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Climate Change and Respiratory Risk in California’s San Joaquin Valley 
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ABSTRACT 

This study was conducted to inform how projected climate changes in the San Joaquin Valley 
(SJV) may affect public health by investigating the relationship between air pollution, temperature 
and asthma related hospitalization rates (ARHR). If a strong association exists between days of 
high temperature, high ozone concentrations and ARHR, this would link projected climate changes 
in SJV to asthma attacks. In this aim, I completed the following tasks. I built a Geodatabase in 
ArcGIS by collecting secondary data on ARHR, ozone, nitrogen oxides (NOx), temperature, and 
particulate matter 2.5 and 10 (PM 2.5, PM 10), which was used as a platform for the analysis. I 
determined the strength of association between temperature, air pollution and ARHR by comparing 
the resulting R2 values from geographically weighted regression (GWR) and linear regression 
analysis looking at both the local variance and global relationships. I found that a combination of 
PM 2.5 and PM 10 resulted in the optimal explanatory model for ARHR in SJV (R2 value of 
0.7666). I determined that projected temperature rise coupled with high ozone concentrations do 
not indicate an imposing hazard in SJV by directly causing asthma attacks. However, the 
relationship between temperature, air pollution and ARHR is unclear so projected climate changes 
are still a concern. Further, by building an optimal explanatory regression model, identifying what 
air pollutants are of most concern for populations with asthma, counties in the SJV can efficiently 
allocate resources to alleviate the risk air pollution poses for asthma sufferers. 

 

 

KEYWORDS 
 

climate penalty, temperature, air pollution, asthma, San Joaquin Valley 

 

 

 

 



Timothy N. Urso                  Air Pollution and Asthma SJV                                                  Spring 2016 

	
INTRODUCTION 

The San Joaquin Valley (SJV) is well known for having poor air quality in concurrence 

with extreme high temperatures. Here, pollution from agricultural, vehicular and industrial 

emissions becomes stagnant. Air pollution is trapped in the valley by an inversion layer that forms 

as a response to high temperatures; warm air rises and traps the cooler air beneath this inversion 

layer inhibiting pollution from leaving the valley. The pollution is so extreme that seven of the 

Valley’s eight counties were included in the American Lung Associations 10 most ozone polluted 

counties in the nation in 2016 (State of the Air 2016). Kern County resides at the southern end of 

the SJV and is known for having the highest rates of asthma in the state and the third highest in 

the nation; it is estimated that 111,000 adults and children have asthma in the county (Schwartz 

and Pepper 2009, Milet et al. 2007). On average, from 2002 through 2004, each person in the 

Valley was exposed to unhealthy levels of ozone on 70 days a year, and in 2001 the city exceeded 

federal health standards for ozone for 109 days reaching a maximum level of 0.120 parts per 

million (ppm) (Hall et al. 2008; Meng et al. 2010). What temperatures were observed at these 

times, and how the catalytic relationship between temperature and ozone formation affected ozone 

concentrations remain unknown. 

Complex interactions between temperature, ozone concentrations and asthma threaten to 

worsen the risk of asthma attacks and hospitalizations in Kern County. Extreme temperatures and 

heat waves affect asthmatics by acting as an environmental trigger of asthma attacks (Cody et al. 

1992). Similarly, while ozone has not been found to cause asthma, it can trigger asthma attacks 

and hospitalizations by causing irritation to airways and lung tissues (Cody et al. 1992). Increased 

atmospheric concentrations of ozone along with nitrogen dioxide have been linked to increases in 

respiratory morbidity and in hospital admissions for asthma in children and adults (D'Amato et al. 

2011; Meng et al. 2010). However, the relationship between ozone and asthma is complex and 

some studies have found that ozone pollution acts as a protecting factor when compared to hospital 

admissions – thereby demonstrating an inverse relationship between these variables (Bates et al. 

1987). How these two variables together effect asthma attacks have not been investigated in detail. 

With two environmental triggers of asthma occurring simultaneously, asthma attacks might be 

increasingly exacerbated. Due to the EPA restrictions on emissions, ozone pollution along with 

NOX, PM 2.5 and PM 10 has been decreasing at a slow but relatively constant rate across the 
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United States, and this trend is consistent with observation in Kern County (United States 

Environmental Protection Agency 2012). Efforts to control precursor emissions of ozone have 

been successful in Kern County but with projected temperature rises within the next century, 

another gap is observed in understanding how a climate penalty of increased ozone concentrations 

will influence air quality despite these control efforts. 

Temperature catalyzes the formation of ozone, and a positive correlation between these 

variables is well established. Sources of NOX and volatile organic compounds (VOCs) are vehicle 

exhaust and industrial emissions, gasoline vapors, and chemical solvents (Bell et al. 2013). Heat 

reacts with NOX and VOCs causing ozone to peak at times of the day when emissions spike. 

According to Thomas et al. (2009), a projected warming of 7 to 11 degrees Fahrenheit (F) in the 

United States can be expected by the year 2100. For the city of Bakersfield, one of the highest 

populated urban area in SJV, temperature, the number of heat waves and the number of extreme 

heat days is projected to rise over the coming century (California Energy Commission State of 

California 2015). As the number of extreme heat days increase, a climate penalty on ozone is 

observed exacerbating ozone concentrations. To restate, as temperatures and the number of 

extreme heat events rise, ozone concentrations will rise even if the precursor emission rate remains 

steady. Perera and Sanford (2011) calculated under moderate emissions scenarios an 

approximation of a 1.0 pbb ozone penalty by 2025 and a 2.0 ppb ozone penalty by 2050 for the 

United States. How this climate penalty on ozone will effect populations with asthma at the local 

level is not clear. Without a solid understanding, anticipating how this climate penalty places 

sensitive populations at risk is restricted. This inhibits the ability for SJV to make sensible policy 

decisions to avoid this health externality.		

Similarly, Nitrogen Oxides and particulate matter have been found to exacerbate 

respiratory airways causing asthma attacks. In the San Joaquin Valley, diesel emissions along 

major transportation routes are the biggest source of particulate matter and nitrogen oxides. 

Specifically, PM 2.5 has been found to absorb deep in the alveoli of the respiratory tract and can 

be deadly if inhaled by sensitive populations such as those with asthma and this relationship is 

well supported by health studies (EPA 2016). In the 2016 State of the Air Report by the American 

Lung Association, Bakersfield Fresno and Merced were listed among the top five cities in the US 

with the highest number of days a year where particulate matter or ozone safety levels were 

exceeded. With other air pollutants interacting with ozone and temperature trapped underneath the 
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inversion layer, populations with asthma in the valley are at a dire risk of experiencing severe 

asthma attacks resulting in death. The lack of understanding how the projected temperature rise 

will influence asthma inhibits the ability for SJV counties to make sensible policy decisions to 

protect those afflicted with asthma.  

My research aimed to inform how projected climate changes in the SJV may affect public 

health by investigating the relationship between air pollution, temperature and ARHR. I expected 

that when temperature and ozone are at maximums, the association with ARHR will be stronger 

than when analyzed separately. I expected that PM 2.5 and PM 10 would also be strongly 

correlated and due to the effect that particulate matter has on the alveoli of lungs, I expect PM 2.5 

to show the strongest association. Because of the catalytic relationship between heat, ozone and 

NOX and high temperatures of the SJV, I expected that NOX would reveal a weak association or 

an inverse relationship when compared to ozone. I anticipated that a combination of ozone, 

temperature, PM 2.5 and PM 10 will result in the highest model fit best explaining ARHR in SJV. 

 

 

METHODS 

 
Study Site Description 

 

The study area boundary was the San Joaquin Valley of central California. This area covers 

8,161 square miles and is surrounded by mountain ranges on the south, west and eastern edges (US. 

Census 2010). The climate of the region is characterized by extreme temperatures and heat waves 

in the dry summer months and mildly cold winters with very low rainfall. The San Joaquin Valley 

includes the following seven counties: Kern, Fresno, Kings, Merced, Maricopa, Stanislaus, San 

Joaquin, and Tulare. Kern County and Fresno County are the largest in populations. Air quality is 

unhealthy, and Kern and Fresno counties are consistently ranked in the top five counties with the 

worst air quality in the United States (State of the Air 2016). Interstate 5 and 15, are both major 

shipping routes connecting northern and southern California and connecting California to the well 

as the Eastern United. States. These routes run directly through the SJV counties, contributing  
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Study Site Map 

vehicular and diesel emissions. Oil extraction and refineries are located throughout the valley 

contributing greater emissions. The total population of Kern County is 874,589 with 42% residing 

in the urban center Bakersfield. Asthma rates in Fresno and Kern Counties are some of the highest 

in California and the Nation (US. Census 2010). Approximately 12.6% of the population in Kern 

County suffers from asthma. (State of the Air 2016).  ARHR is consistently higher in the valley’s 

counties when compared to other counties and this trend is clearly apparent from 2011-2013 (State 

of the Air 2016).  Fresno, Kern, Kings Merced and Stanislaus had the highest ARHR when 

compared to the neighboring counties. (see Figure 2). These same counties were ranked in the top 

10 California counties with the highest number of days a year where ozone and particulate matter 

safety regulations are failed (State of the Air 2016). Median income across the SJV is 

approximately $48,552 falling $12, 542 below the average for California and 22.9% are living 

under the poverty line which is 7% above the average of California (US. Census 2010). Poverty in 

the SJV further exacerbates this health risk.  

Figure	 1	 Study	 Site	 of	 SJV.	 (a)	 Showing	 the	 general	 location	 of	 SJV	 in	 California,	 major	 cities,	 geographic	
characteristics	and	 interstates.	The	irregular	distribution	of	air	pollutant	and	temperature	monitoring	stations	
and	county	centroids	is	shown	within	the	SJV	boundary	
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Data Collection  

 

Secondary data was collected and compiled into a database management system that 

supports an object oriented model compatible with ArcGIS software for efficient data collection 

and integration. The temporal scale analyzed covered 2011 through 2013. I collected data on 

annual average maximums for temperature, 8-hour ozone (ppm), 24- hour PM 2.5 (ug/m3), 24-

hour PM 10 (ug/m3), 24-hour NOX (ppb) and ARHR, and integrated the data into a SJV Public 

Health Geodatabase (see Figure 3). Finding quality data posed a great challenge, as I used a variety 

of sources from local, statewide and national databases to meet the data requirements. Specifically, 

public health data was most difficult to find for the study period and I was restricted to only annual 

average data for hospitalization rates at the county level. Temperature, ozone, PM 2.5, PM 10 and 

NOX monitoring networks were created for each county of the San Joaquin Valley of California. 

The same monitoring network could not be used for each year because monitoring stations for 

temperature and air pollutants vary in number and distribution. Because monitoring is limited, I 

Figure	2	Data	on	Asthma	Related	Hospitalization	Rates	for	counties.	Rate	data	representing	the	number	of	
people	with	asthma	per	1000	population	units.	Counties	in	the	SJV	such	as	Kings,	Kern,	Merced,	Stanislaus	and	
Fresno	show	some	of	the	highest	hospitalization	rates	for	the	study	period.	
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included monitoring stations and centroids in the counties immediately surrounding SJV to ensure 

enough points to justify interpolation. Coordinate data for each monitoring station was then joined 

to each station and I projected the points in ArcGIS. In this way I mapped each monitoring 

network. I calculated the centroid of each county in ArcGIS and extracted annual average ARHR 

for the study period thereby creating a point network for ARHR. 

 

          Data Collection Model 
 

 
 

 

	

Figure	3	Data	Collection	Model	for	SJV	Geodatabase.	Conceptual	model	I	followed	for	building	a	
SJV	Public	Health	Geodatabase	with	descriptions	and	sources	of	data.		
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Geostatistical Analysis and Interpolation 

 

I conducted a preliminary data analysis for each monitoring network calculating summary 

statistics and creating bar plots to identify and better understand trends in the data (see Appendix 

A). I analyzed the spatial distribution of ozone, temperature, PM 2.5, PM 10, NOX and ARHR 

data in the geostatistical wizard within ArcGIS using a number of statistical tools creating 

histograms, semivariograms, and scatterplots to determine the distribution and trends in the data. 

Spatial autocorrelation was a concern because clustering in sample location and attribute value can 

lead to inaccuracy in later regression results (Gorai et al. 2014).  A Spatial Autocorrelation (Global 

Moran’s I) analysis was conducted for each variable for the period of the study. Global Moran’s I 

works by testing if a distribution follows an expected random distribution as the null hypothesis; 

if a distribution is not random then the test will produce unusually high or low Moran’s I statistic 

corresponding to a clustered or a dispersed distribution. 

After analyzing the spatial distribution of the data, I determined that due to the irregular 

point distribution of the monitoring stations and centroids, Ordinary Kriging would be the optimal 

method of interpolation. Ordinary Kriging is an interpolation method that creates a smooth surface 

from irregularly spaced data points based on spatial variations and provides benefits in increased 

accuracy in the estimated surface when irregularities exist (Tobler. 1970). Not enough points were 

available for ARHR to justify Inverse Distance Weighting or Spline. This is consistent with the 

methodology used when analyzing public health and air pollution data found in foundational 

literature (Tobler. 1970). Ordinary Kriging also offers the option of applying a polynomial 

equation to remove trends found in the data. To ensure accuracy and consistency in the regression 

analysis, I interpolated all data using Ordinary Kriging. Continuous data layers were interpolated 

from point networks for temperature, ozone, ARHR, PM 2.5 and PM 10, NOX and I created spatial 

distribution maps for the study period. I determined the accuracy of the interpolation by analyzing 

the mean square error (MSE) and the root mean square standardized error (RMSSE). I determined 

the measure of fit for the interpolation model by comparing if the MSE was close to 0 and if the 

RMSSE was close to 1, and I used this as the measure for a successful interpolation.  
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Analysis 

 

Once each kriging model fit was found, I subjected the interpolations to regression analysis. 

Using the sampling tools in ArcMap 10.2.3, I took a random sample of 36 points over the study 

area; a weighted distance of 20,000 meters was used to ensure even sampling over the entire extent 

of the study area. I extracted data using the multi variable point extraction tool to infuse these 

points with ARHR, ozone, temperature, PM 2.5, PM 10 and NOX data for the study period. I now 

PARAMETER	 MEAN	 MAX	 MIN	 STANDARD	DEV.	 COUNT	
	      

OZONE	 	     
2013	 0.0915	 0.106	 0.067	 0.009183	 26	
2012	 0.094556	 0.116	 0.033	 0.014513	 27	
2011	 0.091417	 0.105	 0.068	 0.009115	 24	

	      
TEMPERATURE	 	     

2013	 77.003525	 85.73	 55.581818	 5.867315	 30	
2012	 76.522566	 85.211111	 56.883333	 5.814738	 27	
2011	 77.80834	 82.458111	 67.278423	 3.505061	 30	

	      
ASTHMA	 	     
2013	 7.269565	 12.1	 3.5	 2.495637	 23	
2012	 8.308696	 16.7	 4.3	 3.33309	 23	
2011	 8.43913	 16.2	 3.3	 3.339323	 23	

	      
PM	2.5	 	     
2013	 11.870866	 21.062393	 5.52037	 3.903083	 30	
2012	 10.914517	 36.8875	 4.46	 5.655766	 32	
2011	 10.778588	 18.207652	 6.314321	 3.417265	 31	

	      
PM	10	 	     
2013	 27.178701	 51.786885	 13.275862	 10.034988	 47	
2012	 22.671609	 43.066667	 12.410714	 7.41244	 36	
2011	 22.448053	 39.52459	 11.428571	 6.211438	 39	

	      
NOX	 	     
2013	 16.000756	 42.559973	 0.290468	 10.574816	 52	
2012	 20.564551	 42.261429	 1.316527	 10.297284	 52	
2011	 20.903088	 39.922222	 1.525568	 10.193887	 50	

Table	1.	Summary	statistic	for	air	pollutants,	temperature,	and	ARHR.	Showing	the	mean,	maximum,	minimum	
and	standard	deviation	for	each	study	variable	and	year	of	the	study.	Variation	is	evident	between	each	year.		
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had data for each variable at a specific geographic location and regression analysis could be 

performed. Ozone, temperature, PM 2.5, PM 10 and NOX were held as the independent variables 

and ARHR was held as the dependent variable in all regression methods I tested. I restricted the 

analysis to regression methods using only a linear regression model because linear regression is 

the optimal method for measuring associations between continuous variables (Gorai, 2014). Using 

the correlation matrix tool in R-commander, I assessed the relative strength and direction of the 

relationships by creating a regression matrix (see Appendix D3 for correlation coefficients). This 

method works by running a two tailed Pearson correlation on every study variable producing a 

summary matrix of correlation coefficients (r-value) for each variable (Gorai, 2014). A correlation 

coefficient greater than or equal to 0.40 was the criteria for an association. A P-Value equal to or 

less than 0.05 was the criteria for significance.  

Next, to assess the strength of each relationship, I conducted three separate linear 

regression methods in the following order:	linear regression, OLS and GWR. Linear regression 

works by calculating a straight line that best-fits the values of a linear function, plotted on a scatter 

graph as data points. (ESRI, 2011).  I used linear regression to assess the associations without 

regards to spatial relationships using a random sample over the entire study area. I used to assess 

the general relationship and significance and helped to build a set of explanatory variables that 

have the highest fit followed by GWR. GWR works by creating a local model fitting a linear 

regression equation to every feature in the dataset; GWR constructs these separate equations by 

incorporating the dependent and explanatory variables of features falling within a specific 

weighted distance of each target feature (ESRI, 2011). GWR was used to assess the local and 

global relationship between the variables and ARHR while taking into account spatial location as 

a weighted part of the correlation equation. This consideration of local relationships is a key benefit 

of using GWR because differences in local and global relationships can be identified (Gorai, 2014). 

Starting with an analysis of temperature ozone and ARHR, I used each regression method to assess 

the bivariate and multivariate relationships to determine if projected temperature rises and ozone 

penalty in SJV are a concern. I then tested nitrogen dioxide, PM 2.5 and PM 10 for association 

using these three regression techniques. To determine strength of association, I analyzed the 

coefficient of determination (R2 value) to compare the measure of fit for each variable. I chose a 

value greater than or equal to 0.40 as the measure for a strong association and a P-Value equal to 

or less than 0.05 was the criteria for significance for the linear regression, OLS and GWR.  
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Once the relationship for each variable was well understood from the results of the OLS, 

GWR, regression matrix and linear regression, I identified which of the five explanatory variables 

were found to show a positive association with ARHR. These air pollutants became the focus of 

the explanatory regression model to verify if the model fit could be improved by multivariate 

analysis. First, I conducted a multivariate analysis using linear regression to better understand how 

these variables are related to ARHR. Next these air pollutants were analyzed using OLS and GWR 

to assess the local and global spatial relationship these variables have with ARHR. To determine 

the completeness of the model, I ran a spatial autocorrelation (Global Moran’s I) test on the 

residuals produced by the GWR. The residuals measure the difference between predicted and 

observed values. Clustering of residuals indicate a model that has been specified wrong which is 

characterized by high local variation in error. If residuals are found to be distributed randomly than 

this indicates the model is specified correctly and therefore entails another criterion to assess the 

accuracy of the explanatory model. 

 

RESULTS 

 
Spatial Distributions 

 
When assessing the results of the test for spatialautocorrelation, I found NOX, PM 2.5 and 

PM 10 produced a positive Moran’s I statistic with a significant P-Value indicating a clustered 

distribution in the spatial network (see Appendix B).  I found temperature and ARHR were 

distributed randomly producing a test statistic close to the expected 0 with an insignificant P-value. 

I found ozone was distributed randomly in 2011 and 2013, but in 2012 ozone followed a dispersed 

trend. Trends were removed for NOX, PM 10 and PM 2.5 by using a second order de-trending 

equation before preforming kriging; I found this improved the model fit and the accuracy of the 

predicted surface when compared to interpolations without trend removal. I created spatial 

distribution maps for the study period showing the spatial variation of each variable across the SJV 

(see Figure 3 and Appendix B). I found all interpolations had a stable model fit producing MSE 

values close to 0 and RMSSE values close to 1 indicating a reasonably accurate interpolation with 

little over estimation in the predicted surface (see Appendix B).  
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Spatial Distribution Maps (SJV) 

 

Figure	4.	Spatial	Distribution	Maps.	Showing	average	annual	maximum	ozone	concentration	(ppm),	average	
annual	maximum	temperature,	average	annual	NO2,	average	annual	PM2.5,	average	annual	PM10	and	average	
annual	ARHR	over	SJV	for	the	year	2012.	
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Regression Results 

 

For temperature and ozone, I found that the correlation coefficient ranged from r-value of 

-0.10596 to 0.21148 and -0.04780 to 0,10815 indicating no association for either variable over the 

study period (see Appendix D3 for correlation coefficient values).  I found that PM 2.5 was most 

associated with ARHR with r-value of 0.83288 for 2012 and for 2012 but a weak negative 

association for 2013. PM 10 followed an identical trend in r-value but the associations were much 

weaker than associations for PM 2.5. I found associations ranging from -0.15037 to 0.5944 for the 

study period (see Appendix D3 for correlation coefficient values). When looking at NOx, I found 

a strong negative relationship with ARHR producing an r-value of -0.78696 for 2012 but weakly 

associated 2011 and 2013 with r-value of -0.19325 and 0.1903 (see Appendix D3 for correlation 

coefficient values). The results of the correlation matrix values are displayed showing correlation 

coefficient for each scenario tested (see figure 5). 		

	

When using linear regression, I found that the results followed similar trends as the 

correlation matrix. Temperature and ozone were not positively correlated with ARHR with a low 

Figure	 5.	 Correlation	matrix	 results	 showing	 strength	 and	 direction	 of	 association.	 Bar	 graph	 showing	 the	
strength	and	direction	of	the	correlation	coefficient.	The	correlation	coefficient		
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R2 values ranging from -0.1700 to 0.02709 for linear regression and for GWR thought these high 

values were found to be highly insignificant (see Appendix D for R2 values). I again found 

temperature to show no association R2 values ranging from -0.2674 to 0.16630 for linear regression 

and for GWR (see Appendix D for R2 values). The multivariate analysis did not improve the model 

fit, showing no association. I found NOx was associated with a R2 value of 0.60810 for linear 

regression solidifying the strength of the negative association found in the correlation matrix but 

no significant associations were found using GWR (see figure 5 and 7). PM 2.5 was most 

associated with ARHR with a R2 value of 0.8188 using GWR and 0.68700 for 2012 (see figure 7-

9).  I found PM 2.5 was associated using GWR with an R2 value of 0.8378 for 2011 and a weaker 

association of 0.33430 using linear regression (see figure 7-9). I found PM 10 to have an 

association with ARHR with a R2 value of 0.8068 when using GWR and 0.764800 when using 

linear regression for 2012 and no associations for any method for 2011 (see figure 7-9). I found no 

significant results for either PM 2.5 or PM 10 for 2013.  

 

 

 

Figure	6.	Distribution	of	measure	fit	for	all	variables	and	ARHR.	Local	R2	values	are	shown	in	the	boxplot	with	
the	global	GWR	and	linear	regression	results	plotted	for	comparison	for	each	variables	relationship	with	ARHR.	
PM	2.5	shows	a	strong	association	for	GWR	and	weaker	association	for	the	linear	regression.		
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Figure	8.	Distribution	of	measure	fit	for	all	variables	and	ARHR:	Local	R2	values	are	shown	in	the	boxplot	with	the	
global	GWR	and	linear	regression	result	plotted	for	comparison	for	each	variables	relationship	with	ARHR.	PM	2.5	
and	 PM	 10	 both	 show	 a	 strong	 association	 for	 GWR	 and	 linear	 regression.	 Ozone	 shows	 a	 weak	 significant	
association	for	GWR	and	NOX	shows	a	strong	association	 for	 linear	 regression	The	adjusted	R2	value	was	the	
measure	for	how	well	the	model	explained	ARHR	

Figure	7.	Distribution	of	measure	fit	for	all	variables	and	ARHR:	Local	R2	values	are	shown	in	the	boxplot	with	
the	global	GWR	and	linear	regression	result	plotted	for	comparison	for	each	variables	relationship	with	ARHR.	
No	significant	associations	are	observed	for	any	variable	ARHR.	The	adjusted	R2	value	was	the	measure	for	
how	well	the	model	explained	ARHR.	
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Summary of Significance 

 

The results of my analysis suggest no positive association between ozone, temperature and 

ARHR for the study period. However, a weak association was found for the 2012 year between 

ozone and ARHR (see figure 7). The multivariate analysis of temperature, ozone and ARHR 

yielded no significant results. When looking at NOx and ARHR, I found a significant negative 

association for 2012. PM 2.5 and PM 10 were found to be positively correlated with ARHR for 

2012 with an R2 value of 0.6776 for the linear regression model and the model fit was increased 

to 0.7666 using GWR (see figure 9). The results of the linear regression and GWR are displayed 

as boxplots showing measure of fit for each scenario tested and distribution of local R2 values to 

compare global and local relationships (see figure 6-9). I found that the mean of the local R2 value 

was lower than the global R2 value for GWR across the study period (see figure 6-8). Linear 

regression showed similar measures of fit with significance as the global measure of fit for GWR 

over the study period. PM 2.5 and PM 10 show a strong association for linear regression and GWR 

indicating a good model fit at the global level but less at the local level shown by the lower mean 

of local R2 value. To assess the accuracy of the results, I compared both P-Values and Moran’s I 

test statistics of the residuals of the GWR and found all significant results had random residuals 

and none were clustered (see Appendix E3 for test statistics and P-Values).  

 
 

 

Figure	9.	Distribution	of	measure	fit	for	Explanatory	Regression	Model:	Local	R2	values	are	shown	in	the	
boxplot	with	the	global	GWR	and	linear	regression	result	plotted	for	comparison.	The	adjusted	R2	value	was	
used	as	the	criteria	for	how	well	the	model	explained	ARHR.	PM	2.5	and	PM	10	show	a	strong	association	
for	linear	regression	and	GWR	indicating	a	good	model	fit	at	the	global	level	but	less	at	the	local	level	shown	
by	the	lower	mean	of	local	R2	.	This	local	mean	however	was	the	highest	for	the	study	ranging	from	weak	to	
moderately	strong	association.	
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DISCUSSION 

 

Understanding how air pollution is associated with asthma related hospitalizations (ARHR) 

is vital to understanding the public health risks and needs of sensitive populations in the San 

Joaquin Valley (SJV). Geographic information systems (GIS) provide a geostatistical platform for 

analyzing air pollutants, and are useful tools for assessing public health and air pollution data 

efficiently to better understand this complex spatial problem of how air pollution effects sensitive 

populations with asthma. Contrary to my expectations, when analyzed together temperature and 

ozone appear to have a weak association with ARHR across all regression methods and study 

years. Temperature was also not found to be associated with ARHR and when analyzed together, 

ozone and temperature were insufficient in explaining ARHR. NOX was expected to be associated 

with ARHR, but I found only a negative association yielding a significant result across two 

methods for the year 2012. The most important finding from the regression analysis of air 

pollutants and ARHR was for the year 2011 and 2012 between PM 2.5 ARHR. I found that of the 

six regression techniques tested, five yielded significant associations. I found the optimal 

explanatory model was between PM 2.5 and PM 10 using both linear regression and GWR. No 

significant results were found for any explanatory variables for the year 2013.  

 

Interpretation 

 

Opposing my anticipated results, temperature and ozone do not have a more significant 

association with ARHR when analyzed together, rather than discretely, and I found a weak 

association with ARHR. I found no positive association between ozone and ARHR, contradicting 

my predicted results and this was consistent across each study year and regression methodology 

tested. I did not identify a positive association between temperature and ARHR and this lack of 

association was consistent across all regression methods tested. From my results the catalytic 

relationship between temperature and ozone and projected temperature rise over the SJV do not 

appear to be significant public health threats. Thus, efforts to reduce other pollutants and triggers 

of asthma attacks may yield a better use of resources in Kern County and other counties in SJV. 
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Even though temperature and ozone may not be strongly associated with asthma attacks, this 

catalytic relationship is still a concern for the health of sensitive populations in the SJV area 

because of known respiratory stress caused by ozone pollution. It is vital to act as quickly as 

possible in reducing emissions from fossil fuels and precursor emissions of ozone to avoid the 

possible externalities associated with the projected temperature rise and subsequent rise in ozone 

concentrations over the San Joaquin Valley. 

As I expected as a possible result, NOX was found to exhibit an inverse relationship with 

ARHR for the year 2012. However, this finding was not consistent and a negative association was 

not found for the years 2011 and 2013. From my results, NOX is not a significant risk for ARHR. 

As I had expected, the most significant finding from the regression analysis of air pollutants and 

ARHR was between PM 2.5 and ARHR; I found that five of the six regression methods tested 

resulted in a robust model fit. When analyzing PM 10, I found this pollutant resulted in a robust 

model fit for three of the six regression methods tested, PM 10 followed a similar trend as PM 2.5 

as I had expected but did not explain ARHR as robustly as PM 2.5 

 I found that PM 2.5 and PM 10 together were associated with ARHR and produced the 

optimal explanatory model for explaining ARHR in SJV. Geographically Weighted Regression 

(GWR) improved the fit of the regression model. This is consistent with Gorai et al. (2014) study 

using the same methodology and finding a strong association with PM 2.5 and ARHR using linear 

regression and GWR. From my results, PM 2.5 and PM 10 are a significant risk to ARHR and 

targeting these pollutants emissions sources offers protection to sensitive populations with asthma. 

These results suggest that efforts to pinpoint and reduce PM 2.5 and PM 10 may be a better 

approach to reducing asthma related hospitalizations in SJV than only focusing on a single 

pollutant and source. A more holistic approach to emissions reduction is an effective solution. 

Because NOX emissions are a precursor to ozone formation, reducing sources of NOX emissions 

would reduce both these pollutants solving two problems with one solution and mitigating possible 

associations and risks not captured in my study design. Particulate matter and nitrogen oxides are 

sourced predominantly from vehicular emissions along transportation routes in the SJV. 

Continuing and ramping up efforts in reducing vehicular emissions is recommended as an ideal 

solution to mitigate the emissions of all three pollutants and in turn reducing risk to sensitive 

populations with asthma immediately. 
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Limitation  

 

 When using a GIS system to analyze public health data, I encountered limitations in 

accuracy of the geostatistical analysis due to the irregularity in the air pollution and temperature 

monitoring networks. Because monitoring is limited, data was interpolated and these estimated 

surfaces exhibited error between actual and predicted values. The spatial distribution of monitoring 

stations across SJV is not uniform, resulting in error in the predicted surface.  Inaccuracy also can 

propagate from the instruments themselves and quality of the data collected by monitoring stations 

may be more limited in specific spatial locations. Another limitation is the accuracy of the health 

data I compiled as asthma sufferers also may see a private provider, and thus, the ARHR rate may 

be reported lower than what is actually observed in some locations. Also because heath data was 

not readily available, annual averages were used and I did not include daily or monthly values as 

a major component of the analysis. A study considering the lag time between days of high ozone 

and temperature and the day the asthma hospitalization occurred may shed light on the risk the 

climate penalty has in exacerbating the asthma problem in SJV. Because ozone pollution is known 

to be most problematic in the summer months and particulate matter is most problematic during 

the winter months, restricting the analysis to a monthly or daily basis rather than using annual 

averages may yield a finer-grained, more accurate regression model and better associations for 

these air pollutants and ARHR. 

 

Future Direction 

 

 The next step in understanding how air pollution and temperature affects asthma would 

be to explore the associations using alternative regression models within ArcGIS to better 

understand how these pollutants and climate factors affect public health in the SJV on a local level 

and globally for California. Because secondary data was collected and processed into geodatabase 

within a GIS system for this study, a platform is now available for spatial-statistical analysis and 

can be used in future studies or combined with other explanatory variables and incorporation of 

climate models scenarios. Repeating the analysis using monthly and daily maximum data may 



Timothy N. Urso                  Air Pollution and Asthma SJV                                                  Spring 2016 

	
yield a more robust model fit. By adding additional explanatory variables such as income, 

demographics, obesity and other air pollutants such as pesticides used in the area, a better model 

fit may be obtained explaining ARHR in SJV. Other spatial analysis techniques such as using 

buffering of pollution sources located in close proximity to populations with asthma could also 

shed light on the relationship. 

 

Broader Significance  

 

Understanding how projected increases in temperature will affect respiratory health is an 

essential part of understanding the risk to public health these environmental changes pose. Because 

I did not find an increased association between both high temperature and ozone levels on ARHR, 

projected temperature rise and corresponding increase in maximum ozone concentrations may not 

be a risk in directly causing a greater number of asthma attacks when both are at maximums. 

However, the climate penalty may still be a concern as the study design may have limited the 

results. Restricting the study to the ozone season summer months may improve these associations. 

Even though maximum temperature was not found to be associated, projected temperature rises 

may affect asthma sufferers indirectly by increasing the number of high ozone days over the 

summer months and the effect of ozone on respiratory airways. Mitigation efforts have the 

potential to abate this respiratory risk by reducing maximum concentrations PM 2.5 and PM 10 

which I found to best explain ARHR in SJV. To be most effective in protecting populations with 

asthma, an effort to pinpoint and reduce PM 2.5 and PM 10 pollution sources is vital to mitigating 

ARHR. By linking the effects of air pollution to ARHR, my study findings support arguments 

pointing to the urgency of implementing policy and preventative measures to reduce air pollution 

and alleviate these pollution levels, in turn protecting the lungs of sensitive populations with 

asthma. 
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Appendix A: Data for Monitoring Stations 

 

Figure	A1.	Data	on	NOX	for	monitoring	stations	in	by	county.		Bar	plots	of	average	annual	maximum	24-hour	
concentrations	of	PM	10	measured	in	parts	per	billion	(ppb)	and	displayed	by	color	for	each	year	of	the	study	
period.		
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Figure	A3.	Data	on	PM	2.5	for	monitoring	stations	by	each	county.	Bar	plots	of	average	annual	maximum	24-
hour	concentrations	of	PM	2.5	measured	in	micrograms	per	meter	squared	and	displayed	by	color	for	each	year	
of	the	study	period.		

Figure	A2.	Data	on	temperature	by	monitoring	stations.		Bar	plots	of	average	annual	maximum	temperature	
measured	in	degrees	Fahrenheit	(F)	and	displayed	by	color	for	each	year	of	the	study	period.		
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Figure	A4.	Data	on	PM	10	for	monitoring	stations	by	each	county.	Bar	plots	of	average	annual	maximum	24-
hour	concentrations	of	PM	10	measured	in	micrograms	per	meter	squared	and	displayed	by	color	for	each	year	
of	the	study	period.		
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Figure	A5.	Data	on	ozone	for	monitoring	stations.		Bar	plots	of	average	annual	maximum	8-hour	concentrations	
of	ozone	measured	in	parts	per	million	(ppm)	and	displayed	by	color	for	each	year	of	the	study	period.		



Timothy N. Urso                  Air Pollution and Asthma SJV                                                  Spring 2016 

	
Appendix B:	Moran’s I Test and Parameters for Interpolations 

PARAMETER	 EXPECTED	I	 MORAN'S	I	 Z-SCORE	 VARIANCE	 P-VALUE		 DISTRIBUTION	 	ORDER	

	        

OZONE	 	       

2013	 -0.04	 0.161415	 1.540934	 0.017085	 0.123333	 Random	 None	

2012	 -0.038462	 -2.85678	 -8.557797	 0.108457	 0	 Dispersed	 Second	

2011	 -0.043478	 0.132897	 1.258481	 0.19642	 0.208218	 Random	 None	

	        

TEMPERATURE	 	       

2013	 -0.034483	 0.160976	 1.395175	 0.019627	 0.162963	 Random	 None	

2012	 -0.038462	 0.256248	 1.464087	 0.040519	 0.14317	 Random	 None	

2011	 -0.034483	 0.142391	 1.165446	 0.023033	 0.243839	 Random	 None	

	        

ASTHMA	 	       

2013	 -0.045455	 -0.048939	 -0.047364	 0.005413	 0.962223	 Random	 None	

2012	 -0.045455	 -0.076077	 -0.424965	 0.005192	 0.670862	 Random	 None	

2011	 -0.045455	 -0.037329	 0.911186	 0.005307	 0.911186	 Random	 None	

	        

PM	2.5	 	       

2013	 -0.034483	 0.557649	 4.118252	 0.020673	 0.000038	 Clustered	 Second	

2012	 -0.032258	 0.394472	 3.851982	 0.012273	 0.000117	 Clustered	 Second	

2011	 -0.033333	 0.186981	 2.975908	 0.005481	 0.002921	 Clustered	 Second	

	        

PM	10	 	       

2013	 -0.021739	 0.439777	 4.579146	 0.010158	 0.000005	 Clustered	 Second	

2012	 -0.028571	 0.307112	 2.477923	 0.018352	 0.013215	 Clustered	 Second	

2011	 -0.026316	 0.162904	 1.5603	 0.014707	 0.118689	 Random	 None	

	        

NOX	 	       

2013	 -0.019608	 0.804183	 10.533758	 0.006116	 0	 Clustered	 Second	

2012	 -0.019608	 0.916089	 11.550399	 0.006563	 0	 Clustered	 Second	
2011	 -0.020408	 1.009581	 12.882175	 0.006393	 0	 Clustered	 Second	

 

Table	B1.	Results	of	the	test	for	 spatial	autocorrelation	(Global	Moran’s	 I)	on	monitoring	networks.	Showing	the	
Moran’s,	 I	 statistic	 size	 and	 significance	 of	 p-value.	 A	 large	 negative	 Moran’s	 I	 statistics	 indicate	 dispersion	 in	
distribution	and	a	positive	statistic	indicate	clustering	and	possible	spatialautocorrelation	in	the	distribution.	The	order	
of	the	trend	indicates	the	type	distribution	and	order	of	trend	removal	equation.	
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PARAMETER	 MODEL	FIT	 NUGGET	 PARTIAL	SILL	 LAG	SIZE	 RANGE	 MSE	 RMSSE	

	        

OZONE	 	       

2013	 Stable	 0.667741	 0.332259	 0.208488	 2.344792	 0.098168	 0.968034	

2012	 Stable	 0.027787	 0.000000	 0.367059	 4.388471	 0.027787	 1.008809	

2011	 Stable	 0.646057	 0.353943	 0.110988	 1.331861	 0.061679	 0.957083	

	        

TEMPERATURE	 	       

2013	 Stable	 0.000000	 36.604271	 0.052645	 0.456503	 0.000803	 0.862362	

2012	 Stable	 0.000000	 27.107988	 0.066448	 0.797377	 0.059515	 0.968287	

2011	 Stable	 10.205757	 4.666895	 0.166440	 1.465662	 0.007100	 0.872180	

	        

ASTHMA	 	       

2013	 Stable	 9.001198	 3.258544	 0.030659	 3.679078	 0.000362	 0.994298	

2012	 Stable	 19.279921	 0.000000	 0.462695	 5.552334	 0.014545	 1.013023	

2011	 Stable	 19.719286	 0.000000	 0.462695	 5.552334	 0.012177	 1.013908	

	        

PM	2.5	 	       

2013	 Stable	 0.337206	 0.398737	 0.349155	 4.189855	 0.028307	 0.880683	

2012	 Stable	 71.505677	 2.191315	 0.370981	 4.451772	 0.080303	 0.987972	

2011	 Stable	 0.000000	 16.142097	 0.801110	 1.652893	 0.064860	 0.997528	

	        

PM	10	 	       

2013	 Stable	 0.764023	 0.235979	 0.764023	 2.791929	 0.070387	 1.089957	

2012	 Stable	 12.732700	 131.423290	 0.164334	 1.397201	 0.088269	 0.876638	

2011	 Stable	 0.866779	 0.133221	 0.186588	 1.502630	 0.015234	 0.994199	

	        

NOX	 	       

2013	 Stable	 44.754445	 5.181701	 0.307049	 3.684593	 0.001891	 0.992264	

2012	 Stable	 45.313844	 0.844615	 0.307049	 3.684593	 0.095086	 0.967695	

2011	 Stable	 0.000000	 26.662772	 0.306174	 3.674092	 -0.049961	 1.046354	



Timothy N. Urso                  Air Pollution and Asthma SJV                                                  Spring 2016 

	
Appendix C: Spatial Distribution Maps 2011 and 2013 and Extracted Sample Data 

 

Figure	C1.	Spatial	Distribution	Maps.	Showing	average	annual	maximum	ozone	concentration	(ppm),	average	
annual	maximum	temperature,	average	annual	NO2,	average	annual	PM2.5,	average	annual	PM10	and	average	
annual	ARHR	over	SJV	for	the	year	2011.	
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Figure	C2.	Spatial	Distribution	Maps.	Showing	average	annual	maximum	ozone	concentration	(ppm),	average	
annual	maximum	temperature,	average	annual	NO2,	average	annual	PM2.5,	average	annual	PM10	and	average	
annual	ARHR	over	SJV	for	the	year	2013.	
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																										Temperature 																						Ozone	(ppm) 										Ni trogen	Oxides 	(ppb) 							PM	10	(ug/cubic	meters ) 							PM	2.5			(ug/cubic	meters ) 				Asthma	Hospita l i zation	Rate

Point	# 2011 2012 2013 2011 2012 2013 2011 2012 2013 2011 2012 2013 2011 2012 2013 2011 2012 2013

1 70.569 71.138 70.000 0.0914 0.0879 0.0918 18.704 25.251 15.780 26.561 15.078 17.019 18.133 11.670 17.019 7.9400 7.0741 8.6286

2 66.712 65.995 67.428 0.0914 0.0899 0.0931 18.607 25.038 16.053 26.993 12.753 17.108 15.081 15.229 17.108 8.3938 6.9738 8.2750

3 77.777 76.876 78.678 0.0902 0.0950 0.0953 18.180 26.358 16.086 27.539 34.473 17.205 14.315 15.051 17.205 8.3333 7.6181 8.2750

4 78.056 78.405 77.707 0.0924 0.0941 0.0953 18.459 25.032 16.064 27.252 25.275 17.203 13.815 15.568 17.203 8.2625 7.2990 8.2750

5 78.975 78.547 79.403 0.0920 0.0948 0.0935 19.473 25.931 15.511 27.614 40.961 17.360 14.042 14.717 17.360 8.2214 7.3714 8.2750

6 72.527 71.472 73.583 0.0915 0.0885 0.0917 18.741 27.730 17.141 26.352 14.830 16.955 18.134 11.605 16.955 7.4800 6.5690 9.5167

7 77.678 77.400 77.956 0.0900 0.0927 0.0921 19.333 22.372 16.998 27.005 22.000 16.787 13.964 16.944 16.787 8.9812 7.6124 8.2750

8 77.472 77.387 77.556 0.0881 0.0966 0.0931 18.927 22.222 17.287 27.275 24.066 16.856 13.736 17.060 16.856 9.1000 7.7989 8.2750

9 78.604 78.136 79.072 0.0905 0.0912 0.0840 19.120 22.961 17.303 27.090 34.196 16.857 13.573 17.026 16.857 8.7729 7.6429 8.2750

10 79.099 78.762 79.436 0.0966 0.0925 0.0945 18.946 25.404 15.375 27.879 38.724 17.237 13.820 15.520 17.237 8.3333 7.8704 8.2750

11 78.636 77.264 80.008 0.0932 0.0902 0.0886 19.411 26.767 16.111 27.520 36.163 17.239 14.039 15.479 17.239 8.1765 7.6335 8.2750

12 77.775 77.315 78.235 0.0928 0.0929 0.0963 18.687 22.243 17.310 27.488 23.075 16.984 12.787 17.243 16.984 8.6040 8.1251 8.2750

13 76.391 75.893 76.889 0.0969 0.0930 0.0955 18.748 22.924 16.506 27.484 18.080 17.024 13.158 14.877 17.024 8.3436 8.1370 8.2750

14 73.220 73.319 73.121 0.0942 0.0900 0.0944 19.017 22.818 17.364 27.197 10.312 16.987 12.623 14.738 16.987 8.6933 7.9819 8.2750

15 77.212 76.521 77.903 0.0885 0.0935 0.0847 20.116 24.240 16.776 26.611 25.923 16.681 14.538 16.925 16.681 9.1184 7.0672 8.2750

16 77.416 76.501 78.331 0.0841 0.0905 0.0830 18.888 21.410 17.114 26.383 28.303 16.736 13.461 17.504 16.736 9.0941 7.1471 8.2750

17 78.488 78.969 78.007 0.0935 0.0974 0.0928 18.992 27.745 17.170 26.668 23.074 17.386 17.257 11.765 17.386 7.5385 6.4068 8.1800

18 78.983 78.960 79.006 0.0934 0.0958 0.0938 19.487 25.951 15.586 28.048 38.466 17.771 16.482 14.953 17.771 8.2214 6.9224 8.2750

19 75.729 76.162 75.295 0.0914 0.0882 0.0910 18.541 27.733 17.104 25.626 20.287 16.798 18.134 11.141 16.798 7.3308 6.7550 8.1800

20 77.863 77.825 77.902 0.0940 0.0905 0.0909 18.741 27.750 17.218 27.090 14.760 17.415 17.252 14.835 17.415 7.6947 6.5179 8.6286

21 78.563 79.433 77.694 0.0915 0.0930 0.0904 18.575 27.736 17.108 25.291 22.019 16.977 15.255 11.166 16.977 7.3308 6.6915 8.6286

22 79.031 79.258 78.804 0.0942 0.0964 0.0933 19.161 27.747 17.206 27.464 28.384 17.642 17.405 14.790 17.642 7.6333 6.8138 8.6286

23 77.667 77.616 77.718 0.0926 0.0947 0.0947 18.776 25.945 15.568 27.833 41.397 17.459 14.150 15.383 17.459 8.2471 6.6982 8.2750

24 75.951 76.669 75.233 0.0914 0.0859 0.0914 18.773 27.730 17.117 25.885 17.477 16.574 18.133 11.487 16.574 7.4311 6.6324 9.5167

25 79.831 78.958 80.705 0.0921 0.0879 0.0881 19.504 26.773 16.145 27.336 33.669 17.237 14.047 15.442 17.237 8.2375 7.4532 8.2750

26 75.038 73.898 76.178 0.0919 0.0918 0.0914 18.590 24.821 15.864 26.017 25.782 17.173 15.417 11.632 17.173 7.9097 6.3957 8.2750

27 79.745 78.846 80.644 0.0881 0.0888 0.0855 19.074 22.984 17.325 27.215 35.199 16.985 11.940 17.035 16.985 8.7733 7.9741 8.2750

28 75.141 75.109 75.174 0.0912 0.0942 0.0953 18.939 26.947 15.994 27.483 26.775 17.153 14.274 15.099 17.153 8.3333 7.8250 8.2750

29 82.525 82.478 82.571 0.0891 0.0846 0.0875 18.347 24.859 15.253 27.306 33.229 17.136 13.545 15.521 17.136 8.8375 7.9007 8.2750

30 79.519 78.684 80.353 0.0902 0.0878 0.0850 19.116 22.964 17.308 27.089 34.620 16.932 12.940 16.937 16.932 8.7635 7.7830 8.2750

31 68.097 66.606 69.587 0.0911 0.0845 0.0919 19.751 25.027 16.022 26.862 11.955 17.063 15.002 15.171 17.063 8.3562 7.0423 8.2750

32 71.435 71.463 71.406 0.0915 0.0807 0.0920 19.310 23.806 17.393 26.874 12.519 17.038 14.962 14.874 17.038 8.6460 7.5078 8.2750

33 76.600 76.949 76.25 0.0961 0.0947 0.0957 18.913 25.242 17.301 27.644 26.350 17.137 14.885 15.199 17.137 8.1500 8.1070 8.2750

34 67.044 67.837 66.251 0.0912 0.0834 0.0922 19.126 26.906 15.985 26.902 9.265 17.077 14.895 15.411 17.077 8.3562 7.3628 8.2750

35 76.443 76.472 76.414 0.0848 0.0905 0.0863 19.404 20.162 16.417 26.151 19.050 16.839 13.345 16.899 16.839 8.6176 7.0272 8.2750

36 76.879 76.383 77.376 0.0847 0.0877 0.0829 19.742 22.718 17.331 25.929 19.802 16.868 13.621 17.524 16.868 8.1025 7.0189 8.2750

Table	C1.	Data	extracted	for	each	study	variable	over	the	SJV	area.	Data	extracted	from	the	spatial	distribution	maps	for	temperature,	ozone,	PM	2.5,	
PM	10	and	ARHR	used	for	the	point	regression	analysis		
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Appendix D: Tables of Regression Results 2011-2013 

 

ASTHMA	 TEMPERATURE	 OZONE	 NOX	 PM	2.5	 PM	10	
	      

2011	 	     

R-SQUARED		 -0.017850	 -0.024590	 0.009034	 0.334300	 0.098110	
P-VALUE	 0.538500	 0.691800	 0.258800	 0.000132	 0.035280	

	      

2012	 	     

R-SQUARED	 -0.028700	 -0.027090	 0.608100	 0.684700	 0.764800	
P-VALUE	 0.886300	 0.783300	 0.000000	 0.000000	 0.000000	

	      

2013	 	     

R-SQUARED	 0.016630	 -0.017370	 0.000374	 -0.006135	 -0.017370	
P-VALUE	 0.215600	 0.530100	 0.910900	 0.381400	 0.530100	

 

 

ASTHMA	 TEMPERATURE	 OZONE	 NOX	 PM	2.5	 PM	10	
	      

2011	 	     

R-SQUARED		 0.3621	 0.8154	 0.8594	 0.8378	 0.8547	
P-VALUE	 0.2275	 0.4492	 0.8152	 0.0005	 0.6854	

	      

2012	 	     

R-SQUARED	 0.1668	 -0.0179	 0.7856	 0.8188	 0.8068	
P-VALUE	 0.0936	 0.0106	 0.8385	 0.0001	 0.0373	

	       

2013	 	     

R-SQUARED	 0.4792	 0.1770	 0.2674	 0.1887	 0.8591	
P-VALUE	 0.6248	 0.9427	 0.6851	 0.8345	 0.1888	

Table	D1.	Results	of	the	linear	regression	Analysis.	Showing	adjusted	R2	values	calculated	using	linear	regression	
for	each	pollutant	for	the	year	2011-	2013.	The	coefficient	of	determination	(R2	values)	as	a	measure	of	fit	for	
the	regression	models	

Table	D2.	Results	of	GWR.	Showing	R2	values	calculated	using	GWR	with	P-	Values	for	of	each	pollutant	for	
the	year	2011-	2013.	The	coefficient	of	determination	(R2	values)	as	a	measure	of	fit	for	the	regression	models	
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	 ASTHMA	 NOX	 OZONE	 PM	2.5	 PM	10	 TEMPERATURE	

ASTHMA	 1.00000	 	 	 	 	 	

NOX	 -0.78696	 1.00000	 	 	 	 	

OZONE	 -0.04748	 0.05760	 1.00000	 	 	 	

PM	2.5	 0.83288	 -0.69333	 0.05222	 1.00000	 	 	

PM	10	 0.02470	 -0.00751	 0.45975	 0.16616	 1.00000	 	

TEMPERATURE	 0.18607	 0.02695	 0.44905	 0.27934	 0.70204	 1.00000	

	

	 ASTHMA	 NOX	 OZONE	 PM	2.5	 PM	10	 TEMPERATURE	

ASTHMA	 1.00000	 	 	 	 	 	

NOX	 0.19326	 1.00000	 	 	 	 	

OZONE	 0.10815	 -0.26452	 1.00000	 	 	 	

PM	2.5	 0.26452	 -0.45273	 0.45370	 1.00000	 	 	

PM	10	 -0.15037	 -0.69333	 0.22580	 0.03802	 1.00000	 	

TEMPERATURE	 0.21148	 0.03802	 0.02744	 0.17285	 0.17286	 1.00000	

	

	 ASTHMA	 NOX	 OZONE	 PM	2.5	 PM	10	 TEMPERATURE	

ASTHMA	 1.00000	 	 	 	 	 	

NOX	 -0.19325	 1.00000	 	 	 	 	

OZONE	 0.06841	 -0.22580	 1.00000	 	 	 	

PM	2.5	 -0.35197	 0.05584	 0.46193	 1.00000	 	 	

PM	10	 0.59444	 -0.16885	 0.25337	 -0.36233	 1.00000	 	

TEMPERATURE	 -0.10596	 -0.07616	 0.01092	 0.20153	 -0.20277	 1.00000	

Table	D3.	Result	of	Regression	Analysis.	Showing	a	matrix	of	correlation	coefficients	for	each	pollutant	for	the	year	
2011-2013.	Used	determine	initial	relationship	strengths	and	directionality.		
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Appendix E: P-Values for Regression Analysis and Moran’s I test on Residuals 

 

 

 

Figure	E1.	Distribution	of	Parameter	P-value	used	in	GWR.	The	bar	plot	shows	the	parameters	P-Values	used	
to	 assess	 significance	 of	 the	 global	 GWR	 model	 fit.	 Value	 below	 the	 5%	 significance	 line	 are	 considered	
significant.			

Figure	E2.	Distribution	of	Parameter	P-value	used	in	linear	regression.	The	bar	plot	shows	the	parameters	P-
Values	used	to	assess	significance	of	the	 linear	regression	model	fit.	Value	below	the	5%	significance	 line	are	
considered	significant.			
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GWR	
RESIDUALS	

EXPECTED	I	 MORAN'S	I	 Z-SCORE	 VARIANCE	 P-VALUE		 DISTRIBUTION	

	       

OZONE	 	      

2013	 -0.020408	 0.296232	 3.184637	 0.009886	 0.001449	 Clustered	

2012	 -0.034483	 0.752071	 7.587971	 0.010364	 0	 Clustered	

2011	 -0.020408	 0.167341	 1.866073	 0.010123	 0.062031	 Clustered	

	       

TEMPERATURE	 	      

2013	 -0.034483	 0.160976	 1.395175	 0.019627	 0.162963	 Clustered	

2012	 -0.020408	 0.752071	 7.587971	 0.010364	 0	 Clustered	

2011	 -0.034483	 0.142391	 1.165446	 0.023033	 0.243839	 Clustered	

	       

PM	2.5	 	      

2013	 -0.020408	 0.088491	 1.70341	 0.009993	 0.088491	 Clustered	

2012	 -0.020408	 0.105532	 1.269859	 0.009836	 0.204135	 Random	

2011	 -0.020408	 0.128538	 1.511089	 0.009716	 0.130766	 Random	

	       

PM	10	 	      

2013	 -0.021739	 0.439777	 4.579146	 0.010158	 0.000005	 Clustered	

2012	 -0.020408	 0.307112	 0.861681	 0.009795	 0.388863	 Random	

2011	 -0.020408	 0.113048	 1.338039	 0.009948	 0.180884	 Random	

	       

NOX	 	      

2013	 -0.019608	 0.804183	 10.533758	 0.006116	 0	 Clustered	

2012	 -0.020408	 0.116908	 1.374957	 0.009974	 0.169145	 Clustered	

2011	 0.076795	 -0.020408	 0.981619	 0.009806	 0.326288	 Clustered	

Table	E3.	Results	of	the	test	for	spatial	autocorrelation	(Global	Moran’s	I)	on	model	residuals.	Showing	the	
Moran’s,	I	statistic	size	and	significance	of	p-value.	Clustering	indicates	a	wrongly	specified	model	and	random	
distribution	indicates	an	accurate	model.	No	clustering	is	indicated	in	any	of	the	significant	model	fits	indicate	a	
correctly	specified	model	and	reasonable	error	in	residuals.	
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Appendix F: Explanatory Regression Model for 2011 and 2013 

 

 

\ 

 

      

Figure	F1.	Distribution	of	measure	 fit	 for	 Explanatory	Regression	Model	2011.	 Local	 R2	 values	are	
shown	 in	the	boxplot	with	the	global	GWR	and	 linear	regression	 result	plotted	for	 comparison.	The	
adjusted	R2	value	was	used	as	the	criteria	for	how	well	the	model	explained	ARHR.	PM	2.5	and	PM	10	
show	a	significant	strong	association	for	linear	regression	indicating	an	adequate	model	fit	but	was	not	
significant	for	GWR.	

Figure	 F2.	 Distribution	 of	measure	 fit	 for	 Explanatory	 Regression	Model	 2013.	 Local	 R2	 values	 are	
shown	 in	 the	boxplot	with	 the	 global	GWR	and	 linear	 regression	 result	plotted	 for	 comparison.	The	
adjusted	R2	value	was	used	as	the	criteria	for	how	well	the	model	explained	ARHR.	PM	2.5	and	PM	10	
show	no	association	for	linear	regression	and	GWR	indicating	a	weak	model	fit	for	both	global	and	local	
regression.	


