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ABSTRACT 

 

Current electrical system operators have operating procedures that no longer handle the 
unpredictable and varying loads of modern consumer demand and generation by renewables. In 
systems with high penetration of solar power, it is important to know the amount of power being 
generating for generator scheduling and determining operating reserve margins. This project aims 
to make intermittent energy more feasible for electrical distribution systems. Power system 
operations require intermittent power forecasts for multiple daily operations. It is difficult to decide 
how to schedule renewable energy generators when presented with so many different 
representations of the inherent uncertainties. To standardize intermittent power forecast data 
models, we need to find consistent definitions of characteristics of using power systems analysis 
and simulations to store forecasts such that power forecasts are replicable and comparable in power 
operation analysis. One way to store data is in a data model. A data model is defined as a simple 
container format used to describe and package a collection of data for the purpose of sharing 
between tools and people. Over the various operational manuals and academic papers, there was 
inconsistent language surrounding power forecasts and how they were used. There were two 
different spheres of rhetoric around power forecasts; an academic sphere and a system operators 
sphere. Additionally, within the review of the literature, I also identified other types of attributes 
that might be beneficial to include within the data model. Unfortunately, this data model was 
difficult to implement.  
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INTRODUCTION 

 

Centered around coal-sourced generators, current electrical system operators have 

operating procedures that no longer handle the unpredictable and varying loads of modern 

consumer demand and generation. Currently, we are experiencing a paradigm shift from electricity 

sources that are environmentally unsustainable, such as coal, towards more sustainable 

technologies. Some of these sustainable technologies, such as solar panels, create decentralized 

power. Decentralized power is characterized by generation of power closer to demand centers 

(Kaundinya et al. 2009). Sources of decentralized power tend to therefore be renewable energies, 

such as solar. The contribution of renewable energy to the power flow is variable and 

unpredictable, forcing previously passive electrical grid operation to become more active (Palizban 

et al. 2014). System operators need to refine monitoring, control and protection protocols so that 

they can be more aware of the state of their system to maintain power quality. 

A key factor to maintaining continuous electricity flow to consumers is ensuring that real 

and reactive power being consumed equals the real and reactive power being produced within the 

system. One way a system operator makes sure that power created equals power demanded is by 

monitoring frequency. Operators keep frequency at the United States standard: 60 Hertz. This 

frequency was chosen long ago, and every part of an AC grid must be synchronous with it. If 

frequency starts to increase, then there is too much power being generated and the system operator, 

therefore, shuts down some generators. If the frequency starts to decrease, then there is not enough 

power being generated and the system operator turns on more generators. Each control area is 

responsible for regulating frequency. Voltage is also an indicator of when generation and load are 

not balanced. System operators try to keep voltages nice and steady. Low voltages across 

transmission lines can be dangerous because the large current associated leads to overheating of 

power lines. Power lines can sag, as a result, and are more prone to starting fires atop any trees 

close by. When there is an unexpected loss of a generator, operators have to act quickly to restore 

the generator and load balance. To do this, they tap into the power being produced by already 

online reserve generators (von Meier 2006, Savaghebi et al. 2013, Stewart et al. 2014, Kirby 2017). 

System operators choose reserve levels in many ways, but usually are based on risk and 

the reserve cost associated. One way is setting a threshold for a risk attribute. System operators set 

a value for the maximum acceptable risk. They iterate through different reserve levels until they 
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reach a risk lower than the threshold, without taking into account reserve costs. Another method 

to choose reserve levels is the Equivalent Cost Approach. It uses a constant tradeoff between 

reserve cost and associated risk. A tradeoff is how much cost the systems operator is willing to 

decrease in exchange for an increase of risk. Alternately, a systems operator could use the Value 

Function Approach. This approach builds an individual value function for each criterion and 

weights each to build a function that, when maximized, leads to referred reserve levels (Matos and 

Bessa 2011a). There are also uncertainties within the system that the systems operator must plan 

for to ensure power quality. 

Originally, there are two types of uncertainties systems operators have to consider. Load 

uncertainties refer to the “duck-curve,” which predicts the amount of energy that is going to be 

consumed at a certain time on a specific day of the year. The duck curve depicts the net demand 

load that represents the amount of conventional generation plants that will need to be online during 

the day in a high photovoltaic (PV) injection power system. The shape of the curve has a distinctive 

dip corresponding to the middle of the day due to the increase in generation due to increased 

generation from PV. This curve has a Gaussian distribution with a given standard deviation and 

zero mean that does not need to change if the uncertainty has a nonparametric representation (Obi 

and Bass 2016). The second kind of uncertainty concerns generation. It is a probability mass 

function, which is a discrete probability distribution of the possible capacity states (von Meier 

2006, Matos and Bessa 2011a). This uncertainty has been explored extensively to the point where 

systems operators can actually predict how much electricity will be generated through 

conventional means, such as coal generation. Solar generation, on the other hand, has a greater 

amount of uncertainty associated with it. 

In systems with high penetration of solar power, it is important to know the amount of 

power being generating for generator scheduling and determining operating reserve margins 

(Bessa et al. 2012). As a result, technical reconsiderations for determining measurement strategies 

to inform analytic study of distribution circuits and to help predict future needs from increasing 

penetration levels of distributed energy resources were required (von Meier and Rodriguez 2013). 

System operators would ideally use probabilistic approaches that include the risk associated with 

the solar power forecast error to reserve assessment to solve economic dispatch. Some probabilistic 

approaches assume that the forecast error has a Gaussian distribution. To estimate the increase in 

hourly load-following reserve requirements  calculate the standard deviation of the combined wind 
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and load uncertainty as that of the sum of the two independent Gaussian random variables 

(Holttinen 2005, Strbac et al. 2007). Other approaches do not assume uncertainty has any 

distribution (Soder 2004).  Most methods, however, compute the reserve requirements with a 

reference risk level defined a priori (Matos and Bessa 2011a). Unfortunately, there is a gap in 

operational practices that account for the risks associated with the solar power forecast error. 

This project aims to make intermittent energy more feasible for electrical distribution 

systems. We explore how system operators can use power forecasts to determine when to prepare 

for sudden and unexpected loss of generators. In particular, we hope to develop a computational 

tool to assess operational risk within a system that has high penetration of renewables. By focusing 

on these systems, we expect to be able to help system operators make more reliable decisions in 

real time about the amount of power is generated with renewable resources. The ability to measure 

how certainly a system operator can assure electrical security—no unscheduled blackouts will lead 

to a greater understanding of how renewable energy, as a whole, affects electrical distribution 

systems. Thereby encouraging a greater amount of renewable generation and a more sustainable 

future. 

 

BACKGROUND 

 

The larger goal of this study is to create a sustainable, greener cleaner future and therefore 

it is imperative to turn to renewables but switching to them has consequences. The intermittent 

sources of energy or renewable energy in this paper refers to solar and wind specifically. They 

require robust prediction methods to integrate into power system operation because they are 

variable according to climate. One way to predict how much power a renewable resource might 

generate is through power forecasts. 

Power forecasts are made by taking some power information weather information and site 

information. This forecast is how power plants mathematically represent how much power will be 

produced and forecasts are used by power system operators and researchers alike. Weather data, 

site information, and power source information are used to calculate power predictions (Giebel 

and Kariniotakis 2017). Note that the model is not agnostic about what statistical model is used to 

produce the forecast. Power system operators, however, are agnostic to the statistical method 
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deployed in a forecast, and instead focus on only by how the forecast is presented and the question 

the forecast is trying to solve. 

Power system operations require intermittent power forecasts for multiple daily operations. 

Operations make sure electric generation exactly meets load demand otherwise blackouts will 

occur. Operations include: generator scheduling, operating reserve levels, voltage regulation, and 

frequency regulation. In all, they ensure grid stability but as renewable injection increase, we have 

to rely more on power forecasts which have inherent uncertainties. 

To illustrate the benefits of using power forecasts, consider the timeline for real time energy 

imbalance markets. These markets try to balance generation and load by minimizing ancillary 

services. Ancillary services are generators paid to be online and ready just in case there is not 

enough energy to meet demand. Market dispatches resources across balancing areas to balance 

energy minimizing ancillary services (Mazzi and Pinson 2017). Kaur et al. (2016) ran a multi-

objective optimization simulation of an energy imbalance market, we directly with generation and 

demand forecasts, outages, resource schedules, economic bids, dynamic contingencies and 

interchange schedules. The power forecast was used in a market that was described by looking 

ahead 4.5 hours with 15-minute intervals. The outcome of using this power forecast was reduced 

operating reserve capacity which reduced costs and automatic dispatch and improved reliability 

(Kaur et al. 2016). 

Still, the United States is starting to see renewable generation curtailments on the rise. 

Curtailment is defined as when a power plant could generate more energy, but the system operator 

tells the power plant to generate less or not at all. In Texas, Electric Reliability Council of Texas 

(ERCOT) reported they had 20% wind generation capacity in 2016, but only 15.1% of wind energy 

was used (“ERCOT Quick Facts” 2017). Similarly, in 2015, the California Independent Systems 

Operator (CAISO) was forced to curtail more than 187,000 total MWh of solar and wind 

generation. And in 2016, that number rose to more than 308,000 MWh (“California ISO: Fast 

Facts” 2017). Power system operators are conservative with their use of renewable energy to 

ensure grid stability. ERCOT’s 7-day wind forecast performances have steadily increased over the 

years, however the margin of error is still about 6% (Wattles 2017). With the margin of error being 

so large, it is safer to curtail because of the inherent uncertainties in power forecasts and as a result 

we see operators choosing coal over renewables because operators can reliably know how much 

power they will generate. 
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There are many ways that power forecasts represent their inherent uncertainties. Point 

forecasts are predictions of power generated given by one value per timestep. On the other hand, 

probabilistic forecasts are predictions offered as probability distribution—one for every timestep 

(Morales et al. 2014). Conversely, scenario forecasts present a set of values for every timestep that 

correspond to a set of possible outcomes. This is only three examples of power forecasts. There 

are so many different types of power forecasts that are developed from different statistical models. 

It is difficult to determine how to schedule renewable energy generators when presented 

with so many different representations of the inherent uncertainties. However, the goal is for power 

system operators to trust intermittent power forecasts and to use them efficiently to increase the 

amount of renewable energy injection to the electrical grid. This study attempts to update 

operational practices for the purpose of encouraging renewable electrical resources. Specifically, 

this paper addresses the lack of a defined data model for power forecasts to help the integration of 

power forecasts data across many markets and operational models. 

 

METHODS 

 

To standardize intermittent power forecast data models, I first determined consistent 

definitions of characteristics of using power systems analysis and simulations to store forecasts 

such that power forecasts are replicable and comparable in power operation analysis. On the front 

of power system modeling, there are advanced operational models and analysis. By creating a 

constant data model the possibility of clear comparisons and reproducibility is enabled. To do this: 

1) define a data model and 2) implement the data model. 

A data model is defined as a simple container format used to describe and package a 

collection of data for the purpose of sharing between tools and people. Defining a data model 

requires gathering and sharing data from multiple sources for a particular data source. In particular, 

the model will have 5 core principles (Walsh and Pollock, n.d.). The first is that the data model is 

simple. Second, extensibility and customization by design—publishers may add additional 

metadata or constraints by adding attributes the data model. Third, it must be in a format such that 

is human-editable and machine-usable. Forth, the data model must be language, technology and 

infrastructure agnostic. Existing decision-making platforms, like MatPower and Plexos, should be 
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able to use the data model. Finally, it should reuse existing standard formats of data (Walsh and 

Pollock, n.d.).  

Carefully choosing a data structure in which to create the data model meets the first 4 core 

principles. The fields of attributes included in the data model shall be constrained to only those 

relevant for power system operation, making the data model simple. Additionally, I choose to write 

the data model in JavaScript Objection Notation (JSON). Because JSONs can be written like a 

dictionary, it makes it simple to add additional characteristics by adding attributes. All modern 

programming languages support JSON – making it interchangeable with programming languages. 

Moreover, JSONs are easy for humans to read and write, and easy for machines to parse and 

generate (“JSON” n.d.). 

The last core principle—reuse of existing standard formats of data—required examining 

how power forecasts are being used for market operations. To meet this, requires determining how 

ISOs define and use power forecast attributes, as well as how researchers would define forecasts 

attributes when applying it to solve a common problem in power system analysis (i.e. unit 

commitment and economic dispatch). Unfortunately, there is ambiguity as how power forecasts 

are already defined. 

 

Review Findings I: Key Attributes of Power Forecasts for Operational Practices 

 

Over the various operational manuals and academic papers, there was inconsistent 

language surrounding power forecasts and how they were used. There were explicit and implicit 

definitions of forecast attributes. Although some papers defined how they used power forecasts 

and what the power forecasts they used looked like, others would just mention that a power 

forecasts was used. Many operational manuals would not request forecasts to be given in a certain 

format. Additionally, there were ambiguous definitions between researchers and system operators. 

The important attributes differed based on whom was speaking.  

Forecasts can be categorized by horizon and their subsequent function. A short-term 

forecasts have horizons that range from one to six hours (Larson et al. 2016). These horizons are 

helpful for effective operations planning.  Medium-term forecasts, instead, look ahead a day or on 

the timescale of days. These horizons are necessary for good management and maintenance in 

scheduling the system (Xie et al. 2011). They are also used for unit commitment and economic 
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dispatch (Larson et al. 2016). In contrast, long-term forecasts are essential for investment planning 

in generation capacity and have horizons on the timescale of months to years (Xie et al. 2011). 

These functions are broad and ambiguous.  

It was clear that there were two different spheres of rhetoric around power forecasts; an 

academic sphere and a system operators sphere. In academia, there are many important 

characteristics that would be considered as attributes. For example, the statistical method used to 

create the power forecast as it speaks to the performance of the power forecast. For the same reason 

the variance and the average mean error are interesting. Academic papers also suggest that the 

calibration and sharpness of a probabilistic power model should be considered (Botterud et al. 

2013). On the other hand, aside from the actual forecasted values, systems operations only require 

knowing the horizon, resolution, and interval of the power forecast to use it for daily operational 

practices.  

Although there are only three relevant terms, the definitions varied across and between 

academia and system operators. For example, the concentration of predictions is defined as 

sharpness by statisticians and as resolution by some system operators (Gneiting Tilmann et al. 

2007). Antonanzas et al. (2016) and Kaur et al. (2016) denotes resolution as “the frequency at 

which the forecasts are issued,” while Monterio et al. denotes the resolution as the time step. For 

this reason, the three attributes for our data model must be explicitly defined. The forecast horizon, 

also known as the “look ahead time,” is the time between the first time predicted and the end of 

the last time predicted (Kaur et al. 2016, Antonanzas et al. 2016). The forecast resolution is the 

number of predictions within a time range (Kaur et al. 2016, Antonanzas et al. 2016). Last, the 

forecast interval is the amount of time between predictions or the discrete timesteps (Kaur et al. 

2016, Antonanzas et al. 2016).  

 

Data Model Structure Example 

 

Power system operators need only the forecast horizon, forecast resolution, forecast 

interval, and the forecast data to run daily operations. Therefore, the data structures below are 

suggestions of how a JSON data model might look like for power forecast data for the objective 

of solving an economic dispatch problem. For examples of what solving the economic dispatch 

might look like, see the next section. Note that the data included in the examples below have 
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randomly generated data and hold no truth for power generation levels or fluctuations. As defined 

above, the forecast horizon is the time between the first time predicted and the end of the last time 

predicted (Kaur et al. 2016, Antonanzas et al. 2016). The forecast resolution is the number of 

predictions within a time range (Kaur et al. 2016, Antonanzas et al. 2016). The forecast interval is 

the amount of time between predictions or the discrete timesteps (Kaur et al. 2016, Antonanzas et 

al. 2016). Additionally, there are 3 examples of the data models—corresponding to point, scenario, 

and probabilistic forecasts.
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Power Point Forecast Data Structure 

for Economic Dispatch with Random 

Data 
[ 
  { 
    "type": "point", 
    "horizon": 65, 
    "interval": 5, 
    "resolution": 13, 
    "time_units": "min", 
    "data": [ 
      { 
        "timestamp": "2016-09-
02T15:33:50+00:00", 
        "forecast": [ 
          875, 
          911, 
          3, 
          876, 
          682, 
          713, 
          15, 
          100, 
          397, 
          844, 
          828, 
          343, 
          396 
        ] 
      } 
    ] 
  } 
] 

 

Power Scenario Forecast Data 

Structure for Economic Dispatch with 

Random Data 
[ 
  { 
    "type": "scenario", 
    "horizon": 65, 
    "interval": 5, 
    "resolution": 13, 
    "time_units": "min", 
    "data": [ 
      { 
        "timestamp": "2014-08-19T17:55:21+00:00", 
        "forecast_s1": [ 
          113, 
          515, 
          940, 
          582, 
          710, 
          116, 
          664, 
          426, 
          781, 
          792, 
          268, 
          81, 
          310 
        ], 
        "forecast_s2": [ 
          320, 
          640, 
          83, 
          783, 
          412, 
          935, 
          852, 
          379, 
          126, 
          191, 
          343, 
          969, 
          916 
        ], 
        "forecast_s3": [ 
          758, 
          892, 
          790, 
          100, 
          729, 
          65, 
          768, 
          559, 
          987, 
          818, 
          877, 
          525, 
          310 
        ] 
      } 
    ] 
  } 
] 

Power Probability Forecast Data 

Structure for Economic Dispatch with 

Random Data 
[ 
  { 
    "type": "scenario", 
    "horizon": 65, 
    "interval": 5, 
    "resolution": 13, 
    "time_units": "min", 
    "data": [ 
      { 
        "timestamp": "2017-02-26T06:04:26+00:00", 
        "quantiles": [ 
          "0.701", 
          "0.1901", 
          "0.5929", 
          "0.9005", 
          "0.5553", 
          "0.2112", 
          "0.5491", 
          "0.6119", 
          "0.4929", 
          "0.4002", 
          "0.9664", 
          "0.1867", 
          "0.3693" 
        ], 
        "forecast_q1": [ 
          441, 
          278, 
          579, 
          989, 
          711, 
          570, 
          911, 
          421, 
          134, 
          846, 
          388, 
          460, 
          838 
        ] 
      } 
    ] 
  } 
] 
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Review Findings II: Key Attributes of Power Forecasts for Operational Practices 

 

As part of my deep literary drive, I also noticed other types of attributes that might be 

beneficial to include within my data model. 

 

Solar and Wind Power Forecasts Data Attributes 

 

The forecast horizon can also be generalized by the type of resource being forecasted. Solar 

power forecasts are characterized as a short-term forecast. Trading solar power in electricity 

markets require looking ahead from 5 minutes to 1 hour ahead (Rana et al. 2016). A concentrated 

solar power station requires a day-ahead 2-day persistence forecast (Kraas et al. 2013). However, 

ERCOT requires PhotoVoltaic (PV) generation resources with a short-term PV power forecast as 

hourly forecasts for the next week (168 hours). The forecasted hours are updated as they fall within 

the 168-hour rolling window (“Current Operating Plan Practices By QSE” 2017). Solar PV also 

call for smaller forecast intervals within the given horizon (Golestaneh et al. 2016). Solar PV and 

concentrated solar power have different fluctuations in their output due to the changes in weather 

and differences in technology. Fluctuations in power flow impacts the power quality, generation-

load balance, and regulation cost.  

Similarly, wind power forecasts can be characterized by their horizon. A strong case study 

for using wind power forecasts is ERCOT—who, in July 2017, reported a 20% wind generation 

capacity. ERCOT requests wind power forecasts of the hourly production potential from all wind-

power in ERCOT for the next 48 hours (Hui et al. 2012). Because wind power largely depends on 

wind speeds that fluctuate on the order of magnitude of days, medium-term forecasts are common 

when reporting wind power.  

 

Market Operations Specific Data Attributes 

 

Energy imbalance markets, as mentioned in the background, operate at 15 and 5-minute 

time intervals and require solving economic dispatch. Kaur et al. (2016) solves economical 

dispatch with power forecasts. For the 15-minute market, the power forecasts had a horizon of 4.5 
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hours of 18 predictions that are 15 minutes apart. The 5-minute market used a forecast that looked 

ahead 65 minutes with a resolution of 13 predictions at intervals of 5 minutes. During real-time 

operations, security constrained economic dispatch is dispatched normally every 5 minutes with a 

look ahead of 4 hours (Hui et al. 2012, Wang et al. 2016).  

 Likewise, when setting the operating reserve in the daily market operators often have to 

solve unit commitment. Power forecasts used to solve unit commitment more commonly have a 

longer horizon (Wang et al. 2011). System operators have a particular timeline they must follow 

to ensure reliant and resilient power flow. Therefore, they typically ask for forecasts with 24-hour 

horizons with a power prediction at every hour (Xie et al. 2011, Matos and Bessa 2011b). In Spain, 

the day-ahead market participation requires a forecast for the next day in hourly resolution (Kraas 

et al. 2013). Day-ahead predictability with unit commitment utilizes forecasts that look 24 to 36 

hours ahead and updated every 6 hours (Xie et al. 2011).  

 

Limitations and future directions 

 

Unfortunately, a data model is hard to implement in practice. The absence of a data model 

structure to share and compare power forecast models and analysis methods spurred this paper. It 

is unknown now difficult or what push back the proposed data model structure will encounter.  The 

electrical power systems industry is an established institution with policies and regulations that 

have been in place for a very long time. There has to be many changes to policies in place at the 

utility level as well as on the national level. Ideally the data model would be taken to independent 

system operators, who would then implement and regulate the use of a data model for power 

forecasts by individual utilities.   

Future work must be done to show how comparisons between power forecast can be made 

using this structure. Thus, system operators can know how to compare and define a “good” 

forecast. Essentially there calls for a method to quantify the risk of trusting a power forecast and 

subsequently how to interrupt them such that system operators can choose more renewable energy 

generation.  If we are able to implement the data structure, then it is possible to bridge the two 

spheres, academia and system operators.  

 

Conclusion 
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It is difficult for system operators to integrate the many different types of power forecasts 

into systems operations because of the different representations of their inherent uncertainties. 

System operators do not know how to integrate the inherent uncertainties and are unable to assess 

the risk reliably with the operation practices that are currently in place. The first step to changing 

that needs to be making it easy to compare and replicate results throughout the field. 

Standardization of power forecast lingo in definitions prevalent in the power system operation 

sphere will bridge the academic sphere and the system operations sphere to allow the integration 

of advanced operational models in operation practices. 

Bridging spheres would allow independent system operators to share analysis practices. 

For example, CaISO could start learning from ERCOT’s experiences from integrating high 

percentage of wind power. The opening up and increasing communication between academia and 

practice would allow the integration of advanced operational models. As a result, independent 

system operators would start using power forecasts that are more accurate representations of their 

inherent uncertainty, such as a quasi-quantile forecast. 

Ultimately, the data model would encourage system operators to choose renewable energy 

generation over coal or natural gas. As mentioned above, we are seeing curtailments of renewable 

electricity generation because system operators do not trust power forecasts (“ERCOT Quick 

Facts” 2017). Creating a standard data model structure for power forecasts allows power forecasts 

and analysis methods to be shared between research and practice (Walsh and Pollock n.d.). 

Thereby allowing research to be easily replicable and integrate-able into system operations, system 

operators will be able to identify how a paper’s results could lead to better, more reliable analysis 

for setting generator levels. 

 

ACKNOWLEDGEMENTS 

 

Patina Mendez and Kurt Spreyer were mentors and a wonderful support system in 

completing this project. Exceptional thanks to Patina Mendez for meeting with me in office 

hours and being so patient with me to develop and mold my project. Thanks to Jose Daniel Lara 

for working with me to develop this paper and guiding me through the many hardships. Sascha 



Halley R. Nathwani Power Forecast Data Models for Energy Systems Spring 2018 

 14 

von Meier supported me and helped find my passion for power systems engineering. Lastly, 

thanks to Jay and Kala Nathwani for telling me to never give up and to never stop trying. 

 

REFERENCES 

 

 Antonanzas, J., N. Osorio, R. Escobar, R. Urraca, F. J. Martinez-de-Pison, and F. Antonanzas-
Torres. 2016. Review of photovoltaic power forecasting. Solar Energy 136:78–111. 

Bessa, R. J., V. Miranda, A. Botterud, Z. Zhou, and J. Wang. 2012. Time-adaptive quantile-
copula for wind power probabilistic forecasting. Renewable Energy 40:29–39. 

Botterud, A., Z. Zhou, J. Wang, J. Sumaili, H. Keko, J. Mendes, R. J. Bessa, and V. Miranda. 
2013. Demand Dispatch and Probabilistic Wind Power Forecasting in Unit Commitment 
and Economic Dispatch: A Case Study of Illinois. IEEE Transactions on Sustainable 
Energy 4:250–261. 

California ISO: Fast Facts. 2017, May. . California ISO. 

Current Operating Plan Practices By QSE. 2017, June 20. . http://www.ercot.com/mktrules/bpm. 

ERCOT Quick Facts. 2017, July. . ERCOT, Inc. 

Giebel, G., and G. Kariniotakis. 2017. 3 - Wind power forecasting—a review of the state of the 
art. Pages 59–109 Renewable Energy Forecasting. Woodhead Publishing. 

Gneiting Tilmann, Balabdaoui Fadoua, and Raftery Adrian E. 2007. Probabilistic forecasts, 
calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical 
Methodology) 69:243–268. 

Golestaneh, F., P. Pinson, and H. B. Gooi. 2016. Very Short-Term Nonparametric Probabilistic 
Forecasting of Renewable Energy Generation #x2014; With Application to Solar Energy. 
IEEE Transactions on Power Systems 31:3850–3863. 

Holttinen, H. 2005. Impact of hourly wind power variations on the system operation in the 
Nordic countries. Wind Energy 8:197–218. 

Hui, H., C. N. Yu, R. Surendran, F. Gao, and S. Moorty. 2012. Wind generation scheduling and 
coordination in ERCOT Nodal market. Pages 1–8 2012 IEEE Power and Energy Society 
General Meeting. 

JSON. (n.d.). . https://www.json.org/. 

Kaundinya, D. P., P. Balachandra, and N. H. Ravindranath. 2009. Grid-connected versus stand-
alone energy systems for decentralized power—A review of literature. Renewable and 
Sustainable Energy Reviews 13:2041–2050. 



Halley R. Nathwani Power Forecast Data Models for Energy Systems Spring 2018 

 15 

Kaur, A., L. Nonnenmacher, H. T. C. Pedro, and C. F. M. Coimbra. 2016. Benefits of solar 
forecasting for energy imbalance markets. Renewable Energy 86:819–830. 

Kirby, B. 2017. Frequency Regulation Basics and Trends. 

Kraas, B., M. Schroedter-Homscheidt, and R. Madlener. 2013. Economic merits of a state-of-
the-art concentrating solar power forecasting system for participation in the Spanish 
electricity market. Solar Energy 93:244–255. 

Larson, D. P., L. Nonnenmacher, and C. F. M. Coimbra. 2016. Day-ahead forecasting of solar 
power output from photovoltaic plants in the American Southwest. Renewable Energy 
91:11–20. 

Matos, M. A., and R. J. Bessa. 2011a. Setting the Operating Reserve Using Probabilistic Wind 
Power Forecasts. IEEE Transactions on Power Systems 26:594–603. 

Matos, M. A., and R. J. Bessa. 2011b. Setting the Operating Reserve Using Probabilistic Wind 
Power Forecasts. IEEE Transactions on Power Systems 26:594–603. 

Mazzi, N., and P. Pinson. 2017. 10 - Wind power in electricity markets and the value of 
forecasting. Pages 259–278 in G. Kariniotakis, editor. Renewable Energy Forecasting. 
Woodhead Publishing. 

von Meier, A. 2006. Electrical Power Systems: A Conceptual Introduction. John Wiley & Sons, 
Inc., New Jesery. 

von Meier, A., and G. D. Rodriguez. 2013. Monitoring for impacts of distributed resources: 
Initial planning considerations. Pages 1–5 Power and Energy Society General Meeting 
(PES), 2013 IEEE. IEEE. 

Morales, J. M., A. J. Conejo, H. Madsen, P. Pinson, and M. Zugno. 2014. Integrating 
Renewables in Electricity Markets: Operational Problems. Springer US. 

Obi, M., and R. Bass. 2016. Trends and challenges of grid-connected photovoltaic systems – A 
review. Renewable and Sustainable Energy Reviews 58:1082–1094. 

Palizban, O., K. Kauhaniemi, and J. M. Guerrero. 2014. Microgrids in active network 
management – part II: System operation, power quality and protection. Renewable and 
Sustainable Energy Reviews 36:440–451. 

Rana, M., I. Koprinska, and V. G. Agelidis. 2016. Univariate and multivariate methods for very 
short-term solar photovoltaic power forecasting. Energy Conversion and Management 
121:380–390. 

Savaghebi, M., A. Jalilian, J. C. Vasquez, and J. M. Guerrero. 2013. Autonomous Voltage 
Unbalance Compensation in an Islanded Droop-Controlled Microgrid. IEEE Transactions 
on Industrial Electronics 60:1390–1402. 



Halley R. Nathwani Power Forecast Data Models for Energy Systems Spring 2018 

 16 

Soder, L. 2004. Simulation of wind speed forecast errors for operation planning of multiarea 
power systems. Pages 723–728 2004 International Conference on Probabilistic Methods 
Applied to Power Systems. 

Stewart, E., S. Kiliccote, C. McParland, and C. Roberts. 2014. Using micro-synchrophasor data 
for advanced distribution grid planning and operations analysis. 

Strbac, G., A. Shakoor, M. Black, D. Pudjianto, and T. Bopp. 2007. Impact of wind generation 
on the operation and development of the UK electricity systems. Electric Power Systems 
Research 77:1214–1227. 

Walsh, P., and R. Pollock. (n.d.). Data Packages. https://frictionlessdata.io/specs/data-package/. 

Wang, J., A. Botterud, R. Bessa, H. Keko, L. Carvalho, D. Issicaba, J. Sumaili, and V. Miranda. 
2011. Wind power forecasting uncertainty and unit commitment. Applied Energy 
88:4014–4023. 

Wang, Q., H. Wu, A. R. Florita, C. Brancucci Martinez-Anido, and B.-M. Hodge. 2016. The 
value of improved wind power forecasting: Grid flexibility quantification, ramp 
capability analysis, and impacts of electricity market operation timescales. Applied 
Energy 184:696–713. 

Wattles, P. 2017, February 8. Renewable Integration in ERCOT. 

Xie, L., P. M. S. Carvalho, L. A. F. M. Ferreira, J. Liu, B. H. Krogh, N. Popli, and M. D. Ilic. 
2011. Wind Integration in Power Systems: Operational Challenges and Possible 
Solutions. Proceedings of the IEEE 99:214–232. 

 


