

 

Figure 5. Average E, P, and T genera richness and percent changes in richness for current and future 

climatic conditions. Overall genera counts all experienced severe declines in counts through the 174 sampled sites 

throughout California. Plecoptera genera experienced the greatest decline in counts, while Trichoptera genera was 

least affected.  

 

Biotic Indices and Tolerance Values 
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Given the environmental sensitivity of E, P, and T taxa, tolerance values have been 

attributed to each individual genus to be used in biotic indices that will represent freshwater 

system health. Geographically, overall EPT richness declined within all HUC watershed 

boundaries for future climatic conditions (Figure 6). Areas throughout the North, East, and South 

regions of California had richness of 4 or less, based on richness values collected at the 174 

sampled sites. By 2050, only two hydrological watershed boundaries had richness between 31-83 

– both regions are located in next to the San Francisco Bay. This area is more diverse given the 

dense freshwater runoff network, or as a result of oversampling.  

 

  

 

Figure 6. Sum of EPT genera richness in hydrological unit code watershed boundaries (HUC) for current and 

future climatic conditions. Amongst the 174 sampled sites, the sum of each site were added within each HUC 

boundary to determine richness with respect to watershed boundaries. Future conditions display high richness 

decreases with each HUC boundary being negatively impacted by worsening climate change.  

 

Comparing current to projected climatic conditions, average mean tolerance values were 

2.44 and 4.26, respectively. The mean tolerance value for 2050 was significantly higher than that 

of 2015 for all the sites, on average reflecting a 74.4% increase in tolerance, represented by a 

latitudinal gradient throughout California (Figure 7). Not only were mean tolerance values higher 

in future conditions, the highest values occurred in mid-latitude regions (35.9◦N to 37.8◦N), 

which were also regions with the greatest EPT genera richness. There was also a greater standard 
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deviation of mean tolerance values for 2050 conditions (1.63SD) as compared to 2015 conditions 

(0.47SD), reflecting a greater range of site sensitivity. 

 

 

Figure 7. A comparison of current and future mean tolerance values in different sites, by increasing latitudes. 

Current 2015 show a lower mean tolerance value throughout a latitudinal gradient as compared to 2050 mean 

tolerance values. In 2050 climatic conditions, mean tolerance values from 36◦N to 37◦N are highest.  

 

 

DISCUSSION 

 

Developing species distribution models is a critical step to predicting how climate change 

may shift biomonitoring metrics and our ability to assess freshwater quality in California. Based 

on the results of the EPT species distribution models and comparisons to the change in 

biomonitoring metrics, climate change negatively affects EPT genera in California in terms of 

their distribution and trends in species diversity. Biomonitoring metrics reflect decreases in 

richness metrics and increases in mean tolerance values over time with warming temperatures. 

Therefore, this study emphasizes the necessity for environmental managers to adopt conservation 
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strategies that will mitigate the effects of climate change on freshwater biological indicators and 

overall ecosystem health.  

 

Genera Richness Trends and Patterns 

 

EPT richness decreased for most future modeled sites in California. Current distributions 

estimate richness peaks in mid-temperature regions where a range of climatically suitable 

habitats benefit various kinds of freshwater taxa (Heino, 2009). Similar studies by Vinson and 

Hawkins (2003) found genus-level richness peaks at 40
○
N, which is higher in latitude than the 

richness peaks seen in California. This latitude difference may be due to their focus on local 

richness data and a global-scale analysis. EPT richness measures in California peaked between 

36.2
○
N and 37.8

○
N, and then decreased with rising latitudes. This peak is explained 

geographically by the lakes, streams, and rivers present around this region, such as the Tulare-

Buena Vista Lakes, San Francisco Bay, Salinas, Panoche-San Luis Reservoir, San Joaquin Delta 

and many others. Besides HUC boundaries with plentiful stream networks, elevation within these 

areas is also relatively high, spanning from 1800 to 12000 feet above sea level. This maximum 

elevation reflects the mountainous terrain and height on the east side of California. Furthermore, 

snow packs are located in regions with high elevation, and serve as major freshwater resources 

throughout the summer months.  

Although Ephemeroptera species trends were not as strongly observed in current 2015 

conditions as compared to that of Plecoptera and Trichoptera species, the latitudinal trends for 

Trichoptera species were not as consistent in future conditions. Trichoptera species are therefore 

shown to decline in richness to latitude trends as seen in the other two orders for projected 

conditions. A similar trend for respective E, P, and T species has been observed by Pearson and 

Boyero (2009) in their study of gradients in regional diversity of freshwater taxa.  

Although past literature show that genera richness peaks are higher in latitude than that of 

this study’s models, past literature by Shah et al. (2015) regarding northward shifts of EPT taxa 

distributions supports my models. Both Shah et al’s (2015) study on species distributional 

richness in North America and this model for California project E, P, and T species to shift 

northward on average by 1
○
N latitude. This shift is towards cooler regions is slow as 

macroinvertebrate species are constrained by their dependence on hydrological networks. The 
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ability to migrate to higher latitudes and elevation levels will be difficult to overcome given 

fragmented ecosystems as a result of human activities. Areas with high anthropogenic stressors, 

such as landuse changes, will lead to poor water quality and restrict EPT species’ dispersal 

capacity (Rife et al. 2004).  

Comparing current trends to future predicted trends, there is a strong decline in generic 

richness for combined EPT, and within individual orders. Warming temperatures and decreasing 

levels of precipitation impose habitat constraints in terms of temperature, food, and water 

quality. By 2050, California is predicted to experience higher temperatures and declining snow 

packs by 1.5% and 25%, respectively (Cal-Adapt, 2016), factors which limit climate suitable 

areas for EPT genera. Based on the models, only 1.7% of EPT genera benefit from warming 

temperatures as more potential habitats arise from melting ice to form freshwater streams. 

Specifically, these genera are Zapada and Ceratopsyche, with a 33% and 100% increase in 

counts, respectively, amongst sampled sites. Furthermore, predicted climate change effects are 

projected to be most severe for Plecoptera species which is supported by other studies (e.g. 

Hering et al. 2009). This makes sense, given that Plecoptera genera have an overall lower 

tolerance value of 1.31 ± 0.8, compared to Ephemeroptera (3.21 ± 2.4) and Trichoptera (2.21 ± 

2.2). Overall, 97.3% of genera exhibit detrimental losses with climate change. 

 

Biotic Indices and Tolerance Values 

 

 Using the assigned tolerance values for each genus to compare mean tolerance values 

throughout all sampled sites, 2050 projections depict mean tolerance values to be higher than 

2015 current conditions. Taxa with higher tolerance values are shown to persist in sites despite 

warming temperatures and decreasing precipitation rates, due to their ability to withstand 

climatic changes. Taxa with lower tolerance values disappear in numbers or altogether. 

Therefore, mean tolerance values for each site appear higher in future conditions, especially 

around 36 to 37◦N. This shift in mean tolerance values suggests species with higher tolerance are 

possibly perpetuating at higher rates than species with lower tolerance, especially in mid-

latitudes, where richness is higher. Not only are species with higher tolerance persisting, the 

sampled sites throughout California have also decreased in sensitivity, and are shown to be more 
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negatively impacted by changing climates. In particularly, mid-latitudes with higher richness 

measures and mean tolerance values are projected to become more sensitive.  

 

Limitations and Challenges 

 

Using MaxEnt, I visually displayed and quantified the magnitude of potential losses and 

gains of EPT genera under a climate change scenario. Nevertheless, several limitations exist in 

my data collection, models, and biomonitoring analysis. First, the use of species at the genus 

level assumes that all species within each genus will have similar niches and responses to climate 

changes in the future. Species within a genus may have large ranges that have been discounted 

and overgeneralized (Araujo et al, 2006). However, because I used biomonitoring data, I 

modeled using the best-available taxonomic resolution for larval aquatic insects at the genus 

level. Most importantly, species may disappear due to their inability to disperse. Second, when 

assembling data, I used current climatic conditions and species sampling from 2000-2015 which 

assumes that past species and climate temperatures have accumulated over time. Third, all data 

were treated with equal weight, which might have sampling bias, errors, and differences in data 

collection method. Fourth, model sensitivity should have been tested by running different 

climatic scenarios. Tests should incorporate varying different combinations of input for optimal 

conditions for model generation. This can be done by running different climate change 

projections, or varying environmental parameters ± 10%. Finally, when determining quality and 

changes of biomonitoring metrics, a large limitation exists in my treatment of models as 

expected future scenarios. This assumption may not be true given that my models could have 

errors within. Deviations from metrics may be over or underestimated.  

 

Future Directions 

 

 Further analyses of freshwater invertebrate orders and genera outside of E, P, and T can 

further expand on how climate change affects multiple freshwater taxa.  For instance, Diptera 

genera could be a critical order to analyze as a less-temperature and less-pollution sensitive 

insect group. These results can then be compared to the results generated from EPT genera to see 

if temperature and pollution sensitivity is truly affected by climate change. Further studies on 
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other benthic macroinvertebrate taxa will provide more insight to different biomonitoring 

metrics. Furthermore, when building species distribution models, besides only using MaxEnt and 

R, I can attempt to generate other models using bioclimatic envelope models, classification and 

regression trees. These models can then be all tested for performance using TSS to compare 

which models are best representative of reality. To expand my research, models can be 

generated, analyzing more orders to obtain a larger amount of data for further comparisons.   

Moreover, this research aims to go beyond species distribution modeling of EPT genera 

in California, by looking at how SDM projects future biomonitoring metric changes. These 

models allows for better interpretation of how biomonitoring metric changes will lead to water 

quality changes. This research also only points out how climate change will affect biomonitoring 

metrics but does not provide methods or solutions that can improve the application of these 

metrics. Further directions will be to mathematically and statistically create new equations that 

will factor in climate change. These equations will either replace or build upon pre-existing 

biomonitoring metric equations to make them resistant to decreasing species richness and 

abundance with increasing climate change. Another approach will be to recognize percentage 

change in errors and simply account for a standardized error.  

 

Conclusions and Broader Implications 

 

 From generating EPT species distribution models, richness and tolerance displayed both 

spatial trends and negative impacts as a result of climate change. By analyzing trends on a 

smaller local scale, I discovered that EPT genera and the biomonitoring metrics associated with 

them reflected reduced habitat quality with increasing climate change. Although each specific 

genus exhibited different trends, the patterns of loss remained consistent under future climate 

scenarios, with a 1.025◦N northward shift by 2050. Although future climatic conditions are a 

good indicator for EPT genera responses, other variables such as urbanization and habitat 

fragmentation may increase over time and further threaten freshwater systems. Consequently, 

freshwater management efforts will be required to mitigate climate change. As biomonitoring 

metrics are a current standard for interpreting freshwater quality, environmental managers will 

need to adopt conservation strategies that will protect our threatened freshwater resources. In the 
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larger ecological context, my research addresses the need for better, improved freshwater quality 

management that will be resistant to climate change as we adjust to the new normal.  
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APPENDIX A: The 174 Stratified Sampled Sites in California 

 

 

Figure A. 174 sampled sites throughout California, generated through stratified sampling in ArcMap 10.3. 

Each county has been designated 3 sampled sites, and geographical coordinates are recorded. 
 

APPENDIX B: EPT Genus Climatic Variable Percentage Contributions 

Ephemeroptera 
Genus 

Precipitation 
(%) 

Average 
Temperature (%) 

Minimum 
Temperature (%) 

Maximum 
Temperature (%) 

Acentrella 93.5 3.2 2.5 0.8 

Ameletus 61.7 14.1 16.8 7.4 

Attenella 89.7 7.9 2.4 0 

Baetis 72.4 3.9 15.6 8.1 

Caenis 69.8 17.6 2.2 10.4 

Callibaetis 70.6 22 1.1 6.3 

Caudatella 79.1 0 20.9 0 

Centroptilum 62.5 19.6 14 3.9 

Choroterpes 81.9 0 0.3 17.7 

Cinygma 64.8 7.6 8.6 18.9 

Cinygmula 59.1 20.5 14.2 6.1 

Diphetor 63.9 18 15.1 3 

Drunella 67.4 8.2 17.5 6.9 

Ecdyonurus 61.6 0 25.7 12.7 

Epeorus 69.2 12.7 14.1 4 
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Ephemerella 60.7 19.6 17.3 2.4 

Fallceon 64.8 19.3 10.1 5.8 

Heptagenia 83.7 0 0 16.3 

Homoleptohyphes 75.7 3 0 21.4 

Ironodes 56.5 11.4 19.7 12.3 

Leucrocuta 48.6 0 0 51.4 

Matriella 65.9 11.9 15.6 6.6 

Nixe 65.3 0 34 0.7 

Paracloeodes 74.7 0 0.7 24.5 

Paraleptophlebia 64.8 10.4 16.2 8.5 

Procloeon 100 0 0 0 

Rhithrogena 60.5 17.8 10.8 11 

Serratella 78.3 12.5 8.4 0.8 

Siphlonurus 52.7 47.3 0 0 

Timpanoga 66.6 0 33.4 0 

Tricorythodes 62.9 17.7 9 10.5 

Average 
Contribution 

 
69.3 

 
10.5 

 
11.2 

 
9.0 

 

Figure B1. The percent contributions of climatic variables for different Ephemeroptera genera found in 

California, generated by MaxEnt using data from California Environment Data Exchange Network. 32 

different Ephemeroptera genera were inputted into MaxEnt alongside 2013 climatic conditions to determine 

percentage contributions for each. Presence data here has been accumulated from 2000 to 2015. Despite differences, 

the average percentage contribution depicts that precipitation plays the largest role, followed by minimum annual 

temperature, then mean temperature and finally maximum temperature.  

 

Plecoptera Genus Precipitation 
(%) 

Average 
Temperature (%) 

Minimum 
Temperature (%) 

Maximum 
Temperature (%) 

Baumannella 61.9 1.6 25.1 11.4 

Bisancora 55.7 0 25.2 19.1 

Calineuria 54.9 21.2 18 5.9 

Capnia 100 0 0 0 

Claassenia 77.9 0 22.1 0 

Cultus 61.2 24 14.8 0 

Despaxia 43.5 12.4 23.6 20.5 

Doroneuria 35.3 6.1 51.4 7.1 

Eucapnopsis 38.1 0 56.8 5.1 

Frisonia 36.5 49 13.7 0.8 

Haploperla 53.5 26.7 18.4 1.4 

Hesperoperla 97 0 3 0 

Isoperla 73.6 13.1 8.2 5.1 

Kogotus 67.7 0 0.5 31.8 

Malenka 62.8 7.7 18.9 10.7 

Megarcys 73 0 0 27 
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Mesocapnia 62.6 0 0 37.4 

Moselia 76.5 1.6 5.1 16.8 

Oroperla 36.6 0.3 59.6 3.4 

Paraleuctra 67.5 0 0 32.5 

Paraperla 47.2 3.4 25.4 24 

Perlinodes 77.1 17.4 0.1 5.4 

Prostoia 56.8 43.2 0 0 

Pteronarcella 84.1 0 15.9 0 

Pteronarcys 87.1 3.5 3.6 5.8 

Sierraperla 98.4 0 1.6 0 

Skwala 42.6 41 16.4 0 

Soliperla 92.5 4.3 0 3.1 

Soyedina 67.3 15.2 5.9 11.7 

Suwallia 57.7 21.7 17.3 3.3 

Sweltsa 64.3 9.6 14.1 12 

Taenionema 72 11.3 9 7.7 

Visoka 69.1 10.1 10.9 9.9 

Yoraperla 65.9 26.9 6.7 0.5 

Zapada 79.9 14.9 2.5 2.6 

Average 
Contribution 

 
65.7 

 
11.0 

 
14.1 

 
9.2 

 

Figure B2. The percent contributions of climatic variables for different Plecoptera genera found in 

California, generated by MaxEnt using data from California Environment Data Exchange Network. 36 

different Plecoptera genera were inputted into MaxEnt. Average percentage contribution depicts that precipitation 

plays the largest role, followed by minimum, mean, and maximum temperature, respectively. 

Trichoptera Genus Precipitation 
(%) 

Average 
Temperature (%) 

Minimum 
Temperature (%) 

Maximum 
Temperature (%) 

Agapetus 60.7 15.5 15.7 8.2 

Agraylea 47.5 37.7 0 14.7 

Allocosmoecus 57.1 42.9 0 0 

Amniocentrus 58.1 11.5 17.1 13.4 

Anagapetus 68.7 27.7 2 1.5 

Apatiania 55.9 32.3 9.6 2.2 

Arctopsyche 49.3 20.2 16.7 13.8 

Brachycentrus 61.9 15.4 22.7 0 

Ceratopsyche 44.6 52.1 3.3 0 

Cheumatopsyche 61.6 15.4 3.2 19.8 

Chyranda 58.1 0 41.9 0 

Cryptochia 70.6 29.3 0 0.1 

Culoptila 100 0 0 0 

Dicosmoecus 56.7 10.2 33.1 0 

Dolophilodes 79.8 17.4 0 2.7 

Ecclisomyia 58.9 29.8 7.7 3.6 
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Glossosoma 61.7 17.5 9.1 11.8 

Gumaga 48.5 27.6 18.8 5 

Helicopsyche 56.8 23.4 16.8 3 

Heteroplectron 43.1 16.6 23.7 16.6 

Hydropsyche 65.2 16.7 11.7 6.3 

Hydroptila 74.2 10.7 9.2 5.9 

Ithytrichia 69.8 19.7 8.2 2.4 

Lepidostoma 66.3 14.3 14.7 4.7 

Marilia 66.2 0 0.2 33.6 

Micrasema 68 13.2 14.4 4.4 

Mystacides 57.2 28.6 11.1 3.1 

Nectopsyche 76.2 0 2 21.8 

Neophylax 58.5 2 21.8 17.8 

Neothremma 65.4 1.2 14.7 18.7 

Neotrichia 56.1 20.9 2.7 20.4 

Ochotrichia 67.8 19.6 7.5 5 

Oecetis 66.1 18.3 3.6 12 

Oligophlebodes 54 0 44.9 1.2 

Onocosmoecus 71.7 21.5 5.1 1.8 

Oxyethira 65.4 11.6 16.8 6.3 

Parapsyche 42.1 23.8 31.7 2.4 

Parthina 34.8 30.2 27.6 7.4 

Pedomoecus 60 25.5 13 1.4 

Polycentropus 52 12.9 25.6 9.4 

Protoptila 79.2 0 16.9 4 

Psychoglypha 73.7 8.9 5.5 12 

Rhyacophila 58.5 10 21.1 10.2 

Stactobiella 0 0 0 100 

Tinodes 60.2 24.8 4.3 10.8 

Wormaldia 60.8 17.6 14.3 7.3 

Average 
Contribution 

 
60.2 

 
17.3 

 
12.8 

 
9.7 

 

Figure B3. The percent contributions of climatic variables for different Trichoptera genera found in 

California, generated by MaxEnt using data from California Environment Data Exchange Network. 46 

different Trichoptera genera were inputted into MaxEnt alongside 2013 climatic conditions to determine percentage 

contributions for each. Unlike Ephemeroptera and Plecoptera, Trichoptera genera on average is most influenced by 

precipitation, followed by mean, minimum, and maximum temperature respectively.  
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APPENDIX C: EPT Genera Counts and Corresponding Tolerance Values 

Order. Genus Tolerance Value Current Count Future Count Percentage Change (%) 

E. Attenella 2 99 0 -100 

E. Heptagenia 4 88 0 -100 

E. Leucrocuta 1 81 0 -100 

E. Nixe 2 6 0 -100 

E. Siphlonurus 7 6 0 -100 

E. Timpanoga 7 11 0 -100 

E. Caudatella 1 99 1 -99 

E. Cinygmula 4 41 2 -95 

E. Procloeon 4 80 5 -94 

E. Ameletus 0 48 4 -92 

E. Ironodes 3 49 5 -90 

E. Epeorus 0 52 6 -88 

E. Diphetor 5 46 6 -87 

E. Matriella -- 42 6 -86 

E. Choroterpes 2 32 5 -84 

E. Cinygma 2 6 1 -83 

E. Rhithrogena 0 6 1 -83 

E. Drunella 0 52 9 -83 

E. Centroptilum 2 80 15 -81 

E. Serratella 2 56 11 -80 

E. Ephemerella 1 42 9 -79 

E. Homoleptohyphes 4 85 21 -75 

E. Paraleptophlebia 4 45 14 -69 
E. Baetis 5 49 16 -67 

E. Callibaetis 9 70 23 -67 

E. Tricorythodes -- 54 19 -65 

E. Ecdyonurus -- 41 15 -63 

E. Acentrella 4 8 3 -63 

E. Caenis 7 51 20 -61 

E. Fallceon 4 52 27 -48 

 E. Paracloeodes 4 16 10 -38 

P. Baumannella 2 18 0 -100 

P. Claassenia 3 3 0 -100 

P. Doroneuria 1 3 0 -100 

P. Frisonia 2 3 0 -100 

P. Haploperla 1 4 0 -100 

P. Megarcys 2 4 0 -100 

P. Oroperla 2 3 0 -100 

P. Prostoia 2 6 0 -100 

P. Pteronarcella 0 14 0 -100 
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P. Sierraperla 1 102 0 -100 

P. Skwala 2 4 0 -100 

P. Soliperla 1 99 0 -100 

P. Soyedina 2 5 0 -100 

P. Despaxia 0 34 2 -94 

P. Sweltsa 1 46 3 -93 

P. Suwallia 1 30 2 -93 

P. Paraperla 0 43 3 -93 

P. Calineuria 2 48 5 -90 

P. Mesocapnia 1 75 10 -87 

P. Bisancora 1 12 2 -83 

P. Hesperoperla 2 6 1 -83 

P. Kogotus 2 6 1 -83 

P. Visoka 0 6 1 -83 

P. Capnia 1 69 13 -81 

P. Eucapnopsis 1 4 1 -75 

P. Paraleuctra 0 7 2 -71 

P. Malenka 2 48 14 -71 

P. Isoperla 2 48 15 -69 

P. Cultus 2 6 2 -67 

P. Pteronarcys 0 9 3 -67 

P. Yoraperla 1 6 2 -67 

P. Taenionema 2 49 17 -65 

P. Moselia 0 8 3 -63 

P. Perlinodes 2 2 2 0 

P. Zapada 2 3 4 33 

T. Brachycentrus 1 79 0 -100 

T. Dicosmoecus 1 4 0 -100 

T. Neotrichia 4 66 0 -100 

T. Protoptila 1 13 0 -100 

T. Stactobiella 4 6 0 -100 

T. Agraylea 8 71 2 -97 

T. Nectopsyche 3 156 5 -97 

T. Neothremma 0 27 1 -96 

T. Culoptila 2 71 7 -90 

T. Parapsyche 0 48 5 -90 

T. Heteroplectron 1 40 5 -88 

 T. Onocosmoecus 1 30 4 -87 

T. Neophylax 3 44 6 -86 

T. Cryptochia 0 7 1 -86 

T. Mystacides 4 55 8 -85 

T. Chyranda 1 11 2 -82 

T. Apatiania -- 5 1 -80 
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T. Oligophlebodes 0 5 1 -80 

T. Parthina 0 15 3 -80 

T. Arctopsyche 1 37 8 -78 

T. Amniocentrus -- 45 10 -78 

T. Ithytrichia 6 54 13 -76 

  T. Rhyacophila 0 53 13 -75 

T. Ochotrichia -- 71 18 -75 

T. Micrasema 1 51 13 -75 

T. Oecetis 8 72 19 -74 

T. Helicopsyche 3 51 14 -73 

T. Marilia 0 64 19 -70 

T. Dolophilodes 2 10 3 -70 

T. Wormaldia 3 50 15 -70 

T. Lepidostoma 1 46 14 -70 

T. Agapetus 0 53 17 -68 

T. Hydroptila 6 62 20 -68 

T. Hydropsyche 4 53 18 -66 

T. Cheumatopsyche 5 70 24 -66 
T. Oxyethira 3 62 22 -65 

T. Polycentropus 6 50 18 -64 

T. Gumaga 3 41 17 -59 

T. Tinodes 2 41 20 -51 

T. Allocosmoecus 0 6 3 -50 

T. Anagapetus 0 2 1 -50 

T. Ecclisomyia 2 4 2 -50 

T. Glossosoma 1 6 4 -33 

T. Pedomoecus 0 3 2 -33 

T. Psychoglypha 2 6 5 -17 

T. Ceratopsyche -- 3 6 100 

 

Figure C. Genera Counts and Tolerance Values for each individual E, P, and T genus comparing current to 

future climatic conditions. Within each order, genera were ordered based on an ascending percentage change in 

counts.  

 


