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Pesticide Application and Water Quality in the Central Valley:  

Calculating Sensitivity of CSCI scores to Pesticide Toxic Units and  

Visualizing Applied Pesticide and Ecosystem Health Data 

 

Erin W. Cain 

 

ABSTRACT 

Pesticides runoff from agricultural fields introduces toxins into freshwater aquatic ecosystems. 
California’s Central Valley is vulnerable to pesticide pollution from extensive agricultural land 
use in areas where runoff contaminates the Sacramento-San Joaquin watershed harming 
ecosystems and limiting California’s freshwater supply. I studied which pesticides were detected 
at the greatest concentrations and in the greatest toxic units. Diuron, an herbicide, was detected at 
the highest concentration and highest TU over all my study sites. To understand the biological 
implications of chemicals entering the watershed I calculated correlations between the California 
Stream Condition Index and Toxic Units of pesticides groups appearing in the water. Total TU of 
all pesticides had a weak negative correlation of -0.13 (p=.28) with CSCI scores. Insecticide TU 
and CSCI scores had the highest correlation with -0.33 (p=.228). Poor ecosystem health, low 
CSCI scores, is correlated with higher levels of Toxic Units of pesticides. However, more 
Central Valley datapoints are required to evaluate statistically significant correlations. 
Additionally, I produced an interactive map to communicate pesticide application and biological 
health of aquatic ecosystems in the Central Valley. Data communication will help draw more 
definitive conclusions and sharing these findings with the public is important to increase 
engagement in this issue and encourage policy change to reduce pesticide use.   
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INTRODUCTION 
 

California water management and conservation is an increasingly important issue in 

today’s changing climate. Climate change is enhancing California’s natural drought conditions 

and making fresh water harder to come by (Kiparsky and Gleick 2005). Protecting clean water 

across California is important for environmental and human health. Natural events that shift the 

hydraulic conditions in an area can lead to contaminated water but human development is a 

much greater cause of water pollution in California (Inyinbor et al. 2018). Agricultural 

contaminants and urban contaminants make up the top two sources of pollutants in freshwater 

ecosystems today (Paul et al. 2001). Polluted water harms both humans and the natural 

ecosystems around a pollutant sources (Vörösmarty et al. 2010). Contaminated water not only 

harms hydraulic ecosystems but also is harder to clean and filter properly to convert to drinking 

water, which is problematic in a world where water is already hard to come by (Price and 

Heberlin 2018). In both urban and rural areas human chemical use of agricultural pesticides and 

urban pollutants harm our natural hydraulic ecosystems.  

Land use changes and applications of chemicals onto land influence water quality in 

urban and rural areas in the state of California. Pesticides are shown to be a source of water 

pollutants in agricultural areas (Agrawal et al. 2010, Chiu et al. 2016) and agricultural runoff is 

the main source of nonpoint water pollution in the United States (Luo et al. 2008). All 

agricultural pesticides applied in the state of California are required be recorded as part of the 

Pesticide Use Reporting (PUR) database (PUR 2019). Similarly, in urban areas chemicals enter 

into the water system from landscaping pesticide use as well as from other sources (Rezaei et al. 

2010). Chemicals in both urban and rural areas affect water quality yet, much remains to 

determine quantitatively how of specific point pollutants are entering hydraulic ecosystems, how 

these pollutants are shifting with different management techniques and in different areas, and 

ultimately the ecosystem harms that they are causing.  

Current research on chemicals and polluted water mainly emphasize human health and 

human interactions but these pollutants also carry serious ecological effects on ecosystems. 

Pesticide contamination can change entire benthic macroinvertebrate communities and may be 

the only variable to explain this variation (Scheafer et al. 2011, Chiu et al. 2016). For water 

quality in California 37% of streams in the San Joaquin Valley exceed the threshold of pesticides 
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that aquatic communities can survive in (Luo et al. 2008). Biological indices like the California 

Stream Condition Index (CSCI) communicate how similar biological communities are to the 

expected macroinvertebrate community without impairment. CSCI scores are calculated using 

holistic factors of ecosystem health. Macroinvertebrate samples from the stream, water quality 

samples, and statewide geography and climate factors are all combined to make up one overall 

score representing ecosystem health. These inputs create a standard for the whole state that can 

be compared across climates (Tang 2015).  However, it is not yet identified if CSCI scores are 

correlated with pesticide concentrations throughout California. Analyzing CSCI scores helps us 

to identify if there is any indication of pesticide pollution affecting ecosystem health. Then I can 

determine which pesticide groups may be more correlated to CSCI scores and thus biological 

ecosystems.  

To better understand pesticide effects on aquatic ecosystems, I used the PUR database to 

examine the use of pesticides across the Central Valley, the appearance of specific pesticides in 

surface water samples in the Central Valley, and the correlation of these pesticide groups with 

CSCI scores. I examine herbicides and insecticides to identify which one has a larger impact on 

CSCI scores. The correlation of CSCI scores and herbicide or insecticide concentrations may 

indicate how sensitive CSCI scores are to pesticide application, if at all, and if they are a good 

indicator of chemical concentration of harmful toxins in surface waters in California.  

I also created an interactive map to communicate pesticide use, land use, and water 

quality in California. Ultimately this map will help investigate how pesticide applications affect 

water quality and hydraulic ecosystems in California as well as understanding how visualizing 

this data helps improve understanding of the environmental implications of human development. 

This map along with my analysis will clarify the harm that pesticide application is having on the 

environment by looking into how well the tools that we already have, CSCI scores, show 

pesticide harms and if this varies with different types of pesticides. The map will provide 

information on pesticide application throughout the Central Valley and interactive features will 

assist the user in narrowing down areas of concern by filtering through CSCI scores and pounds 

of pesticides applied. Through effective visual communication and analysis I hope to emphasis 

the ecological implications of land use change and ultimately reach a variety of audiences who 

can use this information to make better-informed policy decisions.  
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METHODS 

 

Study system 

 

  The extensive agricultural land-use of the Central Valley in conjunction with the existing 

relevant data on pesticide application and ecosystem health made the Central Valley an optimal 

study site. The Central Valley includes the Sacramento and San Joaquin River watersheds, the 

two largest rivers in California (Carter and Resh 2005). At a 160,000 square kilometer area it 

includes 1/3 of the area of the state of California that drains into the Central Valley.  

  Agricultural land use covers 15% of the Sacramento Valley and 60% of the San Joaquin 

Valley with very few urban areas that are instead concentrated around San Francisco, 

Sacramento, Fresno, Stockton, and Modesto (Carter and Resh 2005). The majority of the farming 

occurs in the Valley leaving the upper portion of the watershed free from agricultural runoff.   

 The Central Valley has a Mediterranean Climate with cool wet winters and warm hot 

summers (Bonada and Resh 2013) and rainfall can be highly variable from year to year. Water 

flows from mountain tributaries down through the Sacramento and San Joaquin Rivers and into 

the Sacramento-San Joaquin Delta. The watershed extends as high as 4,000 meters in the Sierra 

Nevada and ends at Sea Level where the Delta intersects with the San Francisco Bay (Carter and 

Resh 2005). The streams in the Sacramento and San Joaquin watershed are characterized by high 

variation in stream flow. Snowmelt and rainfall in the spring cause seasonal flooding events 

while dry hot summers lead to drought conditions. Flow regimes are additionally altered by 

human alterations providing water for drinking and irrigation (Carter and Resh 2005).  

 

Dataset description  

 

I used publically accessible Pesticide data from the California Pesticide Use Reporting 

Database (PUR 2017). PUR is the most comprehensive database of pesticide use in California 

with data starting in 1970 through present day. This data resource reports pesticide use by 

townships and is separated into different series of records for every year and every county.  

For water quality data I used the California Environmental Data Exchange Network 

(CEDEN 2019) database that is compiled from the San Francisco Estuary Institute 
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(https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden). The CEDEN surface 

water database is a compilation of data collected from USGS, SURF, and other surface water 

quality monitoring programs.  

I also used CSCI scores.  CSCI scores are a biological assessment score that rates overall 

ecosystem health. CSCI scores are calculated using statewide data of macro invertebrate samples 

and environmental geographic variability of stream types to give a score between 0-1.4 that 

indicates how close the ecosystem is to the expected ecosystem at the site studied (Tang 2015).  

A score of 1 indicates that the ecosystem health is normal in that area. Any score above one is 

better than expected ecosystem health for a stream of that type. Scores below one show 

diminished ecosystem health.  

 

Site selection and pesticide selection  

 

 To select sites I filtered through CSCI scores and CEDEN data to find water quality 

testing sites that had both pesticide concentration data and CSCI scores for the same month and 

year (Figure 1). Of the sites, 15 sites from 2004 to 2010 matched CSCI and concentration criteria 

(Table 2).  

 
Figure 1: 15 Study Sites Selected in The Central Valley. Sites taken from CEDEN 
(https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden) and map made using leaflet 
(Joe Chang et al. 2019)  

 

https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
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Two commonly used types of pesticides in California are Insecticides and Herbicides. 

There are many chemicals encompassed within these two groups categorized based on the target 

organism that they are attempting to harm. Insecticides mainly target nerves and muscles, growth 

and development, and energy production because they are trying to target insect pests that will 

forage on crops. Herbicides target plant specific pathways acting as growth regulators, seedling 

and photosynthesis inhibitors, and cell membrane disrupters (Lushchak 2018). Both groups can 

cause damage to aquatic ecosystems by disrupting the life cycles of plants and insects.  

Pesticide selection was based on occurrence of pesticides in nature, detrimental effects of 

pesticides, available data on pesticides, and selection of both herbicides and insecticides. I 

collected data from CEDEN of 5 different pesticides.  Diuron, Simazine, and Atrazine were the 

three Sulfonylurea Herbicides studied and Chlorpyrifos and Diazinon were the two 

Organophosphorous Insecticides studied (Table 1). These were reported as 5 of the most 

common pesticides detected in water by studies and are all soluble in water (Mullins 2015, Green 

2006). 

 

Toxic unit calculation 

 

For each site with CSCI and concentration data I calculated average toxic units present 

(Table 1). To find the average TU score I first had to calculate the TU for each simulated 

pesticide using TU = Ci /EC50i. Ci is the concentration of both dissolved and suspended 

pesticides in the water.  EC50i is determined from the ECOTOX database 

(https://cfpub.epa.gov/ecotox/) and is the 48-hr median effects concentration that causes the 

immobilization or mortality of Daphnia magna. This calculation methodology was derived from 

Chiu et al. (2016). 

 
Table 1: Pesticide EC50i’s from ECOTOX database. All EC50i came from the ECOTOX database 
(https://cfpub.epa.gov/ecotox/) 

Pesticide Type  Chemical Name EC50i (mg/L) TU Calculation 

Sulfonylurea Herbicide Atrazine 50.4  TU = Ci /50.4  
Sulfonylurea Herbicide Simazine 3.5  TU = Ci /3.5 
Sulfonylurea Herbicide Diuron 7.2 TU = Ci /7.2 
Organophosphorous Insecticide Chlorpyrifos 3.17 TU = Ci /3.17 
Organophosphorous Insecticide Diazinon 6.1 TU = Ci /6.1 

 

https://cfpub.epa.gov/ecotox/
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Total concentration and total TU of pesticides types Calculations 

 

I calculated the total concentration and total TU of each type of pesticide found 

throughout all my study sites by summing up TU and concentration at each site. Using total 

concentration and total TU, I compared which pesticides were detected at the highest 

concentration in surface water and then corrected the concentrations by toxicity of pesticides by 

doing a second comparison with total TU values of all the pesticides. I also calculated average 

TU across all sites as another measure to compare quantities across pesticides.  

 

Types of pesticides and correlation with CSCI scores 

 

To determine the relationship between average pesticide Toxic Unit (TU) values and 

CSCI values, I used a correlation test. I calculated the correlation coefficient of total TU values 

of each pesticide type and CSCI scores, one for all overall TU values and CSCI scores, one for 

herbicide TU values and CSCI scores, and one for insecticide TU values and CSCI scores. I 

calculated these first using a Pearson correlation in R and then a Spearman rank correlation to 

examine what a non-parametric correlation looked like. I calculated Spearman rank correlation in 

addition to Pearson correlation to see if either model gave statistically significant results. 

Spearman’s correlation calculates relationship based on ranked values of variables not raw data 

so the data does not need to satisfy the assumption of normality.   

 

Interactive map of pest application and water quality  

 

To create a web map, I used Shiny (Chang et al. 2019) with leaflet (Cheng et al. 2019) to 

map pesticide application data and water quality data that indicates biological harm. I 

concatenated the data for township to combine with identical township column for shape files 

from the CA state website California Department of Regulation 

(https://www.cdpr.ca.gov/docs/emon/grndwtr/gis_shapefiles.htm). I merged these two data 

frames and then applied this method for each of the counties in the Sacramento Watershed. I then 

combined the merged tables for all of these counties to get an all_counties data frame. Using 

https://www.cdpr.ca.gov/docs/emon/grndwtr/gis_shapefiles.htm
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shiny and leaflet I mapped the all_counties frame on a USGS base map and included a US 

hydrography layer.  

Once I had total pesticide application per township mapped I added water quality data 

and biological measures onto the map. I used color-coded CSCI scores to highlight biologically 

at risk areas.  

The map is designed to be interactive so it is more engaging to the user. A slider bar was 

designed to be able to filter through different CSCI scores and only visualize the desired 

ecosystem health. Interactive filtering allows areas of concerning toxic levels and altered 

ecosystem health, low CSCI scores and high pesticide application, to be visualized. CSCI scores 

are color coded with the 0-.55 range are displayed red and indicate the worst ecosystem 

impairment, .55 – 0.99 are yellow for intermediate ecosystem health, and 1 and above are green 

for expected or above expected ecosystem health The coloration of CSCI scores overlaid with 

the heat map that indicates pounds of pesticide applied allows for visual comparisons to be made 

across areas.  

 

 

RESULTS 

 

Concentration and toxic unit by pesticide category  

 

The greatest concentration of pesticide detected in total water quality samples was for the 

herbicide Diuron (Table 2). Diuron also had the highest total TU and highest average TU 

detected in samples followed by Simazine (Table 3). Because Simazine has a lower EC50 than 

Diuron the difference between Diuron and Simazine TU is smaller than the difference in 

concentration between the two pesticides.    
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Table 2: TU of Pesticide Type by Station Code with Average TU and SD TU Detected. Data of Pesticides found 
as concentrations from CEDEN database (https://www.sfei.org/projects/california-environmental-data-exchange-
network-ceden) and then converted to TU using EC 50 (Table 1). 
 

Station Code  Atrazine TU  Diuron TU  Simazine TU  Chlorpyrifos TU  Diazion TU  Total TU  

520XXCS31 0 3.88889 x10-4 0 2.2082x10-6 1.14754x10-5 0.000402573 

PGC030 0 0 0 3.91167x10-6 0 3.91167x10-6 

504XXNS07 0 0 1.1143 x10-4 0 0 1.11429 x10-4 

504XXNS04 0 0 0 4.4164x10-6 1.04918x10-5 1.49082x10-5 

520XXCS37 0 0 0 0 0 0 

515XJSNKL 0 0 0 0 1.21311x10-5 1.21311x10-5 

511XCCCPY 0 0 5.45714x10-6 0 0 5.45714x10-6 

Nimbus 9.54365x10-7 1.875 x10-5 1.61143x10-5 7.88644x10-6 4.59016x10-6 4.82953x10-5 

106NF0015 0 0 0 0 1.96721x10-6 1.96721x10-6 

PGC010 0 0 0 0 0 0 

531SJC504 0 4.16667x10-5 2.3429 x10-4 1.04101 x10-4 0 3.80053 x10-4 

531XNSJ34 0 0 0 0 0 0 

535XNSJ24 0 0 1.0 x10-5 1.76656x10-5 0 2.76656x10-5 

541MER554 0 7.22222x10-5 0 9.77918x10-5 0 1.70014 x10-4 

514XNRTCN 0 0 0 0 0 0 

Average TU 6.36243x10-8 3.7252x10-5 2.51524x10-5 1.58654x10-5 2.7104x10-6 7.85603x10-5 

SD TU  2.46416x10-7 1.03445 x10-4 6.44792x10-5 3.48861x10-5 4.6574x10-6 1.35953 x10-4 
 
 
Table 3: Concentrations and TU by Pesticide Type Detected. Pesticide data found as concentrations from 
CEDEN database (https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden) and then 
converted to TU using EC 50 (Table 1). Total concentration and TU are calculated over all sites to look at overall 
abundance of pesticide in the ecosystem. Mean TU across all sites is included which down weights in comparison to 
total TU because it includes sites with 0 TU of pesticides present.  
 
 
Pesticide Type Total Concentration across all 

sites (ug/L) 
Total TU across all 
Sites 

Mean TU across all 
sites 

Atrazine 0.0481 9.54365x10-7 6.36243x10-8 
Diuron 3.755 5.21528 x10-4 3.7252x10-5 
Simazine 1.3205 3.77286 x10-4 2.51524x10-5 
Chloropyrifos 0.7474 2.35773 x10-4 1.58654x10-5 

Diazion 0.248 4.06557x10-5 2.7104x10-6 
 

Pesticide application and biological index results (CSCI)  

  

Pesticide TU values and CSCI index scores were negatively correlated (Table 4). A 

negative correlation was anticipated because the higher the toxic unit the less likely that an 

ecosystem is maintaining its natural form. The correlation for TU and CSCI scores was not 

https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
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statistically significant with a correlation coefficient of -0.1263 and a p-value of 0.28 (Table 4, 

Figure 2).  

 
Table 4: Correlation of CSCI and TU for Different Groupings of Pesticides. Pesticide data found as 
concentrations from CEDEN database (https://www.sfei.org/projects/california-environmental-data-exchange-
network-ceden) and then converted to TU using EC 50 (Table 1), CSCI scores from (Tang, 2015), and Pearson 
calculated in R.  
 

Group  Pearson Correlation 
Coefficient 

Pearson p-value  Statistically Significant  

Total  -0.1263 0.28 No 
Herbicides -0.2125 0.448 No 
Insecticides -0.3319 0.228 No 

 
Figure 2: CSCI Scores and Total TU Correlation. Pesticide data found as concentrations from CEDEN database 
(https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden) and then converted to TU 
using EC 50 (Table 1), CSCI scores from (Tang, 2015), and correlation calculated in R. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
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Figure 3: CSCI Scores and Herbicide TU Correlation. Pesticide data found as concentrations from CEDEN 
database (https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden) and then converted 
to TU using EC 50 (Table 1), CSCI scores from (Tang, 2015), and correlation calculated in R. 
 

 
Figure 4: CSCI Scores and Insecticide TU Correlation. Pesticide data found as concentrations from CEDEN 
database (https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden) and then converted 
to TU using EC 50 (Table 1), CSCI scores from (Tang, 2015), and correlation calculated in R. 

 

https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
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Insecticide TU values and CSCI scores has the strongest negative correlation of 0.3319 

(p-value = .228) (Figure 4). Herbicide TU and CSCI scores also had a stronger correlation than 

the total TU and CSCI scores but it was only -0.2125 (p-value = .448) (Figure 3), which is still 

less than the insecticide correlation.  

There are two herbicides and two insecticide points that have very high TU and are 

outliers. These are from high TU of Diazon, Simazine, and Chlorpyrifos. These points have low 

CSCI scores but are still outliers and may be overly influential in the Pearson correlation because 

the TU are much higher than the other results. I calculated Spearman rank correlation in addition 

to Pearson correlation to see if this gives statistically significant results (Table 5). The 

Spearman’s had very high p-values for total TU CSCI correlation and insecticide CSCI 

correlation and all groups were still not statistically significant. Spearman rank correlation did 

not appear to preform better than Pearson correlation for the total group and the Insecticide 

group.  

 
Table 5: Spearman Correlation of CSCI and TU for Different Groupings of Pesticides. Pesticide data found as 
concentrations from CEDEN database (https://www.sfei.org/projects/california-environmental-data-exchange-
network-ceden) and then converted to TU using EC 50 (Table 1), CSCI scores from (Tang, 2015), and spearman 
correlation calculated in R.  
 

Group  Spearman Correlation 
Coefficient  

Spearman p-value Statistically Significant  

Total  -0.1388684  0.6216 No 
Herbicides -0.2936995  0.288 No 
Insecticides -0.1298869  0.6445 No 

 

 At sites with high TU and low CSCI scores there are more contaminants entering the 

water and impaired ecosystems (Figure 2-4). However, some sites have no TU of chemicals and 

still have very low CSCI scores. Other factors, besides specific chemical TU that were calculated 

in this study, must account for ecosystem impairment in these cases. The two sites with a CSCI 

score at or above 1, with ecosystem at normal or above normal health, have 0 TU of pesticide 

(Figure 2-4). 

 

MAP Visualization  

 

I made an interactive map of water quality and pesticide application. This map has layers 

that show topography, hydrography, and pesticide application throughout California. Layers can 

https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
https://www.sfei.org/projects/california-environmental-data-exchange-network-ceden
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be included or excluded with a click of the mouse to simplify the graphics or add more 

information. Additionally, an interactive slider allows the user to control what CSCI scores 

appear on the map. Filtering through CSCI scores shows what areas have better or worse CSCI 

scores and ecosystem health.  

Poor ecosystem health or CSCI scores (0-.55) are mainly in urban areas and in the 

Central Valley. Good ecosystem health or CSCI scores (>1) are mainly in the Sierra and Costal 

Ranges.  

 
Figure 5: Overview of web map. This overview of web map shows map with heat map of pesticides in the central 

valley, legend in bottom right, and interactive features in the top right. The top right interactive features include 

layers to include or exclude topography, hydrology, and pesticide application data. There is also an interactive slider 

that controls the CSCI scores that appear on the map. These CSCI scores are grouped by area in the screenshot 

below so that the map is not overcrowded with scores. In the map below scores are shown as water droplet or 

grouped circles.  
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Figure 6: Web map with high CSCI scores. High CSCI scores are any scores above 1. To view only high CSCI 

scores on the map more the interactive slider so that it highlights scores from 1 to the end of the slider bar.  

 
Figure 7: Web map with low CSCI scores. Low CSCI scores are any scores below .55. This map screenshot only 

shows below .4 so does not include all low values. To look at low scores set the slider on the map from 0 to .55 
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DISCUSSION 

 

Understanding pesticide impacts on aquatic ecosystems can indicate potential harms to 

human health and can help to target preventative measures to improve the health of humans and 

the environment. To gain a better understanding of pesticide use and ecosystem health I first 

examined which pesticide types are most commonly applied and their concentrations in the 

surface water. Toxic Units (TU) of pesticides detected in the water had a non-significant 

negative correlation to biological measures of ecosystems health indicating that more 

contaminants lead to poor ecosystem health. More herbicide TU were detected in water quality 

samples but insecticides and TU has a higher negative correlation. Identifying if CSCI scores 

were reflecting pesticide load in surface water identified where chemicals in water impair 

freshwater ecosystems, where chemicals are potentially dangerous to humans, and areas where 

water quality remains high despite TU at a site. Using this information we can target pesticides 

and make better-informed policy decisions for healthier ecosystems. 

 

 Detected pesticide concentrations 

 

Concentration measures of pesticide groups in water downstream of pesticide application 

in agricultural areas indicate that pesticides are entering the water supply. Diuron was found at 

the highest concentration and had the highest TU out of the 5 pesticides at the 15 study sites 

(Table 2). There were higher concentrations of herbicides at our sites and higher Toxic Units of 

herbicides. On average there are more insecticides applied each year in California (PUR 2017). 

In California historically, Atrazine has been found in the most streams, with 80% occurrence in 

major rives with mixed land use, followed by Simazine, with 65% occurrence (Mullins 2015). 

Diuron is also identified as the most commonly occurring herbicides found in California with 

680 kg found at their study site in the Central Valley (Green 2006). These past findings were 

semi consistent with my findings of high occurrences of Diuron and Simazine, which were both 

found at 33% of my study sites, but were in contrast with the low occurrences of Atrazine and 

high occurrences of Chlorpyrifos in my study. I found Chlorpyrifos at 47% of the sites I 

sampled, a greater occurrence than the 10% found by past studies (Mullins 2015). Atrazine is 
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only present at one of the sites making it under detected in the sites that I sampled. I sampled 

fewer sites and selectively picked sites with CSCI scores present which may not be a 

representative sample of the total sites that were used in Mullins.  

 

 

TU correlation with CSCI scores 

 

A negative correlation between TU in watershed and CSCI scores indicated pesticides 

may be contributing to harm of ecological communities. Increasing TU correlates negatively to 

increasing CSCI scores, which is interpreted as an increase in toxic units linked with a decreases 

in ecosystem health. Overall throughout all the sites and all pesticide types TU and CSCI scores 

had a correlation of -0.13 (p-value = .28). TU of Chlorpyrifos and Simazine in freshwater 

ecosystems significantly contribute to the toxic exposure and impairment of stream macro 

invertebrates but no specific values are given for correlation of these individual pesticides 

(Rasmussen 2015).  Additional evidence found that Diuron and Atrazine cause phototoxicity in 

non-target plants effecting ecosystem health, therefore impacting CSCI scores (Wilkenson et al. 

2015). These results indicate that a high TU of pesticides in freshwater ecosystems should 

correlate to high toxic exposure and impartment of macro invertebrates or high phototoxicity in 

plants and therefore a low CSCI score. High pesticide TU correlating with poor ecosystem health 

was shown in correlations of SPEAR scores, a different biological index, and pesticide TU. TU 

of pyrethroid insecticides had a correlation of .17 to SPEAR scores (Chiu et al. 2016). The .17 

correlation found using SPEAR scores was lower than the -.33 correlation to CSCI scores, 

although my results were not statistically significant. Sites with low TU and low CSCI scores 

were not anticipated but occurred in this study. Low TU and low CSCI scores indicate that a 

factor other than TU of specific chemicals studied are contributing to low ecosystem health. 2 

sites had a CSCI score of 1 or more, at or above normal ecosystem health, and both had no TU of 

pesticides detected at the site. No TU present at sites with above 1 CSCI scores is consistent with 

our expectation that TU contamination is contributing to ecosystem impairment and low CSCI 

scores.  
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Insecticides vs. herbicides 

 

Both insecticides and herbicides have been linked to human health problems such as 

increased cancer risk and reproductive impairment. Here insecticides correlate more strongly 

with biological indices values than herbicides. There is a non-significant correlation of -0.2125 

between TU of herbicides and CSCI scores. This differs from the non-significant -0.3319 

correlation of TU of insecticide and CSCI scores. This difference in correlation of insecticides 

vs. herbicides may stem from properties of these chemicals.  Herbicides are meant to target 

plants and not insects so they may have a lower impact on macroinvertebrate communities in 

aquatic ecosystems (Lushchak 2018). However although there is a lower correlation between 

herbicides and CSCI scores herbicides can be incredibly detrimental to human health (Joshi et al. 

2007) so they shouldn’t be allowed in high volumes even if they aren’t affecting the biological 

indicators. Both the insecticides and herbicides have detrimental health affects on humans. 

Chloropyrifos insecticides decrease fertility. Simazine and Atrazine disrupt the human 

reproductive system and are carcinogens in rats but have not yet been proven carcinogenic in 

humans (Lubow and Howd 2011). Diuron another herbicide is harmful to fetal development and 

can increase risk of cancer in certain tissues (Huovinen et al. 2015). Additionally, Atrazine has 

negative effects on frog reproduction in multiple studies, causing both decrease in testosterone 

and increase in hermaphroditism, potentially diminishing frog populations (Rosenfeld et al. 

2011). Evidence of ecosystem harms of herbicides on frogs and other specific non-macro 

invertebrate species may not be detected by the CSCI and TU correlation but are still important. 

Making use of research on specific organisms that are harmed by specific pesticides or using a 

biological index that takes into account pesticides in calculating ecosystem health, like the 

SPEAR index (Chui et al. 2016), may give better insights into the ecosystem effects of 

pesticides.  

 

Map visualization 

 

CSCI scores are lower in townships with high pesticide application because agricultural 

activity is affecting aquatic ecosystem heath, regardless on whether or not specific pesticide TU 

are high (Rasmussen 2015). Geographical factors that describe landscapes are key to 
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understanding why some areas may experience higher pesticide contamination than others (Luo 

et al. 2010). Soil characteristics, topography, and climatic factors all play a role in pesticide 

transport from fields to water systems (Rasmussen 2015). CSCI scores already use geographical 

considerations when calculating ecosystem health but by visualizing the sites that have low water 

quality we can identify what factors are causing the impairment (Tang 2015). In some cases 

impaired sites may be directly next to or downstream from a field with large quantities of 

pesticides applied. Visualizing pesticide application and CSCI scores with emphasis on areas in 

which toxins are present and contributing to biological harm can alert managers of problem areas 

and encourage solutions to these problems.  

Mapping tools have improved to enable researchers and managers to more quickly and 

effectively convey information (Kyle 2012) In today’s world information is consumed in 

headlines and flashy visuals, not long-winded articles and scientific papers. To communicate, 

scientists must adapt to these changing trends to convey scientific insights to non-experts (Trilles 

2020). Current scientific data communication calls for new use of new interactive visualization 

tools to communicate data to the public. In urban planning these tools have been used 

extensively to communicate current data and development scenarios. Testing has shown that 

public engagement in data increases when interactive tools are used (Trilles 2020). Shifts in the 

environmental data are moving towards effective data communication but more needs to be done 

to adapt interactive visuals as a means of inclusive and open data sharing to fuel public interest 

and create change.  

 

Pesticide impacts on freshwater systems 

 

Pesticide application in the Central Valley likely impacts freshwater ecosystems as 

measured using CSCI and TU correlation. Four out of fifteen studied sites have no detected 

pesticides indicating that these sites are protected from pesticide contamination, however not all 

of these sites had high water quality indicating that other factors such as water velocity or natural 

disturbances can also impact water quality (Inyinbor et al. 2018). More work is required to 

understand the dynamics in non-contaminated sites, to understand both why pesticides are not 

observed at these sites and what other factors could be impacting ecosystem health. Total 

herbicides quantities found at the study sites were greater than insecticide totals. However, 
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insecticide TU are more closely correlated to CSCI scores than both herbicides and total 

pesticides indicating that insecticides may have a more negative impact on ecosystem health than 

herbicides (Lushchak 2018). Insecticides are also more heavily applied in the Central Valley than 

herbicides (PUR 2017, Lushchak 2018). Visualizing this data on a map can give a better 

understanding of the geographical and landscape factors influencing the system and provide a 

platform for further geographical analysis as well as engage the public to advocate for policy 

change (Trilles 2020).  

 

Limitations and future directions  

 

To fully access and communicate health to a larger community this study needs a larger 

geographical coverage, more chemical groups, and better understanding of visualizations. This 

model is only looking at the Central Valley and to be more generalizable should be expanded to 

look at all of California. It also only looks at 3 insecticides and 2 herbicides out of the hundreds 

of pesticides that can be used. I could take more pesticides into account to better understand the 

totality of the effects that pesticide application by humans has to aquatic ecosystems.  

Finally, this projects attempts to engage a broader audience by making a more accessible 

visualization tool however to really work to communicate this science better we can do better to 

learn what communication techniques are and find better ways to measure how affective these 

visuals are. Expanding on this research to better understand how to communicate this data 

affectively to the general public and people in power we can use data to make more informed 

policy decisions and encourage more sustainable environmental practices in agriculture. Our 

abilities to show data in effective visualizations and principles to make effective visualizations 

are growing rapidly and we must use these tools to communicate science in a more engaging and 

inclusive way. Visualizations have been used for thousands of years and are useful to 

communicate data trends quickly and efficiently (Krum 2013). 

 

Broader implications  

 

Using this research to make better policy decisions on what pesticides to ban and better 

regulate will decrease pesticide concentrations in water which may increase aquatic ecosystem 
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health, human health, and water quality (Mahmood 2016).  The external costs of pesticide 

application on the environment are 4-19$ for every pound of pesticide applied (Pretty and 

Bharucha 2015). Communicating the harms of pesticides to aquatic ecosystems and communities 

that may be exposed to these contaminants is the first step to getting the conversation growing to 

encourage policy change around regulation of these toxic chemicals. Important steps to 

improving aquatic ecosystem health are increased cohesive eco-toxicity studies that inform 

decreased use of pesticides and banning the most toxic ones (Brock 2006). Pest control is an 

important factor in food production but does not need to rely fully on conventional chemicals; 

integrative pest management techniques have proven to be effective (Pretty and Bharucha 2015). 

In addition if data on the use of pesticides and the affects that they have on the environment is 

more readily available then the public can be educated and can help to motivate future change of 

government policies and corporations.  
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