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ABSTRACT 

 

The relationship between wildfire and vegetation regrowth in California has important 
implications for policy and conservation. Despite this, few previous studies have investigated fire 
and regrowth at a statewide level or across broad time scales and vegetation classes. Consequently, 
there is no standardized measure to compare response to fire over time in different ecological 
communities, leaving an important gap in our understanding of how California will respond to 
increasing drought and fire frequency.  To investigate this relationship, I combined the power of 
emerging tools in data science implemented in Google Earth Engine (GEE) with freely available 
CALVEG data and Landsat 5 and 8 normalized difference vegetation index (NDVI) time series to 
examine the effects of fire frequency on vegetation regrowth for nine vegetation categories across 
California.  The nine vegetation categories were chosen to capture the statewide heterogeneity and 
included oak, conifer, hardwood, desert, herbaceous, shrub, mixed forest, other, and agriculture.  
Through the use of cloud computing I was able to simultaneously analyze every pixel in California 
that has burned since 1984, using NDVI as a measure of vegetation greenness and regrowth.  I 
found that mean NDVI was significantly lower in burned pixels than unburned pixels in 4 of the 9 
vegetation categories, and NDVI also decreased as fire frequency increased in 6 of the 9 vegetation 
categories.  I concluded that fire has a significant effect on vegetation regrowth in California, but 
to varying magnitude and direction across the different ecosystems.  
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INTRODUCTION 

 

Although the full effect of climate change on global fire behavior has yet to be seen, an 

emerging consensus on fire in the Western United States is taking shape, with quantitative studies 

indicating that climate change has contributed to the increase in frequency and severity of fires 

throughout California (Westerling et al. 2006, Miller et al. 2008, van Mantgem et al. 2013, 

Dennison et al. 2014, Arnold et al. 2014).  Although high severity fire regimes are sometimes a 

natural feature of the landscape, very severe fires can inhibit seedling regeneration, alter species 

composition, and allow the establishment of invasive species (Kozlowski 2012, Stephens et al. 

2013).  High fire frequency similarly causes varying effects on the landscape, ranging from 

increased heterogeneity to decreased fire severity (Trabaud and Galtié 1996).  Furthermore, factors 

such as grazing, clear-cutting, pest outbreaks, climate change, and fire exclusion have created fire 

regimes never before seen in the past (Wright 1974).  This deviation from historic baselines makes 

understanding contemporary patterns of post-fire vegetation regrowth even more important for 

predicting future landscape response to climate shifts.  

 Looking more closely at the interaction of vegetation and fire reveals complex relationships 

between species composition, fire regime type, and the measure of vegetation applied.  Many 

previous studies use satellite derived change in normalized difference vegetation index (NDVI) as 

a proxy for vegetation regrowth and have shown that aspect, elevation, and fire frequency have the 

greatest effect on NDVI (Díaz-Delgado et al. 2003, Casady et al. 2009, Huang et al. 2013, Paci et 

al. 2015, Meng et al. 2015).  In some cases, fire frequency inversely affects vegetation mortality 

by decreasing fuel load, subsequently leading to lower intensity fires (Crotteau et al. 2013, 

Stephens et al. 2013). Additionally, many landscapes reset to earlier stages of succession after 

burning, for example, woody plant and herbaceous species may convert back to shrubland, or fire 

resistant seedlings lying dormant in the soil may dominate the new landscape and push out old 

species (D’Antonio and Vitousek 1992, Sugihara 2006, Moreira et al. 2011, Crotteau et al. 2013).   

 This study builds on previous research, and seeks to understand patterns of post-fire 

vegetation regrowth at a statewide scale, at a resolution that has only recently been made possible 

by advances in computing power.  Specifically, this study aims to provide land managers with 

crucial information on the ways fire affects post-fire regrowth, so that they may better understand 

California’s changing ecosystem.  I will do this by using Google Earth Engine (GEE) to automate 
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the analysis of the effect of fire frequency on statewide vegetation regrowth, therefore providing a 

blueprint for future studies across varying spatial and temporal scales.  Furthermore, my dataset 

encompasses all fires in California, so the results should accurately represent the extent of the 

entire state, and allow me to identify large scale trends.  Ultimately, my study will identify patterns 

that cannot be seen in other fine scale studies that require highly dimensional studies of the 

landscape. To my knowledge, few others have characterized vegetation regrowth at such a broad 

spatial and temporal scale.  

This research will quantify the relationship between fire frequency and post-fire vegetation 

regrowth for every fire in California since 1984 (N=1771 *number of fires). Using NDVI as a 

measure of vegetation condition, I will identify if (a) burned pixels have lower mean NDVI values 

as compared to unburned pixels across each vegetation type and (b) if mean NDVI varies with fire 

frequency across each vegetation type. I hypothesize that higher fire frequency will lead to lower 

post-fire vegetation regrowth than low and intermediate frequencies, and that burned pixels will 

have lower mean NDVI than unburned pixels.  This information on post-fire vegetation trajectory 

will be invaluable for land managers to avoid economic losses from fire. 

 

METHODS 

 

Study site 

 

This study site includes all areas in California, USA (36.7783° N, 119.4179° W), burned 

and unburned, that intersect vegetation types that have burned at least once from 1984 to 2015.  

This intersection overlays all ten ecoregions that make up California, although some regions have 

burned more than others (Figure 1).  Dry and windy forest habitats in the south and east tended to 

burn more than the Central Valley and coastal areas (Flannigan and Wotton 2001).  Unsurprisingly, 

these forested areas also have very expansive and different ranges of vegetation, fire regimes, and 

management styles (Syphard et al. 2007). Though it is difficult to characterize California and its 

vegetation as a whole, I used 9 aggregated vegetation categories ranging from oak to agriculture 

(Figure A1) (Figure A2).  This allowed me to reduce pre-processing work, while still capturing 

the statewide heterogeneity.  Combined with fire frequency history, vegetation regrowth trajectory 

will provide an interesting insight into overall fire trends in California.  
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Figure 1. Map of study site showing unburned area and fire frequency. Differences in fire frequency can be seen 
in the magnified map in green. Data was downloaded from The California Department of Forestry and Fire Protection's 
CALFIRE Fire and Resource Assessment Program (FRAP). 
 

Data collection 

 

Data and software description 

 

To determine how fire frequency affected vegetation regrowth across a range of vegetation 

types I used a program called Google Earth Engine (GEE) (Google Earth Engine Team 2016).  

GEE harnesses cloud computing in a JavaScript API to allow users to host, process, and analyze 

planetary scale geospatial data.  Within GEE, I used four detailed 30m resolution spatial datasets 
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for my analysis: Landsat 5 annual NDVI composite, Landsat 8 annual NDVI composite, CALVEG 

statewide vegetation raster, and a cumulative FRAP fire frequency raster of all fires that occurred 

between 1984-2015  (U.S Geological Survey 1984, 2013, USDA-Forest Service 2004, California 

Department of Forestry and Fire Protection 2015). 

The Landsat 5 and 8 annual NDVI composites were created using Standard Terrain 

Corrected scenes and top-of-atmosphere (TOA) reflectance.  NDVI is an index used to estimate 

biomass and net primary productivity and is generated from the Near-IR and Red bands of each 

tile (NIR – Red) / (NIR + Red).  The index has values ranging from -1 to 1, with 1 being dense 

vegetation, 0 being bare ground, and negative values being snow or water. Composites are then 

created from all the scenes in each annual period, and all the images from each year are included 

in the composite, with the most recent pixel as the composite value (Xie et al. 2008, Google Earth 

Engine Team 2016).  After merging the composites, I filtered for the dates of my study period: 

January 1, 1984 – December 31, 2015 (Figure 2.A). The cumulative fire frequency raster ranges 

from pixels that have burned 0 times to pixels that have burned 7 times, and represents the 

cumulative number of fires across the whole 28-year study period (Figure 2.B).  I also filtered the 

65 vegetation types in the CALVEG raster down to 9 vegetation categories which include oak, 

conifer, desert, agriculture, hardwood, herbaceous, mixed forest, other, and shrub (Figure 2.C.1) 

(Table 1).  

One limitation of NDVI is that different processes can lead to the same observation. For 

example, if a grassland is converted to shrubland after burning, NDVI may remain the same since 

an equivalent amount of productive biomass is still present (Kozlowski 2012, Meng et al. 2014). 

As with any remotely sensed index, NDVI does not perfectly align with plant health, species 

composition, or productivity, so it can be difficult to capture the dynamic nature of vegetation. 

Although previous studies using satellite derived measures of vegetation after fire are important, 

they are limited to small study areas, short time spans, and specific vegetation classes.  
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Figure 2. Workflow diagram for the oak vegetation category.  This same process was repeated for each of the 9 
vegetation categories, with alterations to step “C” to reflect the different codes for each vegetation types. Each square 
represents a raster data layer covering all of California.  
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Table 1. Vegetation types contained in 9 vegetation categories.  Some oak vegetation types appear both in the 
hardwood and mixed forest vegetation categories, in order to separate out the effects of fire on oak. All vegetation 
types have burned at least once since 1984.  Data was provided through the U.S. Forest Service CALVEG GIS 
repository 
 

 
 

Extracting mean NDVI values for burned pixels, unburned pixels, and fire frequencies 1-7  

 

First, using the vegetation layer (Figure 2.C), I created 9 separate raster layers that classify 

each vegetation category of interest into a binary format of presence or absence (Figure 2.C.1). I 

then overlayed the mean NDVI layer (Figure 2.A.1), the fire frequency layer (Figure 2.B), and the 

binary layer (Figure 2.C.1).  This associates each pixel with a mean NDVI value, a fire frequency 

number, and a binary value.  I then queried the mean NDVI for burned pixels by selecting for fire 

frequency values over 0 (Figure 2.D), unburned pixels by selecting for fire frequency equal to 0 

(Figure 2.E), and for each fire frequency by selecting for values 1-7 (Figure 2.F).  I repeated this 

for all 9 vegetation categories, and then used reducers to get values for mean, standard deviation, 

sample size, percentiles, fixed histograms, and variance.  By using reducers to calculate summary 

statistics I was able to export out the information on the 500,000,000 pixels more efficiently, but 

consequently had to compromise the resolution of my data.  

Data Analysis 
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To analyze how wildfire has affected mean NDVI across California, I used a combination 

of analysis of variance (ANOVA), two sample t-tests, and linear regression.  

To investigate my first sub-question, I used the “BSDA” package implemented in R Studio 

to perform a two-sample t-test on the summary data extracted in GEE (Arnholt 2012, RStudio 

Team 2016) . After checking for normality and homogeneity of variances with a visual inspection 

of the data, I used burned state (burned/unburned) as the independent variable and mean NDVI as 

the dependent variable.  A t-test was performed on each vegetation category separately.   

To examine my second sub-question, I used a one-way ANOVA for each vegetation type 

with fire frequency as the independent variable and mean NDVI as the dependent variable.  After 

checking that the assumptions of normally distributed residuals and homogeneity of variances with 

a visual inspection of the data, I used the "rpsychi" and "asbio" packages to perform the one-way 

ANOVAs and subsequent post-hoc Tukey tests (Yasuyuki 2012, Aho 2016), using the ANOVA 

to test whether or not the mean NDVI values are significantly different overall, and the Tukey tests 

to determine which pairwise comparisons were different.  Finally, to quantify the overall trend in 

fire frequency, I regressed mean NDVI on fire frequency to get a slope and p-value using the “lm” 

function in R studio (RStudio Team 2016).  

Although the use of summary data in statistical testing is not ideal, this method was 

necessary due to the large size of our raw data (Larson 1992).  The full summary data used in all 

statistical testing is provided below along with the standardized coefficients of variation, since the 

condition of homogeneity of variance is not fully met (Table 2) (Table 3).  Specifically, in the 

frequency data, although statistically significant, this may overestimate the biological significance 

since small differences in means are often significant owing to the extremely large sample sizes 

(Lix et al. 1996).  Although my data did not meet the assumptions of homogeneity of variances, 

the exact magnitude that constitutes a violation of homogeneity is disputed, and therefore I decided 

to continue with parametric statistics.  
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Table 2. Table of summary statistics for burned and unburned pixels for each vegetation category. The 
coefficient of variation, mean NDVI, sample size, and standard deviation are included so that the biological 
significance can be assessed by the reader.  
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Table 3. Table of summary statistics for each fire frequency for each vegetation category. The coefficient of 
variation, mean NDVI, sample size, and standard deviation are included.  Blank spaces are present since some 
vegetation categories had a maximum fire frequency of less than seven.  
 

 
 

RESULTS 

 

Mean NDVI- burned and unburned Pixels  

 

A comparison between burned and unburned NDVI values across the 9 vegetation 

categories suggests that the effect of burning depended on vegetation category. Burned pixels had 

a significantly lower mean NDVI than unburned pixels in 4 of the 9 vegetation categories, which 

included oak, hardwood, herbaceous, and mixed forest. In the other 5 vegetation categories which 
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included conifer, shrub, desert, other, and agriculture, the burned pixels had a significantly higher 

mean NDVI than the unburned pixels (Table 2).  Overall, fire had a statistically significant effect 

on all vegetation categories, but the magnitude and direction of that effect varied across the 

categories (Figure 3).  

 
Table 2. Results of the t-tests for each vegetation category.  Statistically significant p-values at alpha = 0.05 are 
indicated with an asterisk  

 

 
 

  
 

Figure 3. Graph showing the trend in mean NDVI between burned and unburned pixels. The oak, hardwood, 
herbaceous, and mixed forest vegetation categories exhibited lower mean NDVI values in burned pixels as compared 
to unburned pixels.  The conifer, shrub, desert, other, and agriculture vegetation category showed the opposite 
relationship. 
 

Mean NDVI by fire frequency 

 

An examination of mean NDVI by fire frequency revealed similar trends as in the previous 

analysis.  The p-values and post-hoc results showed that almost all of the pairwise comparisons 

between each fire frequency were significantly different, with the exception of 10 out of the 131 
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tests, although this may have been driven by differences in sample size (Table 3) (Figure 4).  After 

regressing mean NDVI on fire frequency, I saw that conifer, oak, hardwood, herbaceous, mixed 

forest, and shrub decreased significantly as fire frequency increased (Table 4).  On the other hand, 

desert, other, and agriculture showed little to no change in mean NDVI with fire frequency (Figure 

5). Interestingly, 6 of the 9 vegetation categories showed an initial increase in mean NDVI in pixels 

that burned once, and some categories like desert, herbaceous, and shrub continued to show an 

increase until frequency 3. Conversely, oak and hardwood showed marked decreases in mean 

NDVI from frequency 5 to 6, with their mean NDVI dropping below that of a desert.  

 
Table 3. Summary of the results of ANOVA for each fire frequency.  Statistically significant p-values at alpha = 
0.05 are indicated with an asterisk.  The top portion of the table shows the post-hoc Tukey p-values for each pairwise 
comparison of each fire frequency for all 9 vegetation categories. The bottom portion shows the overall p-value and 
F-statistic for each ANOVA test.  
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Figure 4. Bar graphs illustrating the relationship between NDVI and fire frequency. Results from ANOVA 
largely parallel the results of the linear regression analysis, with desert, shrub, and herbaceous categories exhibiting 
no change or modest decreases, and oak, conifer, and hardwood exhibiting precipitous declines with increasing fire 
frequency. Letters indicate significance at alpha = 0.05.  
 
Table 4. Results of the linear regression of mean NDVI on fire frequency.  Statistically significant p-values 
significance at alpha = 0.05 are indicated by an asterisk.  All slopes are negative but only the oak, conifer, hardwood, 
mixed forest, and shrub categories had significantly negative slopes. 
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Figure 5. Graph of mean NDVI by fire frequency for each vegetation category.  Fire frequency 1 represents pixels 
that have burned 1 time in the 28-year time period from 1984 to 2015.  Some pixels burned up to 7 times. 
 

DISCUSSION 

 

Overall, I successfully used Google Earth Engine to address all of the questions proposed 

in this study. Despite the limitations of the data posed by the differences in sample size, species 

composition, and ecosystem type, I was able to discern habitat-specific patterns that are consistent 

with published observations on how ecosystems respond to fire. I found that mean NDVI was 

significantly lower in burned pixels than unburned pixels in 4 of the 9 vegetation categories, with 

the opposite relationship seen in the other 5 categories.  In addition, I saw that mean NDVI varied 

with fire frequency, with NDVI decreasing as fire frequency increased in 6 of the 9 vegetation 

types.  Although my findings are consistent with the results of previous studies performed at 

smaller spatial and temporal scales, a number of factors make this study novel including the use 

of fire frequency as opposed to the more commonly used metric of fire severity, implementation 

of the project in Google Earth Engine, and the extremely high resolution sampling of the state of 

California.  

 

Trends in mean NDVI 

 

Burned, unburned, and fire frequency 
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Mean NDVI values of burned pixels are significantly lower than unburned mean NDVI 

values within vegetation types, although this relationship is subtle. The relationship between NDVI 

and fire is well documented at small scales, and the present study compliments these results in that 

I found the relationships to hold true even at the statewide scale (Meng et al. 2015, Soulard et al. 

2016).  After looking at the results of the ANOVAs and linear regressions, it was apparent that fire 

was having substantial effects on all groups, but the directionality of the relationship varied by 

vegetation category. I also saw that in 6 of the 9 vegetation types, mean NDVI decreased as fire 

frequency increased, although this relationship was not linear as expected.  Many categories 

showed initial peaks then sharp declines as fire frequency increased, a pattern that has been 

documented in the literature (Trabaud and Galtié 1996, Díaz-Delgado et al. 2002, Lesieur et al. 

2002).  

 

Grasslands- herbaceous. Grasslands are dominated by herbaceous monocots and small stature 

woody dicots (Dixon et al. 2014). The effect of fire on herbaceous plant assemblages are complex 

and can range from negative to neutral to positive (Gleason 1913, Hanson 1939). Because fires in 

grasslands often ignite and spread quickly, the basal portions of plants sustain little damage in 

these “cool” burns (Cheney and Sullivan 2008).  Furthermore, the removal of litter by fire has also 

been shown to intensify growth in grasslands by increasing space, light, and nutrient availability.  

Seed germination is also often stimulated by burning, although yields have been shown to decrease 

when grasslands burn too frequently (Kozlowski 2012, Huenneke and Mooney 2012).  These 

results are consistent with my findings in that at low fire frequencies, the mean NDVI of 

herbaceous habitats increased, but as fire frequency increased, mean NDVI showed a prominent 

decrease. Overall, grasslands may exhibit either increases or decreases in NDVI depending on the 

type of vegetation that burned and the frequency and intensity of the fire.    

 

Mediterranean- oak and hardwood.  Oak and hardwood species in the Mediterranean climate 

zone of California are highly resilient and adapted to fire (Naveh 1975).  Mediterranean plants are 

known to exhibit a positive feedback with fire, where increased reproduction and accelerated post-

fire vegetation regrowth allow plants to overcome the stress of being burned (Kozlowski 2012). 

Many oak species also experience re-sprouting from their root systems and can even survive the 
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loss of all aboveground biomass from fire (Díaz-Delgado et al. 2002).  Seemingly in contrast, my 

results showed a negative relationship between these two vegetation categories and burning. This 

relationship could be due to confounding unmeasured landscape factors or spatial differences in 

fire occurrence, and underscores the need for further species-specific investigations.  There is also 

evidence in the literature that the productivity of oaks is similar to that of chaparral species after 

fire, which resembles my finding in that as fire frequency increases, oak and hardwood mean 

NDVI drops to that of chaparral, and then even lower to that of deserts (Kozlowski 2012).  The 

sudden drop in mean NDVI seen between frequency 5 and 6 might be an artifact of low sample 

size, but it is interesting that both categories exhibit the same anomaly.  Oaks and hardwoods may 

also be replaced with shrubs exhibiting pyrophytic behavior when burned too frequently, and this 

may be another explanation for the drop in mean NDVI seen in my results (Bowman et al. 1988, 

Kozlowski 2012).  

 

Temperate forest- conifer and mixed Forest.  In forests, burning can reset succession to pioneer 

stages by acting as a retrogressive agent, and after repeated burnings forest composition and 

structure may become dominated by fire resistant shrubs and trees (Kozlowski 2012). Although 

fire can have a deleterious effect on forests, it has also been shown to be a key factor in maintaining 

the productivity of valuable trees such as Douglas fir by increasing nutrient availability, clearing 

the understory, and increasing overhead light penetration (Spies and Franklin 1991).  

Consequently, through the creation of a more open canopy, fire may inherently reduce NDVI in 

forests, yet this may not be an indicator of poor forest health; high NDVI does not always perfectly 

correspond to vegetation health, it is simply a tool to estimate greenness.  Additionally, although 

we see a negative mean NDVI slope between both burned and unburned pixels and with increasing 

fire frequency in the conifer and mixed forest categories, it is hard to discern whether this is due 

to vegetation replacement, timber harvest, or stand death. Considering my vegetation categories 

span a large variety of species with different dispersal strategies, fire resistance levels, and shade 

tolerances, it is hard to make general statements about the mechanism causing these patterns.  

 

Chaparral- shrub. Chaparral communities exist in Mediterranean-type climates and are 

dominated by sclerophyllous shrubs with extensively branched root systems that adapt these plants 

to the hot rocky slopes they inhabit (Kummerow et al. 1977). Consistent with my expectations, I 
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found that burned pixels had higher mean NDVI values than unburned pixels.  This relationship 

was not surprising since chaparral is a fire induced-vegetation type and is able to persist well in 

fire prone areas (Keeley 1986). It was also interesting that as fire frequency increased, the shrub 

category maintained a level slope at intermediate fire frequencies, although it eventually started 

declining more quickly at high fire frequencies. This pattern could be because many shrub species 

are negatively affected by short fire return intervals, which causes large kills of vulnerable 

sprouting plants and decimation of seedlings (Zedler et al. 1983, Haidinger and Keeley 1993).  

Paradoxically, some species have also developed characteristics that make them highly flammable 

and reliant on recurring fires for optimal health (Bond and Midgley 1995, Cowan and Ackerly 

2010).  Likewise, several chaparral species’ seeds lie dormant in the soil for long periods of time 

until burning activates them (Keeley 1986, 1987).  Furthermore, when fire burns through chaparral 

it consumes most biomass and initiates new succession, where gaps are easily filled in with new 

or dormant species that may have greater NDVI values than that of species present in the climax 

community (Kozlowski 2012). Since so many different species comprise my shrub category, it is 

difficult to determine the exact reasons for the pattern we see, but overall fire is having a positive 

or neutral effect on shrubs in my analysis.  

 

Other, agriculture, and desert. The other and agriculture categories showed interesting patterns 

in their results, but because they are human managed landscapes, it is difficult to infer the 

relationship between fire and mean NDVI without more information.  On the other hand, deserts 

are well-studied, and exhibited increased NDVI with both burn occurrence and increasing fire 

frequency. Although prevalence of fires is relatively low in deserts, the effect fire has on the 

landscape can be severe (Brown and Minnich 1986).  Grass species usually sustain little fire 

damage because of the rapid way fires move through them (Cheney and Sullivan 2008).  

Conversely, woody species require several years to regrow and repeated burning keeps the plant 

in a juvenile stage (Kozlowski 2012). This differing susceptibility of woody species and grasses 

to fire makes attributing the positive relationship between mean NDVI and fire frequency to fire 

itself difficult.  However, to support the argument that fire is responsible for the positive 

relationship, research has shown that fire may be controlling invasive species and allowing native 

plants to flourish, therefore increasing mean NDVI (Brooks and Pyke 2002, DiTomaso et al. 2006).  

External factors, such as human disturbance and climate change, may also be allowing for the 
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establishment of invasive fire-resistant species that fill in patchy areas and create contiguous 

biomass, which could also increase NDVI (Brooks et al. 2004, Brooks and Matchett 2006, Brooks 

and Chambers 2011).  Overall, the patterns revealed by these analyses are interesting, but require 

more spatially explicit and species-specific investigations.  

 

Google Earth Engine 

 

 This study illustrates both the power of GEE to handle and analyze large raster datasets, as 

well as its processing and statistical limitations.  The scale of this project made it nearly impossible 

to do without GEE’s vast public data archive and parallel processing of each pixel.  This is because 

traditional geospatial software requires users to store and upload their own datasets and the 

processing capability is restricted to the power of the desktop computer used (Yang et al. 2011).  

GEE on the other hand, utilizes cloud computing to efficiently analyze geospatial data (Hansen et 

al. 2013).  While GEE is one of the most powerful raster calculators freely available, it’s limitations 

are apparent.  I found that although Google encourages their product to be used on a worldwide 

scale, their user memory limit makes it hard to even work on a state-wide scale.  Furthermore, 

there is limited built in statistical functionality, and the site becomes difficult to use during peak 

times, forcing me to run computations on weekends and late at night. Despite these shortcomings, 

GEE was an invaluable tool, without which this kind of work would not be possible.  

 

Statistical robustness of geospatial data 

 

This study was caught between the conventions of ecology and the newer field of remote 

sensing, and consequently had to balance the statistical requirements of both fields.  Problems in 

ecology are usually explained and presented with robust statistical tests, while geospatial science 

can often answer questions without the use of traditional statistics (Unwin 1996).  Furthermore, 

methods of ecology hold assumptions that are almost never true with geospatial data such as equal 

sample size, homogeneity of variance, independence, and reproducibility (Elston and Buckland 

1993). My study sought to answer an inherently spatial ecological problem within the bounds of 

traditional statistics, and consequently had to adhere to these assumptions.  I found that due to my 

massive sample sizes, the line between statistical significance and biological significance became 
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blurred.  During my analysis, I also had to compromise the resolution of the data in order to reduce 

dimensionality so that statistical programs could analyze the vast amounts of data.  Although I 

faced limitations, I still found the tests I used to be adequately powerful and robust to the difficult 

data I was working with.  

 

Future directions 

 

 Although this study found statistical significance in the relationship between fire and 

NDVI, I will incorporate other external variables such as climate, aspect, and elevation, as well as 

measures of spatial autocorrelation and pseudoreplication into my future work.  Most importantly, 

I hope to analyze each vegetation type at the species level, rather than in broad categories, to further 

clarify the species-specific responses to fire. The flexibility of GEE will allow me to do this as 

well as incorporate a temporal aspect into my analysis to measure regeneration before and after 

fire events.  Understanding this complex relationship between fire, NDVI, and vegetation type is 

necessary in management, policy, and economic decisions throughout California. 

 

Broader implications 

 

In addition to providing significant ecological insight into the effects of fire on California’s 

landscape, this research is also an important tool for land managers who want to allocate scarce 

fire resources to vegetation categories that show poor regrowth.  Using these results, decision 

makers will also be able to identify and monitor vulnerable locations, such as those in the Southern 

Sierra Nevada mountains and the South Coast, that have high fire frequency and low NDVI. 

Furthermore, as the climate continues to change, there is evidence that the frequency and severity 

of fires is increasing in California, and broad-scale quantitative studies like this are becoming 

increasingly important (Westerling et al. 2006, Miller et al. 2008).   

My use of Google Earth Engine also provides a useful case study of the benefits and 

limitations of this new geospatial tool.  Although the limitations decreased how efficiently I could 

work, the tool itself made this type of broad spatial and temporal scale research possible.  As GEE 

improves, and more geospatial cloud computing interfaces become available, new and important 

insights into contemporary and historic patterns of fire and vegetation will be possible. 
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APPENDIX A: Full Map of Burned and Unburned Areas 

 

 
 

Figure A1. Maps of burned and unburned areas by each vegetation category. Burned areas are shown in pink and 
unburned burned areas in purple.  It is apparent that some categories burned more than others, for example, shrub has 
much more red than the desert and agriculture categories.   
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APPENDIX B: Full Map of Fire Frequency 

 

 
 

Figure A2. Map of fire frequency for each vegetation category. Increasing fire frequency is represented by 
increasingly dark colors of green.  Some areas exhibit more frequent fires, for example, the shrub and conifer 
categories, while other exhibit very little burning at all, for example, the agriculture category.  
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