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ABSTRACT 

 

The terrestrial biosphere acts a critical sink for atmospheric carbon, but little is understood 
about the dynamics of this sink. In order to better understand how the terrestrial biosphere acts 
as a carbon sink, the biomass of ecosystems must be accurately measured over time. Allometric 
equations are currently used to make these estimations, but are prone to large inaccuracies. 
Terrestrial laser scanning provides a way of making much more accurate biomass estimates by 
calculating the volume of trees, but is very expensive. This study examines the difference in 
biomass estimates in a stand of Eucalyptus globulus trees from allometric and volumetric 
approaches and assesses the feasibility of making biomass estimates from terrestrial laser 
scanners using only free and open-source software. The difference between volumetric and 
allometric equations increased exponentially as a function of diameter at breast height. The two 
estimation methods produced a concordance correlation coefficient of  0.95 for the 4 smaller 
trees studied and 0.48 for the four larger trees studied. This study establishes that the production 
of biomass estimates from terrestrial laser scanners is possible using only free and open-source 
software, but methods must be streamlined to make this process more efficient. 
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INTRODUCTION 

 

The mitigation of anthropogenically produced carbon dioxide is one of the most 

prominent and critical environmental issues of our time. Since the industrial revolution, global 

emissions of carbon are estimated at 270±30 Pg resulting from fossil fuel combustion and 

136±55 Pg from land use change and soil cultivation (Lal 2004). The documented effects of 

increased carbon in the atmosphere include many global environmental problems such as sea 

level rise, drought, and ocean acidification (Orr et al. 2005, Church and White 2006, Carnicer 

et al. 2011). Because of this, a substantial amount of research is focused on how carbon levels 

in the atmosphere can be decreased. The terrestrial biosphere is one of the most critical carbon 

sinks, sequestering more carbon than the ocean since 1870 (Le Quéré et al. 2018). However, it 

is still not fully understood which ecosystems are responsible for carbon sequestration and what 

factors control the dynamics of this sink (Fung 2000, Houghton et al. 2009).  Understanding 

the role of the terrestrial biosphere in the carbon cycle and assessing its potential as an increased 

carbon sink requires research efforts that accurately quantify the stocks and fluxes of carbon in 

different ecosystems (Pan et al. 2011).  

The only way to directly measure the aboveground biomass (AGB) in an ecosystems is 

to destructively sample the vegetation. This process is incredibly labor intensive, expensive, 

error prone, and destroys the natural ecosystem being studied (Catchpole and Wheeler 1992). 

Because of this destructive approach, many ecologists have focused their research on 

developing methods of indirectly estimating the ABG of an ecosystem. The most common 

indirect method is allometry, which involves the estimation of AGB from basic ground 

measurements, most commonly diameter at breast (DBH) and tree height (Forest Inventory 

and Analysis National Core Field Guide 2016). Countless studies have produced allometric 

equations for vegetation in various ecosystems and most studies that estimate biomass rely on 

allometric equations. However, the accuracy of allometric models still relies on the availability 

of destructively sampled data (Chave et al. 2014). As a result, allometric models often produce 

inaccurate results, or results whose uncertainty is impossible to quantify (Chave et al. 2014, 

Calders et al. 2015). 

In recent years, light detection and ranging (LiDAR) has emerged as a promising tool 

for producing more accurate AGB estimates. This approach involves the use of laser scanners 

to make point clouds that serve as accurate three dimensional models of trees. These laser 

scanners are typically mounted in aircrafts and flown over ecosystems, providing landscape 

scale three dimensional models. However, in ecosystems with dense canopy cover, airborne 
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LiDAR is not particularly useful making biomass estimates because few light pulses penetrate 

the canopy and little information is provided on the stems of trees (Jaboyedoff et al. 2012, 

Murgoitio et al. 2013). As a result, studies on biomass in forest ecosystems with a dense canopy 

often use terrestrial laser scanners (TLS) (Disney et al. 2018). This involves the use of a laser 

scanner that is operated by a person on the ground and is therefore not obstructed by the canopy. 

TLS data has the ability to calculate the volume of trees with high accuracy and this data can 

then be used to make highly accurate estimations of tree biomass (Raumonen et al. 2013, 

Hackenberg et al. 2014, Calders et al. 2015). However, the adoption of TLS in forestry has 

been slow because it is very expensive, labor intensive, and requires expensive software 

(Wulder et al. 2012). It is clear that TLS has the potential to revolutionize the measurement of 

AGB, but it is unclear what the best methods for utilizing this technology are.  

The main objective of this study is to compare biomass estimates generated by 

allometry and by volumetric models to assess the magnitude of the increased accuracy provided 

by volumetric models. In addition, this study will assess the ease, accuracy, and feasibility of 

free and open-source software for making biomass estimates using TLS. To do this, I used 

terrestrial laser scans of Eucalyptus trees and extracted DBH measurements from this data. 

These measurements were then used in allometric equations to make biomass estimates. I then 

used the same dataset to make volumetric estimates of the same trees and the biomass estimates 

were compared against each other. By using only free and open-source software, I provide 

methods for making accurate biomass estimates of trees using TLS data at a very low cost.     

 

METHODS 

 

Study site 

 

The Eucalyptus Grove is a stand of Eucalyptus globulus trees (Tasmanian Blue Gum) 

on the western edge of the UC Berkeley campus situated near the confluence of the North and 

South Forks of Strawberry Creek (37.870765N, 122.263316W) (Figure 1). Like much of 

coastal California, this area has a Mediterranean climate with cool, wet winters and hot, dry 

summers (Purcell et al. 2007). The area of the Eucalyptus Grove is roughly 0.5ha and there are 

52 E. globulus trees and very little other vegetation. The trees were planted in the 1880s and 

the tallest trees are now around 60m tall, making this one of the tallest even-aged stands of 

Eucalyptus in North America. 
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 Data description 

 

The raw data consists of LiDAR scans that were made over four consecutive days 

beginning on March 17, 2018 using a Trimble TX6 Scanner by Liam Maier, Weijie Dong and 

Patina Mendez (Dong 2018). This device has a scanning speed of 500,000 points per second 

and can scan 360 degrees horizontally and 317 degrees vertically. The scans were taken of the 

entire Grinell and Wickson nature areas on the UC Berkeley campus but I only included the 

scans in the Grinell Nature Area containing the Eucalyptus grove. This subset of the data 

includes seven scans totaling about 1.5 billion points.  

 

Data processing 

  

To visualize and edit the point clouds, I used CloudCompare version 2.10.2. This free 

and open-source software is designed for point cloud processing and meshing 

(“CloudCompare” 2019). I loaded in all the scans that contained point returns for the 

Eucalyptus Grove and combined them into one large point cloud using the “Merge” tool. This 

step was necessary because scans from multiple angles are needed to obtain points from enough 

of the tree exterior to produce an accurate three dimensional model. I then used the “Segment” 

tool to clip individual trees from the larger point cloud (Figure 2). The clipped point cloud of 

a single tree was saved as a single file for export to other softwares. Because the raw data was 

Figure 1. Study site location. The location of the study site in California (a) and the location of the study site on the 
campus of UC Berkeley (b). (a) is taken from Purcell et al. (2007).  
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so dense and because the canopies of the trees have substantial overlap, I was only able to 

isolate the points for eight trees. 

 Because the original scans were saved in the file format .las version 1.4 and the software 

used for the data analysis can only accept .las version 1.2, the files of individual trees produced 

in CloudCompare had to be converted. This step was performed using a software called 

LAStools. This free and open-source software is made by rapidlasso and is made for processing 

point cloud data (“LAStools” 2019). This software has no user interface so this step had to be 

performed using command line scripts. I used the LAStools command las2las to downgrade 

the files from version 1.4 to 1.2.     
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Figure 2. Examples of point cloud data. Combined point cloud of five scans looking laterally at the Eucalyptus 
Grove from the North (a). The same point cloud viewed from above (b). A single E. globulus tree that was extracted 
manually from the larger point cloud (c). With an estimated height of about 60m the tree in (c) is possibly the tallest 
Eucalyptus tree in North America. All three figures were generated in CloudCompare.  

(a) 

(b) 
(c) 
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Allometric equations 

 

 All of the data analysis was completed in a free and open-source software called 3D 

Forest. This software is specifically designed for forestry applications of TLS (Trochta et al. 

2017). After converting point clouds to las version 1.2, I loaded the clouds of individual trees 

into 3D Forest. Within 3D Forest, I used the “terrain from octree” tool to establish where the 

ground is in the point cloud. Then I used the “DBH RHT” tool to calculate the diameter at 

breast height of the tree. In order to test the accuracy of dbh measurements produced by TLS, 

field measurements were taken of the eight trees. I did not have access to a diameter tape, so 

DBH in the field was calculated by wrapping a string 4.5 feet above the base of the tree. The 

length of the string was then measured and this value was divided by pi. Because the tape 

measurer used had millimeter accuracy, this method also produced DBH values with millimeter 

accuracy. 

 To obtain biomass estimates, the DBH values calculated in 3D Forest were plugged into 

an allometric equation. The allometric equation used is from Antonio et al. 2007 and has the 

form: 

                                                           w = 0.11(D)2.3                                                          Eqn.1 

where D is the diameter at breast height in centimeters and w is the estimated mass of the tree 

in kilograms. Though this equation was generated from trees in Portugal, it is the most complete 

study of allometry in E. globulus.   

 

Volumetric estimates 

 

 To generate volumetric estimates, I calculated the volume of each tree in 3D Forest sing 

the “Stem Curve” tool which uses Randomized Hugh transformations to fit diameters around 

the stem of the tree at various heights. The algorithm starts with computing first the stem 

diameter at 0.65 m above the ground, then at 1.3m and 2m above the ground and then continues 

computing diameters with 1 m spacing until the new diameter is two times wider than both 

previous two diameters (Trochta et al. 2017). I then used the “Export stem curve” tool which 

creates a text file with the diameters of each fitted circle. To estimate the volume of each tree, 

I wrote an R script that calculates the volume of each segment using the distance between the 

fitted rings and the diameters exported in the text file (R Development Core Team 2016). I 

added these values together for a whole tree to estimate the volume of the tree. To calculate the 
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mass of the tree, I multiplied by 539kgm-2, the average density of E. globulus wood (Stackpole 

et al. 2010). 

 

Comparison between estimation methods 

 

 The difference in estimation methods was computed by subtracting the volumetric 

estimate for a single tree from the allometric estimate for the same tree. Volumetric estimates 

generated from TLS scans are highly accurate so these numbers represent the underestimation 

of allometric estimates. To compare the two estimation methods, I used Lin’s Concordance 

Correlation Coefficient which is a statistic designed to quantify the agreement between two 

measures of the same variable. This statistic varies between 1 and -1 with 1 meaning perfect 

agreement and -1 being perfect discordance (Lin 1989).     

 

RESULTS 

 

Allometric Equations 

 

The LiDAR derived DBH measurements tended to produce small underestimations 

when compared to field derived measurements (Figure 3). The linear regression shows a RMSE 

of 1.70 cm and a slope of 0.9252. Overall, the LiDAR DBH estimates were highly accurate, 

with some small underestimations in large trees. The aboveground biomass estimates generated 

from the allometric equation are shown in Figure 4.  
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Figure 3. A comparison of field measured dbh values and LiDAR derived dbh values. The 1:1 dotted line 
represents where the points should fall if LiDAR measurements perfectly match the ground measurements. The 
red line is the least squares regression generated from the DBH values generated from the TLS scans.  

 

Figure 4. Biomass estimates produced by DBH allometry. The allometric equation used is from Antonio 
et al. (2007) and is specifically for E. globulus. 
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Volumetric Models 

 

Tree volume is directly inferred from the TLS data by constructing three dimensional 

models of each tree and AGB is calculated by multiplying these volumes by the wood density. 

The estimates generated by this method increased with increasing dbh (Figure 5). Unlike the 

allometric estimates, these estimates do not follow an exact exponential equation, but are the 

result of direct estimates of biomass based on the point cloud data. The actual dbh of each tree 

does not directly factor into how the volume was estimated.   

 

 

Comparison between Estimation Methods 

 The biomass estimates generated by allometric equations and volumetric models are 

very similar for small trees but are drastically different for large trees (Figure 6). The difference 

between the two estimation methods follows an exponential curve when graphed against dbh 

(Figure 7). The two estimation methods have a CCC of 0.75. However, if the four trees with 

the smallest and largest DBH values are treated as two separated data sets, the CCCs are 0.95 

and 0.48, respectively.  

Figure 5. Bar chart showing biomass estimates from volumetric models. These estimates are for the same 
eight trees but were created by making three dimensional models for each tree TLS scans 
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DISCUSSION 

 

 This study found that biomass estimates of E. globulus produced by allometric 

equations and by volumetric methods showed increasing disagreement with increasing DBH. 

Though it is impossible to know what the true biomass values are without destructively 

Figure 7. The difference in AGB estimates between volumetric and allometric estimation methods.   

(b) (a) 

Figure 6. Comparison of AGB estimates from allometry and volumetric estimates. The graphed 
against each other in a scatter plot (a) and a grouped bar plot (b). In the bar chart, the trees are listed in 
order of increasing DBH.  
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sampling, allometric estimates of biomass in Eucalyptus trees tend to underestimate the true 

value, especially in large trees (Calders et al. 2015). This leads me to conclude that volumetric 

estimates produce more accurate biomass results, especially in trees with large diameters. 

These results illustrate the value of TLS in biomass studies because they use novel methods to 

produce more accurate estimates than allometry. In addition, this study demonstrates the 

feasibility of producing biomass estimates from TLS using only free and open source software. 

The further development of free and open source software is critical for bringing this 

technology to a wider audience because licensed LiDAR processing software is very expensive.   

    

Data Interpretation 

 

The ground measurements demonstrate that the dbh measurements are accurate to an 

extent. Millimeter level accuracy is common in assessments of LiDAR derived dbh 

measurements compared to ground truth measurements (Hopkinson et al. 2004, Roberts et al. 

2010, Calders et al. 2015). Problems in dbh estimation arise not from inherent inaccuracy in 

LiDAR scans but from problems with the dbh metric itself. The definition of a “diameter” 

assumes that the object being measured is a circle, which is often not true for trees. This 

problem has been particularly well documented in tropical forestry where most trees form a 

buttress near their base that causes trees to have highly variable morphologies at breast height 

(Clark and Clark 2000, Cushman et al. 2014). Similarly, many of the trees in the UC Berkeley 

Eucalyptus Grove are not circular at breast height, which causes problems for the algorithm in 

3D Forest that calculates dbh. This algorithm attempts to fit circle around the points 130cm off 

the ground and is prone to error if the points do not form a clear circle (Trochta et al. 2017). 

Nevertheless, this was only a problem with three trees and the LiDAR dbh estimates from these 

trees were still within 95% of the field-measured value.    

The two biomass estimation methods produced similar results for trees with smaller dbh 

values but very different results for large trees. The CCC of 0.95 confirms a very strong 

agreement between estimation methods for the four smallest trees and the CCC of 0.48 reveals 

a very strong disagreement between estimation methods for the four largest trees. These results 

closely match a similar study on Eucalyptus trees in Australia where tree biomass was 

estimated using allometry and volumetric models (Calders et al. 2015). In this case, allometric 

and volumetric estimates are very similar in smaller trees but very different in larger trees. 

Furthermore, the true biomass taken from destructive sampling demonstrated that volumetric 

estimates are highly accurate, even in large trees (Calders et al. 2015). This coincides with a 
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larger body of work showing how allometric equations tend to produce inaccurate estimates 

with increasing dbh (Muukkonen 2007, Chave et al. 2014). This is not surprising given that 

large trees have rarely been harvested and measured for the calibration data of allometric 

equations (Stephenson et al. 2014). The results of this study further demonstrate that current 

allometric equations are useful for estimating biomass in small trees, but are grossly inaccurate 

for large trees. Given how the error in allometric estimates increases exponentially with dbh 

(Figure 5), allometric equations are discouraged for E. globulus trees with a dbh above 90cm.  

 

Advantages and Disadvantages of TLS 

 

Unlike other remote sensing technologies, the usefulness of TLS is often questioned 

because it requires a tremendous amount of field work. To scan a 1 hectare plot takes three 

people between three and eight days (Wilkes et al. 2017). The question of the usefulness of 

TLS is particularly pertinent when it is being used to calculate metrics that could be done in 

the field like dbh or tree height. However, TLS is extremely useful for biomass studies because 

it provides significantly more accurate estimates than any other non-destructive method 

(Calders et al. 2015). Though it does require people to be physically in the field and can take a 

tremendous amount of field work, the biomass estimates made by TLS scans cannot be made 

by taking ground measurements, so remote sensing is necessary to produce these estimates. 

Furthermore, airborne LiDAR cannot provide accurate scans of the stems of trees in forests 

with dense canopy cover (Dassot et al. 2011).   

Though it is the best way to make accurate biomass estimates TLS is still rare in 

ecological studies because of the inherent difficulty in working with this volume and resolution 

of data. The scanners and proprietary software necessary are very expensive (Tilley et al. 2004, 

Wulder et al. 2012, Jakubowski et al. 2013). Furthermore, most softwares do not have many of 

the tools necessary to process point clouds and perform the analysis necessary for forestry 

applications. In addition, the files that contain point clouds are extremely large and often 

require computers with a large amount of RAM and GPUs to be viewed and processed. This 

study demonstrated that it is possible to produce biomass estimates of trees using only free and 

open source software, but these softwares are very slow on consumer grade laptops and were 

not equipped for processing large data sets. For example the tool in 3DForest that automatically 

separates trees took around ten hours to run per tree and often experienced various crashes and 

failures.   
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Challenges of TLS Approaches  

 

 The most prominent limitation in this study was that the scans were not made for the 

purpose of doing a biomass analysis. These scans were extremely high resolution which made 

the processing of point clouds very slow. Furthermore, the immense density of the point clouds 

made it very hard to isolate individual trees in the point clouds. Because of this, I could only 

render three dimensional models of eight out of forty trees in the eucalyptus grove. This is a 

very poor success rate given that the UC Berkeley Eucalyptus Grove is very good for a TLS 

biomass study because there stand is not very dense and E. globulus trees have very clear stems.   

 In addition, the method I used to generate the biomass estimates from volumetric 

models has many limitations. This approach requires trees to have one clear and distinct stem. 

This would not work, for example, in oak trees because it starts branching very low. 

Furthermore, this method only estimates the volume of the stem and some large branches, but 

is not able to include the volume in small branches or leaves. Though most of the mass in trees 

in the stem, Eucalyptus trees can have over 100 kg of mass in their crowns (Attiwill 1966).  

There is also an inherent small overestimation in the volume of the stem because it treats each 

segment as a cylinder when in reality the stem decreases in diameter with height. This adds a 

variable amount to the volume of each segment, depending on how fast the stem tapers in that 

segment. Researchers are working on methods for estimating the volume of trees from point 

clouds that do not include these biases. These methods are usually referred to as quantitative 

structure models and currently require very complicated mathematical algorithms but are 

proving to produce very accurate biomass estimates when tested against destructively sampled 

values (Raumonen et al. 2013, Calders et al. 2015).  

 

Conclusions 

 

 LiDAR is potentially a very useful tool for biomass studies yet its widespread adoption 

is constrained by the difficulty involved in working with this type of data. In order to make 

TLS more widespread, it must become more accessible. There is not one defining software, 

processing algorithm, or even file type for TLS data. These barriers make it incredibly difficult 

to perform a TLS analysis. We do not know many fundamental characteristics of TLS data like 

the density of points required to make accurate measurements, how many angles a tree needs 

to be scanned from to make accurate measurements, what the best algorithms are for separating 

trees, and what the best algorithms are for calculating volume. This study provides methods for 
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making biomass estimates using only free and open source software, but this process is 

extremely inefficient and only works on trees with a specific morphology. If algorithms like 

quantitative structure models are made publicly available in common point cloud processing 

software and the optimal scanning resolution is established, it would greatly abet the 

widespread adoption of TLS for biomass studies.  
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