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ABSTRACT  

  

Permafrost across the Arctic and subarctic is thawing due to climate change. This study aims to 
better understand carbon emissions from permafrost thaw by producing models of carbon pools 
and carbon lability in the subarctic Yukon-Kuskokwim delta watershed. Permafrost contains cast 
amounts of carbon, around 1500 petagrams. I collected soil samples in-field, tested for carbon 
pools and lability, then mapped carbon pools and vulnerability over various land cover classes 
using supervised and unsupervised classification algorithms in Google Earth Engine.  
Classification algorithms revealed burned areas in the region have less carbon and are less labile 
(2-15 kg/m² carbon pool,  0.8954-.9842 lability index) than unburned areas (20-30 kg/m² carbon 
pool, 1.035-1.187 lability index), and elevated, dry areas have less carbon and are less labile (4-10 
kg/m² carbon pools and  0.9081-.9588 lability index) than low-lying, wet areas (25-30 kg/m² 
carbon pool, 1.035-1.187 lability index). This investigation revealed a relationship between carbon 
lability and pools across the landscape, areas of high carbon lability have high carbon pools and 
areas of low carbon lability have low carbon pools. Additionally, this research produced models 
and workflows to investigate carbon emissions from subarctic regions, which will become 
increasingly relevant as Arctic regions continue warming and become increasingly similar to 
subarctic regions in permafrost thaw.   
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INTRODUCTION  

  

Permafrost occupies about 26% of the total exposed land surface in the Northern 

Hemisphere, 16% globally, and sequesters 1672 petagrams of carbon, which is estimated to be half 

of the global belowground organic carbon pool and about two times the global atmospheric carbon 

level (Zhang et al. 2003, Tarnocai et al. 2009). Carbon gas emissions from thawing permafrost are 

therefore incredibly significant for global climate change, as there is such a vast amount of carbon 

potentially emitted during warming. As permafrost soils thaw, indigenous microbes become more 

active and more organic compounds become available, resulting in increased consumption and 

carbon emission (Schuur et al. 2008, Jansson and Taş 2014). In permafrost soils, microbes turn 

complex organic compounds to soluble metabolites and gases, including carbon dioxide, methane 

and nitrous oxide (Graham et al. 2011). The likelihood that a microbe consumes organic soil carbon 

and emits gas is known as the soil lability. Labile carbon is usually found in organic soil rich with 

simple carbohydrates and amino acids (Zou et al. 2005). The released microbial gasses from labile 

carbon are primarily greenhouse gasses, meaning their presence in Earth’s atmosphere contributes 

to global climate change. Therefore, quantifying the gas emissions from microbes in thawing 

permafrost is crucial for understanding global climate change. The Yukon-Kuskokwim delta is 

specifically important to model because it is an area of subarctic permafrost, and as the Arctic 

continues to warm, vast regions of carbon-heavy Arctic permafrost will start emitting carbon in 

patterns characteristic of subarctic permafrost (Nitze et al. 2019).  

The area of permafrost investigated is the Yukon-Kuskokwim delta; a topographically 

varied region with patterns of different elevations and wildfire burn scars. The  

Yukon-Kuskokwim delta watershed is a region of sporadic permafrost, meaning the ground is 

intermittently permafrost and thawed soil, which impacts the regional elevation. Presence of 

permafrost controls the elevation in the region, lower areas are wet regions of thaw while higher 

areas are drier with a thicker permafrost layer (Jorgenson and Ely 2001). In addition to the 

elevation change, the Yukon-Kuskokwim delta has regions of unburned soil and burn scarring 

from wildfires in 2015 and 1972 (Michaelides et al. 2019). The topographical elevation and 

moisture differences are known to decrease decomposition of organic matter, and burning is known 
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reduce available carbon (Schuur et al. 2008, Wild et al. 2014). Therefore, the elevation and burn 

patterning can be used in developing a relationship between the Yukon-Kuskokwim delta 

landscape and carbon emissions.   

Remote sensing technology can be employed to better understand the topography and 

associated emissions of the delta. As the Yukon-Kuskokwim delta can be broken down into a 

variety of distinct land cover types based on burning and elevation, this area lends itself well to 

remote sensing-based analysis. In 2018, a team of investigators successfully classified a coastal 

region of the Yukon-Kuskokwim delta into 8 ecotypes based on topography, vegetative cover, and 

water cover, demonstrating the area’s aptitude for remote sensing analysis (Whitley et al. 2018). 

The distinct soil classes used for analysis in this investigation are purposefully similar to the land 

classes used in the Whitley investigation.  

The objectives of this investigation are to collect samples and calculate the carbon lability 

and pool by volume of each soil sample, assess the validity of the land classes, and model the 

spatial relationship between soil carbon and the landscape. The information generated can be used 

to predict carbon emissions, with the goal of ultimately contributing to global climate change 

models, which currently do not incorporate detailed models from regions of permafrost thaw (Gray 

2018, Graham et al. 2011).   

  

METHODS  

  

Study site  

  

The Yukon-Kuskokwim delta (YKD) watershed is about 129,500 square kilometers of 

subarctic tundra that lies 40 miles west of Bethel, Alaska. The center of the watershed can be found 

at longitude: -163.25, latitude: 61.26. The YKD has a mix of high and low elevation areas that 

loosely coincide with sporadic permafrost thaw. The depth and presence of frozen permafrost 

varies throughout the region (Jorgenson and Ely 2001). Permafrost is rigid, frozen soil that adds 

structure to the landscape, when it thaws the ground slumps lower because of the lost support 

(Zhang et al. 2003). While the ground slumpls lower, water from thawed permafrost percolates to 
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the surface forming wetlands called fens or lakes called thermokartst (Sui et al. 2018). In the YKD, 

low areas are wet and high areas are dry, so this investigation conflates elevation with moisture.   

 In addition to permafrost variation controlling elevation, there is variation in burned areas 

of the landscape from wildfires. The YKD was burned by wildfires in 2015 and 1972, and the 

scarring is still visible by satellite (Michaelides et al. 2019, Fiske 2017). Those burned regions, in 

combination with the sporadic permafrost thaw and wetland formation, are typical of subarctic 

permafrost (Zhang et al. 2003).  The distinct elevation and burning features create interesting 

variations in topography and moisture in the YKD that are classifiable through a combination of 

fieldwork and remote sensing.  

  

Preliminary land class establishment   

  

To segment the YKD into different land classes representative of the region, I visited the 

field sites and visually interpreted the landscape to discern distinct land cover types. The classes I 

identified are high and dry unburnt, high and dry burnt, low and wet unburnt, and low and wet 

burnt. These four classes account for the burn variation and wetness variation indicative of 

permafrost thaw (Michaelides et al. 2019, Jorgenson and Ely 2001).  Broad land classes were 

needed to structure sample collection and were validated after collection and processing.   

  

Soil sample collection  

  

To obtain information about the carbon pools and vulnerability within the different land 

cover classes, I collected numerous soil samples from each class. I collected the samples by coring 

the active layer using a modified hand drill.  Each core was approximately 30 centimeters deep 

and 6 centimeters in diameter (Figure 1). At each site that represented one of the four land cover 

classes, I collected between 3 and 6 soil samples. Each land cover class had at least 3 sites sampled 

in 2018, for a total of 150 sample points in 2018, and an additional 150 archived and geotagged 

samples collected by former researchers in 2017 were also included. The soil samples from 2017 

were not from the same sites as 2018, but they were from the same landscape, so I assigned them 
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to the 4 land class categories. Each sample I collected was geotagged and recorded to track the 

area and land class from which it was taken.  

  
 

Carbon pool per volume  

  

To determine carbon pool, I first homogenized, subsampled and dried each soil sample in 

60° Celsius ovens and ground them using a SPEX High-Energy Ball Mill. The proportion of carbon 

for each ground, dried soil sample was determined using a LECO elemental analyzer.  

Then carbon pools in per soil volume for each sample were calculated using the formula:  
 
(proportion C from LECO analyzer)(dry soil mass in grams) (soil 

volume in m3)(sampling depth in m) .  

  

  

  

  

  

  
  

Figure 1 .  Demonstration of an active layer core . Photo of author by John Schade during 2018 YKD expedition.   
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Carbon lability  

  

To calculate carbon lability, I first obtained the spectral profile of each of my samples using 

a Fourier-transform infrared spectroscopy machine. I then used the ChemoSpec package in R 

version 5.0.88 to calculate a metric of lability (Hansen 2018, R Core Team 2018). The lability 

calculation is a ratio of aromatic to carboxylic peaks in each sample (Ernakovich et al. 2015).  

Figure 2 illustrates the peaks I used in an example spectrum.   

  

  
  
Figure 2. Reference spectrum. The proxy for carbon lability was determined by the ratio of aromatic to carboxylic 
peaks.   
  

Land class validation  

  

After collecting soil samples from each of the land classes and calculating the carbon pool 

and lability figures for each of the samples, I had sufficient data to validate the land classes. I began 

the validation by comparing percent carbon and lability by land cover class. That information 

suggested accurate land cover classes, and I confirmed that suggestion by conducting a robust PCA 

in R version 5.0.88. I further proved statistical significance with an ANOSIM (R Core Team 2018).  
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Mapping and modeling  

  

I then segmented raster imagery from the Landsat 6 Arctic DEM satellite into each land 

cover class using an supervised classification algorithm (ee.Clusterer) in Google Earth Engine and 

incorporated Sentinel 2 multispectral imagery (Gorelick et al. 2017). The resolution was limited to 

the Landsat dataset resolution of 5 meters. I incorporated Gregory Fiske’s 2017 unsupervised 

classification map of the region to validate the land cover classes, and later trained that map using 

30% of the field-collected points (Fiske 2017). The satellite imagery was filtered to 2016-2017, 

summer, cloud free days. Derived products included as covariates were NDVI, NDWI, and slope. 

This remote-sensing analysis produced refined maps of the distribution of carbon pools and 

lability.   

  

RESULTS  

  

Soil organic carbon pools and carbon lability  

  

Percent soil organic carbon and carbon lability differed for each land cover class. Low, wet 

areas contained more percent carbon and a higher carbon lability index, while burned plateau areas 

had less percent carbon and a lower carbon lability index. The percent carbon for the two burned 

regions, 2015 and 1972, was ~37% (Figure 3). The percent carbon per land cover class bar graph 

revealed only moderate differences, but the lability bar graph revealed unburned and fen areas were 

about 15% more labile than both the 2015 and 1972 burned areas. These differences in carbon 

lability justified the further robust principal component analysis.  
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Figure 3. Percent carbon and carbon lability by land cover class. Average percent carbon analysis was conducted 
on samples from 2018, average carbon analysis was on samples from 2016, 2017, and 2018.  
  

Validating land classes  

  

The robust principal components analysis revealed differences by land cover class. The 

first three components in the robust PCA explained 96% of variation in the data, with the first 

component alone explaining 78% (Figure 4). Additionally, the first two components in the robust 

PCA explained 85.4% of the total variation in the soil data. The significance of the similarities 

between samples in each class was validated with a one-way ANOSIM, producing an R-value of 

.4 and an associated p-value of 0.001 between land cover classes.  
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Figure 4. Robust PCA of soil samples from land cover classes. Inputs were full spectra.   

  

Mapping pools and lability across the landscape  

  

Wildfire burns corresponds to a decrease in carbon pools and lability and lower, wetter  

areas correspond to an increase in carbon pools and lability. Burned areas had carbon pool values 

in the range of 2-15 kg/m² and lability index values in the range of 0.8954-.9842. Unburned areas 

had carbon pool values in the range of 20-30 kg/m² and lability index values in the range of  

1.035-1.187. High, dry areas had carbon pool values in the range of 4-10 kg/m² and lability index 

values in the range of 0.9081-.9588, while low, wet areas had carbon pool values in the range of 

25-30 kg/m² and carbon lability values in the range of 1.035-1.187.   

Carbon lability and carbon pools reflect similar patterning across the delta. Where there is  

high carbon lability, there are large carbon pools and where there is low carbon lability, there are 

smaller carbon pools. This direct relationship corresponds to the locations of wetlands and 

wildfires; burnt areas have low carbon lability and low carbon pool, wet areas have high carbon 

lability and high carbon pool. The accuracy of these maps was validated with confusion matrices 

in Google Earth Engine calculated to be within 5 meters.   
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Figure 5. Predicted (a) soil organic carbon pools and (b) carbon lability. Carbon pool map made from 2016, 
2017, and 2018 data. Green/yellow areas are burned and/or elevated. Carbon lability map made from 2018 data, 
orange/red areas are burned and/or elevated.  
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DISCUSSION  

  

This investigation was successful in its objectives. I determined soil carbon profiles for 

each sample collected in the YKD by calculating carbon pools and lability, assessed the validity 

of the land classes chosen, and mapped the carbon pools and lability across the watershed. This 

investigation found that carbon pools and lability are lower in burned areas and higher in wetter 

areas, which is supported by literature. Additionally, the land classes used in mapping were 

statistically significant (R=.4). The maps produced with soil samples and land classes clearly 

model carbon pools and lability across the landscape and can be used together to predict potential 

carbon emissions. Satisfaction of these objectives allows for improved understanding of carbon 

emissions in the YKD.  

  

Carbon profiles of soil samples  

  

Comparing the carbon pools and lability I calculated at each sample point reveals the 

carbon distribution over the landscape. Carbon pools and lability are low in burned and 

topographically elevated areas, and high in unburned and topographically lower aeras. These 

results are generally consistent with published literature (Jorgenson and Ely 2001, Michaelides et 

al. 2019). My carbon pools and lability measurements were lower than anticipated because of my 

sampling method, which involved only sampling the top 30 centimeters of the soil. Carbon pools 

and lability are low in the topsoil of burned areas (about one class lower than unburned areas) 

because burning converts organic, labile carbon to recalcitrant char and depletes carbon pools 

(Michaelides et al. 2019). The relatively shallow cores explain why the burn sites had particularly 

low carbon lability and pool calculations. The labile carbon was burnt off leaving recalcitrant 

carbon and char behind. Sampling the entire soil column would raise the carbon lability and pool 

values and minimize the difference between burned and unburned areas.   

Additionally, my carbon lability measurements depended on a inexact calculation and there 

are associated errors. The Ernakovich ratio is a rough metric of carbon lability in permafrost soils 

(Ernakovich et al. 2015). The ratio works well in organic soils but the peaks required to calculate 

a lability metric can get obscured with noise in soils that are highly inorganic. Wet soils are more 
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inorganic than dry soils, so the Ernakovich ratio was more successful in dry areas than wet 

(Tarnocai et al. 2009). This inconsistency in producing a carbon lability measurement could have 

caused the wet areas to have a larger margin of error than dry areas. Despite its faults, other proxy 

ratios were not as effective in permafrost soils because of the carboxylate distribution (Martens et 

al. 1992). The Ernakovich ratio was developed in soils similar to YKD soils and was the best 

published option for lability calculations.  

  

Land cover class validation  

  

 Soil carbon characteristics are largely consistent within individual study sites, as 

demonstrated by the PCA and ANOSIM. Figure 3 demonstrates variability in the samples, but only 

uses the samples from 2018  with 3 classes, so no statistical conclusions can be drawn. Although 

not robust enough to stand alone, that preliminary analysis was promising and justified running a 

PCA to further investigate, especially because the findings in figure 3 are supported by literature 

such as the 2019 Michaelides et al paper. The PCA corroborates the previous body of knowledge 

and determined the land classes and associated soils are clustered together in significantly similar 

ways. To validate the PCA and test for significance in similarities between samples of each class, 

I ran a one-way analysis of similarities (ANOSIM), which produced an R-value of =.4 and an 

associated p-value of 0.001. An R-value of 1 indicates that the most similars soil samples are all 

within the same site and an R-value of 0 indicates the distribution is random. An R-value of .4 is 

generally low, but it is statistically significant for Arctic soil research (Wild et al. 2014). All soils 

are chemically very similar, and soils from the same region are even more similar to the point of 

lowering confidence in significant differences, resulting in a lower R-value (Lee et al. 2011). An 

R value of .4 is moderately significant for most soils, highly significant in terms of Arctic soils, 

which tend to be particularly similar due to slow turnover rate (Wild et al. 2014).  
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Mapping and modeling  

  

The product of my research is two maps, one with a distribution of carbon lability and one 

with a distribution of carbon pools. There must be carbon present for microbes to consume, and 

the carbon must be in a labile form. (Gray 2018, Jansson and Taş 2014). The maps displayed 

similar contours in carbon lability and carbon pools, which follow the burn and elevation contours 

of the landscape, visually validating the current understanding of the relationship between Arctic 

carbon and topography (Michaelides et al. 2019, Jorgenson and Ely 2001). Wildfires influence 

carbon distribution by converting labile carbon to recalcitrant carbon and by diminishing carbon 

pools during the burning process, which is why the burned areas had lower carbon lability and pool 

metrics (Michaelides et al. 2019). Low-lying areas are formed when permafrost thaws, the ground 

slumps, and marshy wetlands and lakes form. Those areas are full of fresh, organic, labile carbon, 

which is why the lower elevation areas had higher carbon pool and lability metrics (Jorgenson and 

Ely 2001, Sui et al. 2018).  

The classification algorithm and a random tree generation in Google Earth Engine used to 

make the maps are industry standards. The maps have an accuracy of 5 meters as calculated by a 

confusion matrix in Google Earth Engine which is limited by the resolution of the Landsat 6 

imagery used and is a common granularity for remote sensing analyses (Gorelick et al. 2017, Fiske 

2017, Whitley et al. 2018).  

  

Limitations and future directions  

  

Part of the merit of this project was the small scale of it, which allowed for accuracy in the 

training points and model validation but limited the scope of the research. Remote sensing 

approaches are generally only successful in the areas in which they are trained (Whitley et al. 

2018). This model is built and trained on points sampled in the Yukon-Kuskokwim delta so future 

attempts to include more points and broaden it to vastly areas might not be accurate. Additionally, 

my models are structured around the patterning of elevation and wildfires in the  
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YKD, so my workflow will not be useful if used in a region without those characteristics because 

of how integral burns and elevation are to the landscape (Michaelides et al. 2019, Jorgenson and 

Ely 2001). However, this paper can be used to guide and plan similar arctic research, and the 

modeling can be used in other areas with elevation and burn patterning if the YKD sample points 

are discarded and new sample points from a different area are used as inputs.  

Another limitation in my work is the absence of water classes. Arctic lakes are a crucial 

component of climate change, in their carbon emission contributions and their response to warming 

(Nitze et al. 2017). Lakes are also a defining feature of permafrost regions and neglecting to include 

them can reduce the land cover studied by as much as 50% (Sui et al. 2018, Jorgenson and Ely 

2001). When I began this investigation, I sampled sediments from different lake classes in addition 

to my soil samples, with the intention of including them in my maps. However, modeling the lakes 

proved to be difficult because they contain more inorganic components than soils which caused 

the Ernakovich ratio to fail (Ernakovich et al. 2015). Future work could be done to include 

sediment carbon information, maybe by developing a more robust calculation for carbon lability, 

which would produce a more comprehensive model of the Yukon-Kuskokwim watershed.   

  

Broader implications  

  

This research quantifies and maps factors that define potential emissions in the Yukon-

Kuskokwim delta. As the climate continues to warm and the permafrost continues to thaw, ground 

collapse will increase wetland formation and extreme weather patterns will increase wildfire 

burning, meaning more Arctic areas will start emitting carbon in patterns similar to the YKD. 

These maps, when used in conjunction, can forecast carbon emissions from each land cover class, 

because predicted emissions depend on a combination of pools and lability. The analysis and 

workflow outlined in this paper can be used to map future Arctic or subarctic potential carbon 

emissions, and the results can be incorporated into global permafrost models.  

Permafrost isn’t usually accounted for in climate models so this research, and research like 

it, is critical. Excessive amounts of carbon from regions of permafrost thaw will contribute 

staggering amounts of carbon gas to our atmosphere, which will lead to the positive feedback loop 
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of increased climate change and increased permafrost thaw. We need to know what our carbon 

sources will be as our world heats up past a point of no return.   
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