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ABSTRACT 
 

Lakes contribute to local and regional climate conditions, cycle nutrients, and are indicators of 
climate change due to their sensitivity to disturbances in their air and watersheds. Spaceborne 
remote sensing (RS) techniques have promise for studying lake dynamics by allowing for 
consistent spatial and temporal observations and estimates of lake functions without in situ 
measurements. Recent advances in modeling lake metabolism use high frequency sensor data, 
but there are few existing algorithms that relate RS products to in-lake estimates of metabolic 
rates. I use satellite surface temperature observations from MODIS product MYD11A2 and 
published in-lake gross primary productivity (GPP) estimates for ten globally distributed lakes, 
with areas greater than 1 km2 , varying trophic states and surrounding land cover to produce a 
univariate quadratic equation model. Statistical analyses reveal a significant positive relationship 
(p<.00001) between MODIS temperature data and in-lake GPP for the global model. I performed 
preliminary validation on the global model using a lake reserved from the data set (Lake Acton) 
resulting in a strong correlation (R2=0.76) between MODIS-derived GPP and previously 
modeled values. Lake-specific algorithms such as those for Rotorua (NZ) and Kentucky (USA) 
had stronger relationships than the global model derived from all ten lakes, pointing to the 
influence of regional biological and physical characteristics of the lakes and their watersheds. 
Analyses of land cover type within lake watersheds and in-lake GPP revealed a positive 
correlation with forested land cover and GPP (R=0.67, p=0.03).Land cover type was 
incorporated into a separate model that was not statistically significant. These data suggest that it 
may be possible to predict GPP for lakes across a wide geographic region.  
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INTRODUCTION 

Lakes play an important role in the global carbon cycle, support habitat for biodiversity 

and regulate climate (Postel 2000, Bronmark and Hanson 2002, Krinner 2003).  Although lakes 

cover a small global area, there more than 117 million lakes on the planet, they are 

disproportionately important (Verpoorter et al. 2014).  At the landscape level, freshwater lake 

ecosystems cycle carbon by receiving and processing terrestrial carbon from their surrounding 

catchments as well as by fixing carbon via photosynthesis by biota within the lake (Tranvik et al. 

2009).  In addition to carbon, lakes also cycle nutrients including phosphorus and nitrogen 

(Cottingham et al. 2015) 

Sensitive to inputs such as increased nutrient load, pollution, acidification, and invasive 

species, lakes are indicators of ecosystem health and sentinels of climate change (Williamson et 

al. 2009). For example, Lake Taihu in China is one of many large lakes experiencing increased 

productivity and cyanobacteria blooms (McCarthy et al. 2007). However, the mechanisms of 

how climate change will affect biological lake processes such as productivity are still not well 

understood. We know, nonetheless, that anthropogenic climate change caused by burning fossil 

fuels that release excess carbon into the atmosphere impacts the global carbon cycle by putting 

lakes at risk for increased productivity and nutrient cycling (Blenckner et al. 2002). Excessively 

productive lakes can lead to harmful algal blooms that, ultimately, can result in the death of lake 

fauna (Anderson et al. 2002). Despite their relatively small size, lakes can impact global 

productivity and the overall global carbon cycle more than previously thought by serving as both 

sources and sinks of carbon. This relatively disproportionate impact on global productivity is 

because twice as much carbon flows into inland aquatic systems from the land as flows from the 

land to sea (Cole et al. 2007).  Increased global productivity could lead to changes in vegetation 

growth and consequently alter food webs (Carpenter et al. 1897, Nemani et al. 2003). In addition, 

changes in gross primary productivity (GPP) can result from differences in land cover types 

within the watershed, which contribute nutrients that get exported to freshwater systems (Gergel 

et al. 1996). In contrast, in-lake contributors to GPP include size, depth, and morphology 

(Carpenter et al. 2005).  

Estimating GPP and respiration (lake ecosystem metabolism) has recently been used as a 

measure of function within lakes.  Solomon et al. (2013) modeled daily estimates of respiration 
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and gross primary productivity for the course of a full year in 25 globally distributed lakes. In 

these lakes respiration rates differed on a day-to-day basis, resulting from variability in GPP. 

This study created a spatially and temporally extensive database of modeled lake GPP and 

respiration that can be used, along with remotely sensed (RS) data to create models of ecosystem 

metabolism. Here, as a first step, I focus on building algorithms for predicting GPP in lakes.  

What is the importance of examining the relationship of RS and in-lake modeled data to 

predict GPP? Understanding ecosystem-level processes and responses to disturbances such 

as climate change requires frequent, long-term data collected on large spatial scales (Williamson 

et al. 2009) and remote sensing offers the potential to make global estimates of productivity. 

Temporally frequent data are useful because productivity is highly variable on an annual basis 

and long-term analysis can help to detect patterns and changes. Yet obtaining such data is 

difficult given the small temporal and spatial scales and varied field methods carried about in 

many lake studies (Palmer et al. 2015). Traditional methods of bottle sampling cannot be scaled 

up to the ecosystem level because of uncertainty and the amount of physical labor required. 

Although the advent of sensors and sensor networks (see the Global Lake Ecological 

Observatory Network www.gleon.org) that collect high frequency data in lakes are an 

improvement, too few lakes have such equipment. For example, the Solomon et al. (2013) 

metabolism modeling project used dissolved oxygen measurements from GLEON’s in-lake 

sensors. Here I suggest that the use of The MODerate Resolution Imaging 

Spectroradiometer  (MODIS) sensor with its temporal resolution of 1 to 2 days, and a spatial 

resolution from 250 m to 1km may be, when coupled with in-lake data, a useful tool for 

expanding spatial and temporal estimates of lake GPP.    Components of lake metabolism such as 

GPP and respiration can vary on a day-to-day and seasonal basis due to differences in light and 

nutrient availability (Solomon et al. 2013) and MODIS is a sensor that can capture these short-

term changes.  There have been studies conducted using the MODIS sensor that applied ocean 

techniques to inland waters, yet there are none that use it to estimate freshwater GPP and lake 

productivity. 

 How can remote sensing be applied to better understand lake ecosystem processes? 

Specifically, what is the relationship between remote sensing data and in-lake estimates of GPP? 

Objectives include testing for a relationship between MODIS surface temperature data and in-

lake GPP estimates that span large geographic extents and across trophic states in order to 
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identify a robust ‘global’ algorithm, I hypothesize that there is a positive relationship between 

satellite-derived surface temperature and in-lake metabolism estimates, and that a global 

algorithm can be identified with the incorporation of weather anomaly corrections.  Because 

lakes are influenced by their surrounding watersheds, I also examine MODIS land cover data and 

in lake modeled GPP to examine the influence of land cover types on productivity. Finally, I 

explore whether the combination of watershed land cover and in-lake temperature results in 

stronger predictions of in-lake GPP.  

 

METHODS  

 

Study system and site description 

 

GLEON dataset 

 

The study system for this project includes ten globally distributed lakes that are a subset 

of the twenty-five lakes used by Solomon et al. (2013) that examined in-lake metabolism through 

modeling gross primary productivity and respiration. These lakes are part of the Global Lake 

Ecological Observatory Network (GLEON; www.gleon.org), whose mission it is to understand 

lake ecosystem function in a changing environment.  Many GLEON lakes are equipped with 

high frequency and high-resolution sensors that collect dissolved oxygen (DO), water 

temperature, and light data along with meteorological variables. Several recent papers (e.g., 

Solomon et al. 2013) have utilized these data to model in-lake daily metabolism (GPP and 

respiration). In this study, I include Lake Balaton (Hungary), Kentucky Lake (Kentucky USA), 

Lake Mendota (Wisconsin, USA), Müggelsee Lake (Germany), Lake Pontchartrain (Louisiana, 

USA) Lake Rotoiti (New Zealand), Lake Rotorua (New Zealand), Sunapee Lake (New 

Hampshire, USA), Lake Taihu (China), and Trout Lake (Wisconsin, USA) (Table 1) all of which 

have modeled GPP data for 2008. 
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Table 1. List of Lakes and Identifying Information. Lakes utilized in this study span a variety of trophic states, 

sizes, and geographic locations. Latitude is in degrees North of the prime meridian and longitude is in degrees West 

of PM. 

To create a model predicting in-lake GPP from lake surface temperature, I used in-lake 

gross primary production estimates (mg O2/L/d) for GLEON lakes (Solomon et al. 2013) as the 

dependent variable in my model.  These GPP estimates were derived by analyzing changes in 

dissolved oxygen as measured by the in-lake buoys using maximum likelihood fit methods.  

 

Remote sensing dataset  

 

The remote sensor used in this study is MODIS (Moderate Resolution Imaging 

Spectroradiometer), a sensor aboard NASA’s AQUA satellite that completes a rotation around 

the Earth every one to two days at varying spatial resolution depending on the information 

gathered. The MODIS lake surface temperature data used in this study are stored on a 1 km 

sinusoidal grid as average values of clear-sky surface temperature in the 8-day period.This 

temporal frequency of this MODIS data is critical to estimate the daily lake GPP data, and 

preferred to that of other sensors such as LANDSAT which only completes an Earth rotation 

once every 16 days and therefore provides fewer data points. MODIS has 36 spectral channels or 

bands that provide information about conditions in the water, land, and atmosphere (Table 2). In 

addition, it is one of the few sensors to have publically available data from the Earth Science 

Lake Name Country Latitude Longitude Area 
(km2) 

Average 
GPP (mg 
O2/L/d) 

Trophic 
State 

Start 
Date 

End 
Date 

Balaton Hungary 46.717 17.245 38 2.57 Oligotrophic 6/13/08 10/11/08 
Kentucky USA 36.739 -88.109 970 2.19 Mesotrophic 1/1/08 12/30/08 

Pontchartrain USA 30.316 -90.283 1603 1.76 Olio-
mesotrophic 3/21/08 12/31/08 

Rotorua New 
Zealand -38.066 176.266 79.8 0.73 Eutrophic 7/13/07 7/12/08 

Sunapee USA 43.383 -72.033 16.7 0.052 Oligotrophic 5/1/08 10/30/08 
Taihu China 31.287 120.202 2338 2.69 Eutrophic 10/9/07 10/30/08 
Müggelsee Germany 52.438 13.648 7.46 2.33 Eutrophic 3/11/08 12/7/08 
Mendota USA 43.099 -89.652 39.4 2.32 Oligotrophic 7/10/08 11/3/08 

Rotoiti New 
Zealand -38.039 176.428 34.6 0.57 Eutrophic 7/25/08 7/23/09 

Trout USA 46.029 -89.665 16.1 0.076 Oligotrophic 5/30/08 11/10/08 
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Distributed Archive Centers from its inception in 2002 (Engel-Cox 2004). There are 44 

processed data sets or products available on NASA’s Land Processes Distributed Active Archive 

Center website   (LPDAAC), but region-specific algorithms may need to be applied to these data 

to acquire desired measurements. Using the MODIS sensor to study changes in ecosystem 

processes and patterns over time is preferred given its increased temporal granularity compared 

to other sensors. 
 
Table 2: MODIS spectral bands and their primary uses. MODIS sensor has 36 available spectral bands, and 
bands 1-3 are used to calculate the Land Surface Temperature product. 
 

Band Number Primary Use 
1-3 Land/Cloud Aerosol Boundaries 
4-7 Land/Cloud Aerosol Properties 

8-16 Ocean Color/Phytoplankton/Biogeochemistry 
17-23 Atmospheric Water Vapor 
24-25 Atmospheric Temperature 
26-28 Cirrus Cloud/Water Vapor 

29 Cloud Properties 
30 Ozone 

31-32 Surface/Cloud Temperature 
33-36 Cloud Top Altitude 

  
 

The MODIS land cover data are also from the LPDAAC and are stored on a sinusoidal grid at a 

500-meter resolution. Single images showing land cover are available for each one year time 

period (Table 3). I combined the 16 MODIS Land Cover classifications from Type 1 into five 

groups for easier analysis. Groups 1,2,3,4, and 5 comprised group 1, called ‘Forest.’ I classified 

groups 6 and 7 as shrublands. I combined groups 8,9, into a savanna/grassland classification. I 

identified groups 11,12, and 14 as croplands, and lastly groups 13 and 16 as urban/bare. I 

excluded snow, ice and water because of the focus on terrestrial land cover in the watershed.  
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Table 3: MODIS MCD12Q1 Land cover types description (Classes 1-4) The MODIS land cover product has 

distinctly classified land cover types, including forests, savannas, and croplands.(Source: LPDAAC) 

 

Class IGBP (Type 1) UMD (Type 2) LAI/fPAR (Type 3) NPP (Type 4) 

0 Water Water Water Water 

1 
Evergreen needleleaf 

forest 
Evergreen 

needleleaf forest 
Grasses/Cereal 

crops 
Evergreen needleleaf 

vegetation 

2 
Evergreen broadleaf 

forest 
Evergreen broadleaf 

forest Shrubs 
Evergreen broadleaf 

vegetation 

3 
Deciduous needleleaf 

forest 
Deciduous 

needleleaf forest Broadleaf crops 
Deciduous needleleaf 

vegetation 

4 
Deciduous broadleaf 

forest 
Deciduous broadleaf 

forest Savanna 
Deciduous broadleaf 

vegetation 

5 Mixed forest Mixed forest 
Evergreen broadleaf 

forest 
Annual Broadleaf 

vegetation 

6 Closed shrublands Closed shrublands 
Deciduous 

broadleaf forest Annual Grass vegetation 

7 Open shrublands Open shrublands 
Evergreen 

needleleaf forest Non-vegetated land 

8 Woody savannas Woody savannas 
Deciduous 

needleleaf forest Urban 
9 Savannas Savannas Non-vegetation  

10 Grasslands Grasslands Urban  
11 Permanent wetlands    
12 Croplands Croplands   
13 Urban and built-up urban and built-up    

14 
Cropland/Natural veg 

mosaic    
15 Snow and ice    

16 
Barren or sparsely 

vegetation    
254 Unclassified    

 

GPP and  lake surface temperature model  

 

To determine potential relationships between these MODIS products and the in-lake 

modeled GPP estimates, I initially explored four MODIS data products. These products were: 

Surface Temperature and Emissivity, (MYD11A2), Vegetation Indices (MYD13A2), Surface 

Reflectance (MYD09A1), and Terrestrial Gross Primary Production (MYD17A2). Initial tests 

revealed strong relationships only between in-lake modeled GPP and the surface temperature 
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observations (measured in Kelvin); I therefore selected the MYD11A2 product as the main focus 

for this investigation. 

I obtained surface temperature observations from NASA’s Reverb metadata discovery 

tool (NASA LPDAAC 1). I also downloaded MODIS Aqua surface temperature product 

(MYD11A2) data for each lake for the time periods (Table 1) corresponding to the in-lake 

modeled GPP. The MYD11A2 is a ground-truth validated product containing global land surface 

temperature (LST) and emissivity 8-day data complied from daily 1 km resolution photos. The 

emissivity data, representing how well the surface could radiate thermal energy, were constant 

values throughout the time period of the study and not used.  I processed the retrieved hdf files in 

MATLAB (r2016a) by running scripts to extract daytime LST data. Pixel indexing ensured that 

the point of MODIS observation was in the center of each lake body. I compiled daily in-lake 

GPP estimate values into 8-day average values in order to be comparable to the 8-day average 

LST values.  To ensure that temperature outputs were from the lake instead of nearby land, I 

used Google Maps to cross-referenced the coordinates of the lake data points used in this study. 

To determine the relationship between lake surface temperature (LST)(independent 

variable x) and in-lake GPP (dependent variable y) for each of the 10 lakes, I used linear 

regression to create best fit curves a general, combined model, heretofore referred to as the 

‘Global’ model (GM).  I also examined relationships for individual lakes.  First, I screened for 

invalid outputs and removed temperature values of 0. I plotted eight-day averaged GPP values 

against eight-day averaged LST values. I then used linear regression to create a model for each 

lake, fitting the data to a univariate quadratic equation.  

 

GPP and lake surface temperature global model validation 

 

As a preliminary test of my global model’s effectiveness for predicting, over a broad 

geographic region, in-lake GPP, I used LST data from a lake in the GLEON metabolism study 

(Lake Acton) as a test case. Lake Acton was the only lake used for validation because it was not 

included in the creation of the GM and it was the only remaining lake Solomon et al. (2013) with 

identically calculated GPP values and large enough in area to be captured by the 1-km MODIS 

sensor. To test the strength of the GM, I used the resulting quadratic equation from the global 

model to predict the GPP of my test case Lake Acton (dependent variable) from the LST 
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(independent variable). Next, I correlated the new, MODIS-derived estimated GPP values with 

Solomon et al.’s (2013) previously in-lake modeled GPP values and fit a linear line to the plotted 

points.  

 

Land cover and GPP model 

 

Because land cover can influence the amount and type of nutrients that enter a lake 

system and thus affect a lake’s productivity, it was important to also consider the effect of land 

cover on lake GPP. To analyze the relationship between watershed land cover type and lake 

GPP, I first I downloaded the MODIS land cover product MCD12Q1 (NASA LPDAAC 2). For 

each lake, I downloaded a single hdf file from the LPDAAC for the corresponding one year time 

period and read it into ArcMap (version 10.4.1).  

To conduct the watershed delineation, I obtained preprocessed GeoTIFF files from Cary 

Institute GIS specialist from the Weathers’ Lab, B. Steele to create Digital Elevation Models 

(DEMs). Then, I calculated watershed boundaries using the pour point method (Jenson and 

Domingue 1988) in ArcMap (ESRI). I layered the land cover raster over the newly created 

watershed boundary layers. Using the zonal statistics tool in the Spatial Analyst extension, I 

calculated the number of pixels within the watershed boundary containing each land cover type 

to obtain percentage land cover types.  

 To test if there was a relationship between lake GPP and land cover, I ran a correlation 

test for the number of pixels in each land cover type and lake GPP. There are 16 distinct land 

cover types as identified by the MCD12Q1 product, but I compressed them into five groups for 

ease of analysis (Table 4).  
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Table 4. Land Cover groupings. Five compressed land cover groups derived from the original 16 MODIS land 

cover classifications land cover types 0 and 15 were discarded, which are water, snow and ice.  

 

Land 
Cover 
Group  Label  MODIS Pixel Labels 

1 Forest 1-5 

Evergreen needleleaf, evergreen broadleaf, 

deciduous needleleaf, deciduous broadleaf, mixed 

2 Shrublands 6-7 closed and open shrublands 

3 Grasslands 8-10 wood savannas, savannas, grasslands 

4 
Wetlands and 
Croplands 11,12,14 

permanent wetland, croplands, 

 natural vegetation mosaic 

5 Urban and Barren 13,16 urban and built up, barren or sparsely vegetated 
 

Multivariable Model  

 

If there is a positive relationship between number of pixels in each land cover type and 

lake GPP, this indicates that land cover type affects GPP in some way, and land cover will 

become a variable in a now multi-variable model, since temperature no longer suffices as the 

only input. To determine the relative importance of in-lake temperature and surrounding 

watershed land cover on in-lake GPP, I performed a correlation test between the two variables.  

Since the land cover data are temporally static unlike the temperature data, I used a single, 

average GPP point for each lake as well as the percent land to then create a multivariate model 

using GLM or generalized linear modeling in R.  

 

RESULTS 

 

GPP and lake surface temperature model 

 

MODIS LST data correlated positively with in-lake modeled GPP in linear regression. 

The relationships was significant at the p<0.001 level. The best fit model for all combined lake 

data, or global model GM, is the positive univariate quadratic equation GPP=0.0046(LST)2 – 
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0.038(LST) + 0.23 (Figure 1 and 2). The R-squared value is 0.279 and the p-value is 3.23 E -19. 

In addition, nine of the ten individual lake models had higher R2 fits than that of the GM (Table 

5). The two best fit individual lake models were Kentucky and Rotorua, with R-squared values 

of 0.59 and 0.71, respectively. Both lakes are in temperate zones, with Kentucky in the Northern 

Hemisphere and Rotorua in the Southern Hemisphere (Figure 3). The lines for the individual 

lake models show the optimum temperature ranges for best fit to be between 15 and 20 degrees 

Celsius (Figure 4). Lakes with poor individual fits such as Balaton have temperatures outside this 

optimum range. In addition, all or most of the data points lakes with stronger individual fits (like 

Rotorua) do not have outliers far beyond this range. It is also interesting to note that most of the 

individual model lines curve upward with the exception of Rotoiti, which, while more flat, 

inflects downwards.  Lastly, lakes with poorer individual fits tend to be more oligotrophic 

(Balaton, Mendota, Trout), while stronger fit lakes are more mesotrophic and eutrophic 

(Kentucky, Rotorua, Rotoiti). 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Figure 1. General Model (GM) for relationship between MODIS LST and In-Lake Modeled GPP. 
Quadratic model fit for all 10 lakes’ GPP predicted from MODIS temperature output. (n=263, R2= 0.27906, 
p=3.23 E -19). 
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Table 5. Regression Analysis. Results of regression analysis of MODIS LST output versus in-lake modeled GPP. 
Shows the coefficient of determination, significance level, and number of data points (N) for each individual lake 
general regression model.  
 

Lake Name Country R^2 P-value N 
Balaton Hungary 0.31 0.097 10 
Kentucky USA 0.59 < 0.001 45 
Mendota USA 0.55 0.005 13 
Müggelsee Germany 0.33 0.001 31 
Pontchartain USA 0.35 < 0.001 32 
Rotoiti New Zealand 0.58 < 0.001 45 
Rotorua New Zealand 0.71 < 0.001 44 
Sunapee USA 0.57 < 0.001 23 
Taihu China 0.52 < 0.001 43 
Trout USA 0.05 0.966 19 

 

 

 

 
 

 

 

 

 

 
 
 
 
 
 

Figure 2. All-lakes separated by color . The lake with the most outliers is Müggelsee, as it has 3 points outside the 
range of points. All of the data points for Trout are very close to zero.  
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A) Balaton B) Kentucky 

C) Mendota D) Müggelsee 

E) Pontchartrain F) Rotoiti 
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Figure 3. Individual relationships between MODIS LST and In-Lake Modeled GPP for 10 study lakes. Lakes 
with the strongest fit include Kentucky and Rotorua.  All lakes except Trout have a R2 fit that is higher than the 
global model.  Trout has a model fit equation of y = 24.405x2 - 71.03x + 51.75 that is not statistically significant. 
Other lakes with R2 fit above 0.5 include Rotoiti (0.58), Mendota (0.55), and Taihu (0.52). The remaining lakes had 
R2 fits between 0.31 and 0.44. 
 
  

G) Rotorua H) Sunapee 

I) Taihu J) Trout 



Saba J. Saberi Remote Sensing of Global Lake Metabolism Spring 2017 

 15 

 
 

 
 

Figure 4. All lake model fit curves separated by color. Most GPP values fit are between 0 and 6 mg O2/L/D, but 
individual lakes with temperatures in between 15 and 20 degrees Celsius have the best-fit models. Trout has 
extremely low GPP values such that it is almost a flat line and consequently has a poor model fit.  
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GPP and lake surface temperature model validation 

 

Validation of the general model with Lake Acton data determined a positive correlation 

between the MODIS-derived estimated GPP values of lake Acton obtained from the global 

model and the previously modeled in-lake GPP values (Figure 5). MODIS-derived GPP 

estimates correlate with the in-lake GPP estimates with a correlation coefficient value of 0.8719 

and a p-value of 0.0002.  It is important to note that there are only 12 available data points for 

this model validation. Three of these 12 points lie above the 45-degree, one-to-one line fitted to 

the graph, and nine lie below, suggesting a potential under-estimation of the model. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. General Model Validation. Correlation for Lake Acton GPP predicted from MODIS-derived GPP 
‘Global Model’. (N=12, R=. 8719 3 p=. 00021784). 
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Land cover and GPP model  

 

I found a positive correlation (r= 0.67) between the percent cover of forested land cover 

types (Group 2) and and the in-lake estimated GPP values for the 10 lakes (Figure 6). Two of the 

lakes, Kentucky and Sunapee, had greater than 50% forest cover in the watershed (Figure 7). 

Several of the lakes’ watersheds had a high percentage of wetland and cropland cover, or Group 

4 (Figure 8). None of the remaining four land cover types had a significant correlation with GPP 

lake values and were consequently not included in the models.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 6. Correlation between forested land cover and GPP. Land cover types 2 (combination of forest types) 
are positively correlated with in-lake modeled GPP for all ten lakes (R=0.67, p= 0.03271). 
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Figure 7.  Percent forested land cover within watershed for all lakes. Sunapee’s watershed is 93% forested, 
Kentucky is 56% forested, and Müggelsee is 47% forested. Both Mendota and Trout have the values, with only 3% 
of the watershed covered in forest. 
 

 
 
 
.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Relative land covers of lake watersheds. The two largest contributing land cover groups to the study 
lakes are forest and cropland or groups 1 and 2. Almost no lake watersheds contain land shrublands.  
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Multivariable Model 

 

The variables of land cover type and temperature as predictors of in-lake GPP are best 

explained by the multivariable general linear model y=_0.0949x2 + 2478.7678z + 3.3221 where 

y is the maximum GPP, x is the temperature, and z is the percent land cover type. (R2= 0.455, p-

value = 0.1191). Unlike the GM, which used only 8-day average temperature values as the 

predictor variable, temperature values used in this model are the maximum values within the 

yearlong study period. Although these results are not statistically significant? (p < .15)  and are 

from generalized linear modeling techniques, the multivariate model has a higher R2 than the 

original model describing the relationship between MODIS in-lake temperature and GPP. 

 

DISCUSSION 

 

Estimating lake gross primary productivity using remote sensing data has many potential 

uses.  First, GPP is a fundamental ecosystem function. As such, it can be used in mass balance 

models (Wilkinson et al. 2013) and as an index of environmental change.  Second, there is a 

worldwide concern about the increase of toxic algal blooms (Gilbert and Burford 2017). To the 

extent that these blooms are a primary contributor to lake GPP, the use of RS tools and products 

in monitoring and, ultimately managing lakes shows great promise. 

In this study, where I modeled in-lake gross primary productivity using MODIS land 

surface temperature data for 10 globally distributed lakes, I found that the general model 

predicted GPP from remotely sensed temperature observations and accounted for 27% of data 

variability.  That approximately 1/3 of the variance was explained in the model may be a result 

of several complex biological and ecological phenomena. On a cellular level, metabolic rates of 

organisms are influenced by temperature. In addition, lake GPP is affected by landscape scale 

characteristics such as watershed conditions. Despite the variability in the data stemming from 

various biological mechanisms, the results of this study are promising for global application 

given its large spatial scale and variety of lake systems.  
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Physical and biological lake properties relating to lake temperature  

 

The global model explains only 27% of variability in the data, and the rest may be 

explained by physical and biological properties of lakes contributing to both GPP and 

temperature. This model fit of 27% is similar to other limnology studies that use MODIS for 

individual lakes, and predictive capacities generally hover of around 30% (Gitelson et al. 2008, 

Wu et al. 2009). For studies of more easily detectable physical lake parameters such as 

suspended materials, models for coastal waters such as the Gulf of Mexico explained up to 89% 

of data variability (Miller and McKee 2004).  Thus, the contributions of physical lake parameters 

to GPP could also affect data variability. 

In addition, while the GM model in this study considers the easily (remotely) detectable 

parameter of temperature, it does not capture necessarily more indirect lake characteristics 

including nutrient dynamics. For example, the difference in the productivity-limiting nutrient 

phosphorus may lead to data variability, since lakes such as Rotorua, Rotoiti, and Rotorua have 

30, 30.3, and 32.7 μg/L phosphorus, indicative of meso-eutrophic lakes, while Lake Sunapee 

only has 5.3 μg/L. Data variability could also be attributed to differences in nutrient dynamics 

between lakes. 

Temperature and GPP are also affected by nutrient dynamics. The individual models with 

strongest R2 fits were Rotorua (0.71), Rotoiti (0.58), and Kentucky (0.59), which are recorded as 

eutrophic and mesotrophic. These lakes’ temperatures did not exceed 30 degrees Celsius. 

Moreover, temperature is the best predictor of chlorophyll biomass (Staehr and Jensens 2007), 

and chlorophyll biomass is essentially gross primary production. Analysis of ice cores from the 

Vostok Lake give evidence that there is no temperature minimum for metabolic processes to be 

carried out by phytoplankton and unicellular organisms, and that metabolism increases with 

increases in temperature (Price and Sowers 2004).   

The models for individual lakes had stronger R2 than the GM, which suggests that lakes 

can vary considerably over global scales. Differences in within lake and external lake properties 

may be responsible for the varying strengths of individual models. For example, GPP is 

influenced by in-lake properties such as bathymetry, morphometry, depth, and catchment 

conditions, factors also influencing lake temperature (Carpenter et al. 2005, Staehr et al. 2012). 

Lake Mendota algal-macrophyte interactions are controlled by lake morphometry and 
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temperature (Carpenter 2005), and the algae and macrophytes contribute to lake GPP. In 

addition, nutrient inputs and algal productivity are influenced by lake properties such as depth 

(Staehr and Jensen 2007). In addition, Rotoiti and Rotorua are fed by relatively smaller 

watersheds, 520 km2 and 124 km2, while Kentucky is a reservoir with an extremely large 

watershed of 104,117 km2 and also is a reservoir.  

Lake size and depth also contribute to GPP. Interestingly, one of the weaker models, 

Balaton, has a maximum depth of only 4 meters and a larger watershed of 2750 km2. Rotoiti has 

a maximum depth of 125 m while Rotorua has a maximum depth of only 24 m yet both lakes 

have strong individual model fits. Large, shallow lakes have well-mixed water columns (Chen et 

al. 2003) and these lakes tended to have higher productivity and better model fits. Lake size also 

plays an important role in in-lake productivity and its heterogeneity. For example, Lake Taihu is 

known to have different concentrations of chlorophyll α in different parts of the lake, given its 

impressive size of 2338 km2 (Zhang and Liu 2007). In this sense, remote sensing could help to 

provide GPP measurements of such large lakes that would be time consuming to obtain in situ.  

 Finally, Trout Lake had GPP values ranging from only 9.79 x 10-13 mg O2/L/d to 0.43 mg 

O2/L/d, while other lakes’ GPP values generally ranged in between 1 and 10 mg O2/L/d, with 

several values reaching 25 mg O2/L/d.  Trout was the only lake for which no real relationship 

existed between GPP measurements and MODIS temperature output. It was also the second 

smallest lake with an area of 16.7 km2. The lack of a relationship between GPP and LST could 

be because these GPP values were far too small and there a threshold of GPP measurements 

below which relationships between the two variables cannot be determined. The potential 

threshold could potentially mean that the general model would have difficulty in predicting 

extremely low values of GPP, but it is generally well-suited predict moderate and higher levels 

of GPP, as seen with studies measuring chlorophyll fluorescence (Frankenberg et al. 2014). 

These differences in lake depth, size, watershed size, and productivity levels point to potential 

contributors of variability, but it is difficult to pinpoint their specific impacts. 

 

Impact of in-lake processes 

 

Storms and microstratification may affect the spread in the individual lake models. Some 

modeled GPP values were slightly lower than expected, especially in lakes with fewer data 



Saba J. Saberi Remote Sensing of Global Lake Metabolism Spring 2017 

 22 

points such as Balaton and Trout.  Microstratification occurring in lakes correlates with lower 

values of GPP and respiration (Coloso et al. 2011). Given that microstratification was not 

measured or considered in any of the individual lakes, I do not know if it occurred, or if 

disruptions to microstratification are responsible for data outliers. Storm-induced destratification 

and subsequent changes in algal communities have been documented in Lake Balaton, Hungary 

(Padisák et al. 1990). Destratification leads to loss of algal species, thereby decreasing GPP rates 

and serves to mitigate algal blooms (Visser et al. 2016).  

Daily changes in GPP that potentially caused by storms were not captured in this study 

because the GPP values were averages of 8-day time periods. Lack of reliable climate and storm 

data for lakes outside of the US restrict the focus of this to well-studied lakes within the US that 

experienced storms.  For example, precipitation data from NOAA showed that Lake Sunapee 

experienced considerable amounts of precipitation during the study period. On Lake Sunapee 

(Richardson et al. 2017) storms decoupled GPP and respiration, and caused short-term decreases 

in GPP. Richardson et al. (2017) classified the storm threshold as 19.5 mm of rain, and during 

my study period in 2008, Sunapee experienced several storm days with up to 81.53 mm of rain in 

a single event (NOAA 2008). It is possible that these storms did affect GPP and introduced 

variability. If MODIS could provide daily LST observations, these could identify individual 

storm events, to reveal GPP outliers.   

 

Temperature dependence of respiration   

 

Another contributor to the variability in model strength is the temperature dependence of 

ecosystem respiration. Solomon et al. 2013 also calculated lake respiration, which, when 

subtracted from the GPP values yields NPP or Net Primary Production. Solomon’s methods 

suggest that it is difficult to isolate respiration from GPP and assert that the temperature 

dependence of respiration (a potential component of GPP estimates) is responsible for the 

correlation between temperature and GPP. In fact, some of the lakes with the best-fit individual 

models including Kentucky and Rotoiti had negative net primary production values, meaning 

that they were losing more mg O2/L/day than they were creating, indicating that respiration may 

also play a role in the relationship between GPP and temperature. However, it is hard to remotely 

detect respiration since it is measured in situ with light and dark bottle methods, wherein water 
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samples at different irradiance levels are captured in chambers and respiration is measured using 

elemental tracers (Staehr et al 2010). Next steps in this project could include comparing Solomon 

et al.’s (2013) respiration rates with the MODIS temperature output to help to determine other 

drivers of the relationship and improve model strength.  

 

Watershed land cover type impact  

 

The relationship between forested land cover in the lake watershed and lake productivity 

suggests that land cover types affect GPP.  Increased forested land cover type correlated to 

higher GPP values. Percent land cover determines sediment flux to and influences and water 

quality in lakes, which can in turn affect productivity (Crosbie and Fraser 1999). 

DOC or Dissolved Organic Carbon, from trees/vegetation and soils in watersheds can 

flow into lakes.. DOC can alter nutrient availability such as phosphorus and carbon, and changes 

in these nutrient levels can affect primary productivity (Williamson et al. 1991). High 

concentrations of DOC lead to reduced primary productivity since productivity can be light 

limited and high DOC lakes are dark  (Carpenter et al. 2001). This suggests that perhaps the 

positive relationship between GPP and forested land cover may be controlled by other factors as 

well. For example, if forested types have nitrogen-fixing trees such as alder, the nitrogen from 

forests can drain into the lake and support blue green algae (Goldman 1961). In uplands where 

forests cover up to 90% of the watershed, terrestrial systems are responsible for most of the 

nitrogen loading to lakes (Canham et al. 2012). Because lake Rotoiti, Trout, Kentucky, and 

Müggelsee have high amounts of forest cover (estimated via Google Earth), it is possible the 

GPP- forest cover relationship may be from forest nitrogen-loading. A survey of the types of 

trees within the watersheds and the presence and absence of nitrogen-fixing trees is a good first 

step in answering this question. 

Although forested land cover types did correlate with GPP values, other types did not. 

These land cover types include grasslands and savannas, wetlands, croplands, and urban (Figure 

8). Looking at permanent wetlands within the watersheds could reveal a relationship between 

wetlands and GPP, as net biomass produced in wetlands turns is exported to other freshwater 

systems and can increase productivity (Canham et al. 2012).In addition, land use impacts on low 

productivity lakes differ from those for high-productivity lakes (Hoffman and Dodson 2005), and 
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isolating my land cover type results by lake trophic state may confirm this. Although forested 

land cover types were the only ones to correlate with GPP, this may be an artifact of sampling, as 

only two of the ten study lakes, since only Kentucky and Sunapee had greater than 50% forested 

land cover within their watersheds. Other lakes had a combination of urban, farmland, and 

grasslands within their watersheds. For example, both Trout and Mendota had 26% croplands 

within their watersheds (Figure 8). Land cover impacts on productivity are just one part of 

complex mechanisms that affect lake metabolism, many of which provide challenges in creating 

remotely sensed models of productivity.  

 

Remote sensing accuracy in predicting GPP  

 

The 0.27 R2 for the global model and even higher values for individual lakes suggest that 

remote sensing can predict GPP on a global scale, but that it is more accurate on smaller scales. 

This estimate is in agreement with a number of previous lake remote sensing studies that reveal 

that their algorithms are better suited for regional prediction of lake indices in that more 

variables can be considered and finer scale differences can be noticed (Dörnhöfer and Oppelt 

2016, Woelmer et al. 2016). In addition, it is possible that a temporal resolution finer than 8 days 

is needed for more accurate GPP prediction. Furthermore, for each of the lakes, there are several 

days throughout their corresponding one-year time period (which encompass all seasons) in 

which there are no estimated GPP values. As a result, several 8-day time periods had no 

corresponding GPP values, leading to fewer data points. The global model was validated with 

only Acton Lake because there was only one available lake from the Solomon et al. (2013) study 

that was not included in our general model but still large enough to be located by the MODIS 

sensor. Testing the model with more lakes with identically calculated GPP values could further 

validate the robustness of the general model. To explain more of the data variability, future 

models could consider a larger suite of lakes with a range of sizes, areas, and land cover types 

within their watersheds. The scope and the time constraints of this study allow for opportunities 

in future model improvement. 
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Challenges and opportunities  

 

Although the lake models produce some promising results with predictive capabilities on 

par with those of similar studies, this is only a first step toward building a global GPP product for 

freshwater lakes One primary challenge for this model is the limited spatio-temporal inference of 

remote sensing, which is particularly relevant to algal blooms since some can appear suddenly 

overnight (Matsunaga 1999) For example, the LST output only retrieves surface temperatures of 

the water body. Some amount of gross primary production occurs beneath the surface (Carignan 

et al. 1998), and using only surface temperatures might affect the certainty of the model. In 

addition, surface temperature observations are 8-day composites of daily images, and currently 

no MODIS surface temperature and emissivity product at the correct spatial resolution produce 

daily LST outputs. Daily surface temperatures are available at coarser resolution and 

downscaling techniques may resolve this issue. Correlating daily GPP values with daily 

temperature values could reveal more fine-scale patterns.  The variation in the results that could 

not be explained by the general model or the individual lake models can perhaps be attributed to 

the uncertainty in the GPP values resulting from Solomon et al.’s (2013) work. For example, 

Solomon et al. (2013) attribute uncertainty in their model to ecological variation along with 

statistical uncertainty from the bootstrapping method. A major source of uncertainty cited is the 

process error that occurs when the DO concentration (used in making the GPP estimates) 

changes because of some process not explicitly mentioned in the model (Solomon et al. 2013). 

This same ecological variation could be contributing to the spread in the data points when being 

fit to the model. Ultimately, model uncertainty is partially a result of difficulty in quantifying 

impacts of indirect influencers of GPP (Knoll et al. 2003). 

 

Future Directions and Product Development 

 

Despite uncertainty resulting from ecological variation among lakes and logistical 

difficulties with the state of technology of remote sensing, there remains potential to apply 

remote sensing technologies to ecosystem-scale lake metrics of lake function. Despite the global 

model only explaining 27% of the data variability, this result is still promising since the lakes are 

globally distributed and have a range of ecological and physical properties. Although the current 
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GPP model is more accurate on a finer scale, improvements such as including a wider suite of 

lakes and analyzing watersheds along a gradient of forest cover could result in a good global 

predictor. Currently, there is no freshwater GPP MODIS product, and the creation of a more 

robust algorithm that considers other ecological parameters could lead to a global data product. 

Interestingly, the MODIS product for terrestrial gross primary production calculates GPP as the 

total organic carbon accretion in the ecosystem in a given time period (MODIS product user 

guide, Wen 2006), which is mechanistically different from the photosynthetic rates that were 

used to obtain GPP values from Solomon et al. (2013). Because net ecosystem productivity and 

organic carbon accumulation are not always equivalent in aquatic systems (Lovett et al. 2006), 

future aquatic GPP products or algorithms must produce estimates of GPP consistent with 

current limnological standards. In addition, the dates for which lake GPP was analyzed include 

summer months, when GPP is often at its peak. Ultimately, this preliminary study suggests that 

remote sensing can be used for global-scale understanding of lake metabolism and ecosystem 

processes.  

 

Broader Implications 

 

This project can ultimately lead to the creation of a publically available freshwater GPP data 

product that allows further study of lake metabolism and its role in the global carbon cycle. The 

nature of this study allows for prediction of GPP levels during all non-ice seasons, which over 

long-term analysis can reveal broad patterns about GPP fluctuations. The relationship between 

GPP and temperature confirmed by this study is important because long-term temperature 

changes can even lead to shifting or mixing regimes such from polymictic to dimictic or dimictic 

to monomictic (Boehrer and Schultze 2008, Livingstone 2008). Being able to obtain changing 

GPP measurements could help predict shifting regimes and ultimately stop adverse changes 

before they occur.  

This model may be applicable to other large freshwater systems such as rivers, and can help 

in furthering understanding of the global carbon cycle. In addition, a model with temporally 

frequent data over large landscape areas can reveal trends that not visible over current scales 

(Palmer et al. 2015, Dörnhöfer and Oppelt 2016).  Beyond being useful to limnologists and 

ecosystem scientists, local lake protection associations, NGOs and government agencies can 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854826/#R13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2854826/#R57
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access the data product to make management decisions especially regarding harmful algal 

blooms (Kutser et al. 2006). In conclusion, the findings in this project suggest that freshwater 

GPP can be predicted using temporally frequent remotely sensed temperature data, and that a 

global algorithm can be identified. Ultimately, this model can help people across the globe better 

understand mechanisms and patterns of lake metabolism and use them to respond to the threats 

that lake ecosystems face.  
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