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ABSTRACT 

 

Several bills have been passed in California to fund community-level water quality improvement 
projects aimed at achieving the Human Right to Water. In an effort to produce a continuous model 
of water quality throughout the state, several research groups have utilized different modeling 
methods in terms of data sources used, time period from which water quality data was included, 
and geography over which individual water well measurements were aggregated. In this study, I 
used water quality data from GeoTracker GAMA to model concentrations of arsenic (As), 
chromium-6 (CR-6), 1,2,3-Trichloropropane (1,2,3-TCP), and nitrate as nitrogen (N). I controlled 
the parameters of time by comparing models using the past ten years of data to models using the 
past twenty years of data and geography by comparing models aggregating over sections and 
townships. Modeling choices impacted estimates of at-risk populations on the order of thousands 
to tens of thousands of people, although time affected these estimates to a lesser extent than 
geography. The two-pronged approach taken for 1,2,3-TCP demonstrated that the quality of 
existing data and the data cleaning choices made in the modeling process also largely impact final 
model estimates. Future water quality modeling efforts should incorporate a sensitivity analysis 
evaluating how different choices affect model outcomes and highlights the need for more complete 
and regular water quality testing throughout the state. 
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INTRODUCTION 

 

In 2012, California passed Assembly Bill (AB) 685 and became the first state to legally 

recognize the Human Right to Water. AB 685 states that all Californians have the right to “safe, 

clean, affordable, and accessible” water (“Human Right to Water” 2019). California impressively 

has one of the largest state-built, multi-purpose water systems in the United States, irrigating 

750,000 acres of farmland and providing twenty-seven million of its citizens with drinking water 

(“Infrastructure” 2019). Despite its sophisticated water infrastructure, communities still suffer 

significant drinking water contamination. In 2017, roughly 50% of the 2,799 total violations 

recorded among public water systems (PWSs) were cited for failing to comply with Maximum 

Contaminant Levels (MCL) for regulated chemical contaminants or failing to follow treatment 

techniques outlined under the Safe Water Drinking Act (2017 Annual Compliance Report 2018). 

MCLs are public health regulations that determine minimum allowable concentrations of 

contaminants in drinking water (“Chemicals and Contaminants in Drinking Water | California 

State Water Resources Control Board” n.d.). 

Resulting from the persistence of violations among public water systems, an estimated 6 

million Californians have been served by systems that have been out of compliance at least once 

since 2012 (“Human Right to Water” 2019). Of additional concern are the estimated 1.5 – 2.5 

million Californians who live outside of public water system boundaries and rely on water sources 

that draw on groundwater not subject to drinking water regulations, such as private domestic wells 

and small water systems with fewer than 5 service connections (“Human Right to Water” 2019). 

Importantly, complex patterns that arise in water quality violations across California that cannot 

simply be attributed to geography (Balazs et al. 2011, 2012). In many cases, who is served is a 

better indicator of water quality than where they are served. 

Following the seminal 1987 report “Toxic Wastes and Race in the United States” revealing 

the discriminatory siting of toxic waste disposals, environmental justice research has revealed 

disparities in environmental quality persistent across the United States at the national, state, and 

local levels (Lee 1987, Cotton 2018, Carpenter and Wagner 2019, Meenar et al. 2019). Recent 

environmental justice research has confirmed that disparities in water quality are also correlated 

with social characteristics across the United States (McDonald and Jones 2018, Schaider et al. 

2019) and in California specifically (Balazs et al. 2011, 2012). In terms of water justice, significant 
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social characteristics include the following: (1) socioeconomic status (McDonald and Jones 2018, 

Wikstrom et al. 2019, Schaider et al. 2019); (2) percent home ownership (Balazs et al. 2011, 2012, 

McDonald and Jones 2018, Schaider et al. 2019); and (3) percent minority (Balazs et al. 2011, 

2012, McDonald and Jones 2018, Schaider et al. 2019). A consistent finding between water justice 

studies was that correlative results will vary depending on the scale of study, suggesting scale 

matters when analyzing water quality data (Patrick et al. 2014, Schaider et al. 2019). Given these 

patterns, it is vital to analyze California’s water quality data in a way that produces equitable 

solutions for water infrastructure that is discriminatorily failing across the state. 

In recognition of the state’s water infrastructure challenges, Senate Bill (SB) 200 

established the Safe and Affordable Water Fund to allocate $130 million of funding for water 

infrastructure development to communities served by unsafe drinking water (Monning et al. 2019). 

SB 200 requires the State Water Resource Control Board to develop a fund expenditure plan that 

prioritizes disadvantaged communities served by a public water system and low-income 

households served by domestic wells (Monning et al. 2019). To evaluate how to best prioritize 

proposed projects, a complete understanding of the drinking water quality landscape across 

California is required, particularly with regard to areas served by domestic wells. Currently, the 

best available statewide data on the quality of groundwater is housed in GeoTracker GAMA, which 

is a repository for groundwater samples collected by California’s State Water Resources Control 

Board, California’s Department of Water Resources, and various other water monitoring groups 

(“GAMA Groundwater” 2019). GeoTracker GAMA is a valuable source of water quality data, yet 

there are still significant gaps in water sampling data. These gaps include a paucity of water quality 

measurements at different aquifer depths and water quality measurements that lack accompanying 

depth data. Additionally, the data is inconsistent in its geographic coverage for different 

contaminants. Because of the incomplete nature of the GAMA dataset, some modeling is required 

to interpolate statewide estimates of water quality for residents reliant on unregulated water 

sources. 

There are several water quality models completed or currently underway by different 

research groups, including projects being undertaken by Sacramento State’s Office of Water 

Programs (“California Groundwater Risk Index (GRID)” 2018), Cal EPA’s Office of 

Environmental Health Hazard Assessment (“CalEnviroScreen 3.0” 2016), UC Berkeley’s Water 

Equity Science Shop (WESS, “The Drinking Water Tool, 2019” 2019), and the California State 
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Water Resources Control Board (Methodology to Estimate Groundwater Quality Accessed by 

Domestic Wells in California 2019). Although these efforts have all relied on data for source water 

available through GeoTracker GAMA, each research group has made a different combination of 

decisions regarding (1) the range of years of GAMA data to include in the model, (2) the range of 

well depths from which data should be included, and (3) the geographical resolution over which 

samples should be averaged or aggregated. These decisions likely have significant impacts on how 

the model behaves in any given region in terms of the estimated contaminant concentrations and 

whether or not the area exceeds MCL standards. By extension, these decisions will also impact 

estimates of the number of people in California who are exposed to contaminant concentrations 

from groundwater at levels that exceed the MCL, which could in turn impact the allocation of state 

funding to address issues of water remediation and state efforts to achieve the goal of universal 

access to clean water. 

The purpose of this research was to evaluate how modelling choices impact the estimates 

of people at risk of exposure to water exceeding the MCL. For this study, the following four 

contaminants were used: Arsenic (As), Chromium-6 (CR-6), 1,2,3-Trichloropropane (1,2,3-TCP), 

and Nitrate as Nitrogen (Nitrate as N). To evaluate these effects, I manipulated the parameters of 

time and geography, producing four models for comparison for each of the four contaminants. The 

models are evaluated on their estimations of (1) the location of areas exceeding the MCL, (2) total 

area exceeding the MCL, and (3) number of people at-risk of relying on source water that exceeds 

the MCL in the absence of water treatment. 

 

METHODS 

 

Study system 

 

 This study explores the effect of model choices on estimates of population risk.  I developed 

statewide models to estimate the groundwater concentration of As, CR-6, 1,2,3-TCP, and N. The 

model represents source water, such as the water relied on private domestic wells in the absence 

of water treatment. In developing this model, I manipulated the parameters of (1) time scale by 

controlling the range of years from which data was included, and (2) geography by controlling the 

spatial area over which samples were averaged. The models were then applied to an existing data 
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layer estimating the population served by domestic wells in California (“The Drinking Water Tool, 

2019” 2019). Using these two data sets (i.e. water quality and population served by domestic 

wells), I determined the population reliant on groundwater estimated to contain contaminant 

concentrations exceeding their corresponding Maximum Contaminant Level (MCL) for each 

contaminant under each set of model parameters. 

 This study incorporated public data from domestic and supply wells from GeoTracker 

GAMA, an online repository for groundwater quality data curated by the California Water Boards 

(“GAMA Groundwater” 2019). The GeoTracker GAMA data is provided by different authorities 

that range from public authorities, such as the Department of Water Resources, to private parties, 

such as community-lead local groundwater projects (“GAMA Groundwater” 2019). I included the 

GeoTracker GAMA datasets that sampled domestic wells or supply wells representative of 

domestic well water (Appendix A). 

 

Modeling Rationale 

 

 The earliest measurements available in the GeoTracker GAMA datasets varied by 

contaminant and range from 1907 (N) to 1994 (CR-6). From year to year, samples are collected 

from wells located in different parts of the state. Thus, including samples from a larger range of 

years results in more data points and more geographic coverage. Using a multi-year range also 

accounts for the variation observed in contaminant concentrations over time, which is influenced 

by human activity and natural phenomena. For instance, the main source of N contamination in 

watersheds is fertilizer runoff (“Nitrates and Nitrites in Drinking Water | California State Water 

Quality Control Board” 2019). Therefore, N concentration is affected by the level of agricultural 

activity local to the well measured, which can change over time. 

 Although including data from more years increases the number of data points and accounts 

for temporality, the quality of GeoTracker GAMA data has varied throughout time due to 

technological changes in detection techniques. Water quality instruments have concentration 

detection limits, below which a contaminant’s concentration cannot be accurately measured. As 

this technology has improved, the measurements have become more accurate, especially at lower 

contaminant concentrations. Data from earlier reporting years were often recorded with a qualifier, 
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such as a less than sign (‘<’), indicating that the concentration is less than a minimum value but a 

more accurate value could not be measured due to instrument or assay limitations. 

 Water quality policy dictates MCLs at the local, state, and federal levels. MCLs are 

determined based on health and safety, achievability, and economic impact. As public health 

research advances, the contaminant concentration deemed “safe” continues to evolve. 

Additionally, technological advances change the reliability of testing, availability of water 

treatment options, and associated cost of achieving safe water. Therefore, in our dataset, samples 

collected over a twenty-year time span may be recorded with different reporting limits.  

 In addition to technological ability and standards, the water wells sampled in a given year 

do not cover all of California. Existing water wells are not uniformly distributed across California’s 

geography, and are instead concentrated in the more populated and developed areas of the state. 

Beyond the underlying distribution of water wells available for sampling, not all water wells are 

sampled every year. Due to these inconsistencies in the water quality data available for California, 

modeling is required to interpolate statewide estimates. 

 There are two modeling choices that will likely increase geographic coverage: (1) including 

older data (using a larger date-range), and (2) aggregating water well samples over larger units of 

geography. To test this hypothesis and the effects these choices have on modeling outcomes, this 

study compares models using the past ten years of data to models using the past twenty years of 

data. It also compares the effects of aggregating over townships to aggregating over sections. 

Townships and sections are a grid system developed by the Bureau of Land Management 

(“Township and Range Survey System” n.d.). The typical township is a six mile by six mile area, 

while the typical section is one mile by one mile area (“Township and Range Survey System” 

n.d.). 

 

Modeling methods 

 

 I downloaded the domestic and supply well datasets for each contaminant from GeoTracker 

GAMA on November 13, 2019 (Step 1, Figure 1). Using R (R Core Team 2019), I filtered the 

datasets by date to include the past ten years of data (2010-2019) and the past twenty years of data 

(2000-2019) (Step 2, Figure 1). I cleaned the data using the contaminant concentration, qualifier, 

and reporting limit for each measurement in the ten-year and twenty-year datasets (Appendix B). 
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Next, I grouped the data by unique well ID and year and averaged the contaminant concentration 

values (Step 3, Figure 1). This produced one contaminant concentration value per well ID per year. 

Finally, I grouped the data by unique well ID and averaged the contaminant concentration values 

across all years. This produced a single, time-weighted contaminant concentration value for each 

unique well ID in the ten-year and twenty-year datasets for each contaminant. 

 
 

Figure 1: Conceptual diagram of methods process. 
 

 Using ArcMap (v. 10.8 ESRI 2020), I plotted the location of each well based on its latitude 

and longitude in decimal degrees. I intersected the well points with the township and section 

shapefiles provided by the Bureau of Land Management (“Cadastral/BLM_Natl_PLSS_CadNSDI 

(MapServer)” n.d.). I averaged the contaminant concentration values for wells located in the same 

township or section (Step 4, Figure 1). This produced four models, which I refer to with the 

following notation: 
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• TS10: The past ten years of data aggregated over townships. 

• TS20: The past twenty years of data aggregated over townships. 

• SECT10: The past ten years of data aggregated over sections. 

• SECT20: The past twenty years of data aggregated over sections. 

 I then assigned population data to each model (TS10, TS20, SECT10, SECT20) using the 

population layer developed by WESS (Pace et al. 2019) which estimates populations reliant on 

domestic water wells in California at the section level based on four underlying datasets: US 

Census data (“TIGER/Line Shapefiles” n.d.), boundaries from the Tracking California Water 

System Service Areas tool (“Water Systems --- Tracking California” n.d.), well locations from the 

Online System for Well Completion Reports dataset (“Well Completion Reports” n.d.), and 

LandVision dataset locating parcels in California (“Real Estate Analysis & Mapping Application 

| LandVisionTM” n.d.). 

 For the section models, I joined my section layers containing water quality to the Domestic 

Well Area (DWA) layer by section code (MTRS). For the township models, I dissolved the DWA 

layer by township code (MTR), which is encoded in the first seven characters of the section code. 

I then joined the DWA layer to the township shapefile by the MTR field and summed the likely 

DWA populations within each township. I joined the township layers to the dissolved DWA layer 

via township codes. I developed the distribution maps and the percent change maps using ArcMap. 

Finally, I exported the population-assigned data tables from ArcMap to RStudio to obtain the 

descriptive statistics. 

 To produce the maps displaying percent change in water quality, I calculated the percent 

change in average concentration for a township comparing the twenty-year models to the ten-year 

models. To illustrate this method, consider Township M07S21E and the different percent changes 

the sections contained within it exhibit (Figure 2). The sections displayed with a prominent black 

border (1, 2, 4-10) contain both (1) at least one well with data from the past ten years dataset and 

(2) a likely DWA. For sections 1, 2, 4, 7, and 8, limiting the dataset to more recent data (from 

SECT20 to SECT10) resulted in an increase in the average N concentration of up to 50%. For 

sections 6 and 9, no SECT20 wells were filtered out when using the SECT10 model, and the wells 

did not have any older concentration measurements (2000-2010) that altered the time-weighted 

average for sections 6 and 9. Therefore, these sections exhibited no change in average 

concentration. 
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Figure 2: Example displaying the percent changes in N concentrations for a township (MTR: M07S21E) and 
the sections it encloses. The sections with percent change values are boldly outlined in the colored diagram and filled 
in with gray in the schematic to the right (sections 1, 2, 4-10). Section 3 does not have a percent change value, although 
it does have a water well with concentration data in the past twenty-years dataset. Those sections for which moving 
from a dataset including older sampling data (2000-2019) to a dataset including only more recent sampling data (2010-
2019) were excluded from the percent change maps and are instead represented in the data availability maps. 
 

In section 3, there was a well in the SECT20 dataset that was not present in the SECT10 

dataset. These cases, in which a section or township went from containing a well with 

concentration data to not containing a well when using the more recent dataset, have been removed 

from the percent change maps. Instead, they are displayed in the data availability maps, which 

highlight sections and townships that gained data when using a dataset including older samples 

(Figures 3c, 3d, 4c, 4d, 5c, 5d, 6c, 6d, 7c, 7d). Although sections 5 and 10 experienced percent 

decreases and sections 6 and 9 experienced no change, the entire township experienced an increase 

in N concentration when comparing the twenty-years dataset to the ten-years dataset. This example 

demonstrates how changes at the section level are not always captured at the township level. 

 The DWA layer was developed to estimate domestic well water reliance at the section 

level. When aggregating to a larger spatial resolution, some townships will contain likely DWAs 

and water wells with concentration data that lie outside of the likely DWA boundaries. Because 

the unit of observation for the TS10 and TS20 models is the township, all wells located within the 

township were used to calculate the time-weighted contaminant concentration averages. The 
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population for each township was calculated by summing the populations of all of the sections 

containing likely DWAs within the township, even if there was no concentration data from 

GeoTracker GAMA for that particular DWA. 

 

RESULTS 

 

 For all contaminants, the median contaminant concentration for each model was below the 

MCL (Table 1): As, 10 μg/L; CR-6, 10 μg/L; 1,2,3-TCP, 0.005 μg/L; N, 10 mg/L. N, the 

contaminant with the greatest number of water wells with data, also had the most geographic 

coverage in terms of number of sections (SECT10: 3,936, SECT20: 4,634) and the number of 

townships (TS10: 1,513, TS20: 1,607) with data in likely DWAs. The second method for 1,2,3-

TCP (1,2,3-TCP_2), in which concentration values lacking a recorded reporting limit were 

removed, resulted in the least number of townships and sections with concentration data in likely 

DWAs (SECT10: 238, SECT20: 432, TS10: 225, TS20: 445). These smaller inputted datasets for 

1,2,3-TCP_2 resulted in larger percentages of townships and sections with concentrations at or 

exceeding the MCL compared to 1,2,3-TCP_1 (in which values lacking reporting limits were not 

removed), but resulted in fewer estimated at-risk people than with the models for 1,2,3-TCP_1. 

 Overall, the percentage of area with concentrations at or exceeding the MCL is similar to 

that of the percentage of townships and sections at or exceeding the MCL. This is due to the 

consistency in section and township area, where sections are typically 1 mi2 (1 mi x 1 mi) and 

townships are typically 36 mi2 (6 mi x 6 mi). However, when comparing models for a given 

contaminant, the absolute estimates of at-risk populations was largely variable depending on the 

modeling approach.
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Table 1: Descriptive statistics of average contaminant concentration for townships and sections located in Likely Domestic Well Areas. Data was 
downloaded from the California Waterboard’s GeoTracker GAMA database. The MCLs for the contaminants are as follows: As, 10 μg/L; CR-6, 10 μg/L; 1,2,3-
TCP, 0.005 μg/L; N, 10 mg/L. 
 

  

Contaminant  
(MCL) Model Median  IQR 95th 

percentile 

Number 
townships or 
sections with 
concentration 

data 

Percentage of 
townships or 
sections with 

concentrations 
≥ MCL 

Population in 
areas with 

concentrations 
≥ MCL 

Total area 
(km2) with 

concentration 
data 

Percentage of 
area with 

concentrations 
≥ MCL 

As 
(10 μg/L) 

SECT10 1.33 4.2 18.4 2,802 9.96% 54,358 7,287 9.95% 

SECT20 1.34 3.93 17.6 3,574 9.82% 69,688 9,306 9.85% 

TS10 1.46 4.03 19.6 1,350 11.11% 113,354 123,312 11.18% 

TS20 1.59 3.95 19.8 1,482 11.13% 127,077 135,238 11.32% 

CR-6 
(10 μg/L) 

SECT10 0.103 2.1 8.09 1,957 4.04% 18,789 5,086 4.03% 

SECT20 0.17 2.1 8.53 2,057 4.04% 18,543 5,347 4.02% 

TS10 0.3 1.74 7.88 1,101 3.36% 28,043 100,548 3.35% 

TS20 0.33 1.75 8.04 1,129 3.45% 27,783 103,162 3.44% 

1,2,3-TCP_1 
(0.005 μg/L) 

SECT10 0 0 0.0121 2,233 6.90% 28,512 5,797 6.93% 

SECT20 0 0 0.00658 2,862 5.56% 33,824 7,434 5.58% 

TS10 0 0 0.00705 1,193 5.87% 158,918 108,921 6.01% 

TS20 0 0 0.00616 1,347 5.27% 137,201 122,902 5.42% 

1,2,3-TCP_2 
(0.005 μg/L) 

SECT10 0 0 0.0747 238 11.34% 1,961 622 11.41% 

SECT20 0 0 0.045 432 9.49% 4,052 1,131 9.55% 

TS10 0 0 0.0675 225 16.00% 71,886 20,858 16.16% 

TS20 0 0 0.0406 445 11.01% 75,525 41,253 11.12% 

N 
(10 mg/L) 

SECT10 1.5 3.93 14.4 3,936 8.33% 46,790 10,238 8.35% 

SECT20 1.48 3.96 14.2 4,634 8.37% 48,203 12,061 8.37% 

TS10 1.13 3.05 8.87 1,513 3.90% 57,514 137,765 3.87% 

TS20 1.11 2.86 8.75 1,607 4.04% 69,398 146,071 4.07% 
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Figure 3: Maps displaying the results of the As models. 3a: Average concentration in each township containing a likely DWA. 3b: Average concentration in 
each section containing a likely DWA. 3c: Depiction of townships that have concentration data in the TS10 and TS20 models. 3d: Depiction of sections that have 
concentration data in the SECT10 and SECT20 models. 3e: Percent change in township concentration when comparing TS20 to TS10 estimates. E.g. An increase 
of 20% (yellow) indicates that when removing 2000-2010 sampling data for the ten-years dataset, the average concentration increased by 20%. 
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Figure 4: Maps displaying the results of the CR-6 models. 3a: Average concentration in each township containing a likely DWA. 3b: Average concentration in 
each section containing a likely DWA. 3c: Depiction of townships that have concentration data in the TS10 and TS20 models. 3d: Depiction of sections that have 
concentration data in the SECT10 and SECT20 models. 3e: Percent change in township concentration when comparing TS20 to TS10 estimates. E.g. An increase 
of 20% (yellow) indicates that when removing 2000-2010 sampling data for the ten-years dataset, the average concentration increased by 20%. 
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Figure 5: Maps displaying the results of the 1,2,3-TCP_1 models. 3a: Average concentration in each township containing a likely DWA. 3b: Average 
concentration in each section containing a likely DWA. 3c: Depiction of townships that have concentration data in the TS10 and TS20 models. 3d: Depiction of 
sections that have concentration data in the SECT10 and SECT20 models. 3e: Percent change in township concentration when comparing TS20 to TS10 estimates. 
E.g. An increase of 20% (yellow) indicates that when removing 2000-2010 sampling data for the ten-years dataset, the average concentration increased by 20%. 
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Figure 6: Maps displaying the results of the 1,2,3-TCP_2 models. 3a: Average concentration in each township containing a likely DWA. 3b: Average 
concentration in each section containing a likely DWA. 3c: Depiction of townships that have concentration data in the TS10 and TS20 models. 3d: Depiction of 
sections that have concentration data in the SECT10 and SECT20 models. 3e: Percent change in township concentration when comparing TS20 to TS10 estimates. 
E.g. An increase of 20% (yellow) indicates that when removing 2000-2010 sampling data for the ten-years dataset, the average concentration increased by 20%. 
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Figure 7: Maps displaying the results of the N models. 3a: Average concentration in each township containing a likely DWA. 3b: Average concentration in each 
section containing a likely DWA. 3c: Depiction of townships that have concentration data in the TS10 and TS20 models. 3d: Depiction of sections that have 
concentration data in the SECT10 and SECT20 models. 3e: Percent change in township concentration when comparing TS20 to TS10 estimates. E.g. An increase 
of 20% (yellow) indicates that when removing 2000-2010 sampling data for the ten-years dataset, the average concentration increased by 20%. 



Claire A. Krumm California Well Water Quality Modeling Spring 2020 

 17 

Temporal trends 

 

 As predicted, limiting the date range to a more recent time period lead to a decrease in the 

number of townships and sections with concentration data in likely DWAs for all contaminants 

(Table 2). For As, 1,2,3-TCP_1, and N, these decreases were most clearly observed in northern 

California (Figures 3c, 3d, 5c, 5d, 7c, 7d). For CR-6, the small percent decreases in number of 

sections (-5.11%) and townships (-2.54%) with concentration data were observed at the edges of 

the likely DWAs (Figures 4c, 4d). For 1,2,3-TCP_2, the large percent decreases in sections (-

81.51%) and townships (-97.78%) with concentration data were observed throughout central 

California (Figures 6c, 6d). The percent increases in number of geographic units with 

concentration data was greater in sections than in townships for all contaminants. 

 The decreases in townships and sections with concentration data in likely DWAs did not 

lead to a decrease in the percentage of townships or sections with concentrations at or exceeding 

the MCL for most contaminants. For the two methods for 1,2,3-TCP at the section and township 

levels and for As at the section level, the percentage of townships or sections with concentrations 

at or exceeding the MCL increased (As: 1.41%; 1,2,3-TCP_1: 19.42%, 10.22%; 1,2,3,-TCP_2: 

16.31%, 31.19%). In fact, 1,2,3-TCP had changes in percentage of townships or sections with 

concentrations at or exceeding the MCL that were one order of magnitude greater than that of the 

other contaminants. This indicates that for 1,2,3-TCP, using older data (2000-2010) lead to sizable 

decreases in the percentage of townships or sections with available concentration data that were 

out-of-compliance. 

 However, these decreases did not correspond to consistent effects in the estimates of at-

risk people. For 1,2,3-TCP_1, the percentage decreased in the section comparison (-18.63%) and 

increased in the township comparison (13.67%). As, 1,2,3-TCP_2, abd N all demonstrated 

decreases in at-risk population estimates, meaning that excluding older data lead to fewer 

estimated at-risk people. The section comparison, with the exception of N, resulted in a larger 

magnitude of percent change in estimated at-risk population than in the township comparison for 

these contaminants. 
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Table 2: Percent change in the descriptive statistics for the temporal model comparison. These statistics describe 
the change in model outcomes from using a larger dataset including older data (twenty-year dataset, 2000-2019) to 
using a smaller dataset filtered to more recent data (ten-year dataset, 2010-2019). For example, the -27.55% change 
in number of sections with concentration data for the As section comparison should be interpreted as follows: The 
number of sections containing contaminant data for arsenic is 27.55% less when using a dataset of more recent water 
quality measurements (SECT10) instead of using a dataset including older water quality measurements (SECT20). 
 

Contaminant 
(MCL) 

Model 
comparison 

 %Δ in number 
of townships or 

sections with 
concentration 

data 

 %Δ in 
percentage of 
townships or 
sections with 

concentrations  
≥ MCL 

 %Δ in 
population in 

areas with 
concentrations 

≥ MCL 

 %Δ in 
percentage of 
total area with 
concentrations   

≥ MCL 

As 
(10 μg/L) 

SECT20 : SECT10 -27.55% 1.41% -28.20% 0.96% 

TS20 : TS10 -9.78% -0.18% -12.11% -1.22% 

CR-6 
(10 μg/L) 

SECT20 : SECT10 -5.11% 0% 1.31% 0.24% 

TS20 : TS10 -2.54% -2.68% 0.93% -2.52% 

1,2,3-TCP_1 
(0.005 μg/L) 

SECT20 : SECT10 -28.17% 19.42% -18.63% 19.50% 

TS20 : TS10 -12.91% 10.22% 13.67% 9.91% 

1,2,3-TCP_2 
(0.005 μg/L) 

SECT20 : SECT10 -81.51% 16.31% -106.63% 16.34% 

TS20 : TS10 -97.78% 31.19% -5.06% 31.16% 

N 
(10 mg/L) 

SECT20 : SECT10 -17.73% -0.48% -3.02% -0.17% 

TS20 : TS10 -6.21% -3.59% -20.66% -5.23% 

 

Geographic trends 

 

 For all contaminants, aggregating over townships resulted in larger at-risk populations than 

aggregating over sections with the same temporal dataset (Table 2). Although total area with 

concentrations equal to or exceeding the MCL increased comparing the section models to the 

township models for all contaminants, the change in percentage of total area with concentrations 

equal to or exceeding the MCL did not always increase. Percent changes decreased for CR-6, 

1,2,3-TCP_1, and N, but increased for As and 1,2,3-TCP_2. For As, at-risk populations were 

mainly located in the Central Valley (Figures 3a, 3b). The at-risk populations for CR-6 were 

concentrated in Solano and Yolo counties (Figures 4a, 4b). Both methods for 1,2,3-TCP modeling 

suggested that the at-risk populations were located primarily in the San Joaquin Valley (Figures 

5a, 5b, 6a, 6b). For N, the at-risk populations were located over a wider area in the Central Valley 

and the Central Coast (Figures 7a, 7b). 
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Table 3: Percent change in the descriptive statistics for the geographic model comparison. These statistics 
describe the change in model outcomes from aggregating over a smaller geographic unit (sections) to aggregating over 
a larger geographic unit (townships). For example, the 108.53% change in population in areas with concentrations at 
or exceeding the MCL for the As section comparison should be interpreted as follows: The number of estimated at-
risk people is 108.53% greater when aggregating water well quality measurements for arsenic over larger areas 
(townships) instead of aggregating over smaller areas (sections). 
 

Contaminant 
(MCL) 

Model 
comparison 

 %Δ in population 
in areas with 

concentrations 
≥ MCL 

%Δ in percentage of 
total area with 
concentrations   

≥ MCL 

As 
(10 μg/L) 

SECT10 : TS10 108.53% 12.37% 

SECT20 : TS20 82.35% 14.83% 

CR-6 
(10 μg/L) 

SECT10 : TS10 49.25% -16.80% 

SECT20 : TS20 49.83% -14.49% 

1,2,3-TCP_1 
(0.005 μg/L) 

SECT10 : TS10 457.37% -13.28% 

SECT20 : TS20 305.63% -2.96% 

1,2,3-TCP_2 
(0.005 μg/L) 

SECT10 : TS10 1763.89% 41.54% 

SECT20 : TS20 3565.78% 16.47% 

N 
(10 mg/L) 

SECT10 : TS10 22.92% -53.66% 

SECT20 : TS20 43.97% -51.32% 

 

DISCUSSION 

 

 This study aimed at evaluating whether different choices in water quality modeling affected 

estimates of at-risk areas and populations. I varied two modeling parameters: time and geography. 

I compared models using a dataset limited to ten years of water sampling data (2010-2019) to 

models using a dataset including twenty years of data (2000-2019). I also compared models 

aggregating water concentration data over sections to models aggregating over townships. The 

goal of this research was to evaluate the impacts of common water quality modeling choices made 

by various research groups, including Sacramento State’s Office of Water Programs (“California 

Groundwater Risk Index (GRID)” 2018), Cal EPA’s Office of Environmental Health Hazard 

Assessment (“CalEnviroScreen 3.0” 2016), UC Berkeley’s Water Equity Science Shop (WESS, 

“The Drinking Water Tool, 2019” 2019), and the California State Water Resources Control Board 

(Methodology to Estimate Groundwater Quality Accessed by Domestic Wells in California 2019). 
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Implications 

 

 The results of this study demonstrate that water quality modeling choices regarding space 

and time have large impacts on estimates of at-risk areas and populations. As predicted, a larger 

data range resulted in improved geographic coverage of the state for all contaminants, but not 

without impacting the final model estimates. For the majority of the contaminants, increasing the 

date range lead to increases in the number of estimated at-risk people. However, changing the 

spatial resolution of the geographic unit over which concentration data was aggregated impacted 

estimates of at-risk populations to a greater extent. The magnitude of percent changes in population 

estimates exceeded 100% once in the time-variable analysis, while five of the geography-variable 

comparisons exceeded 100% change in magnitude. This finding suggests that although 

aggregating data over larger geographic units results in a more continuous model with values 

assigned over larger areas, at-risk population estimates will also inevitably increase. 

 Overall, the percent increases in number of geographic units with concentration data was 

greater in sections than in townships for all contaminants. This suggests that water wells gained 

when using the twenty-year datasets were more likely to be located in townships already 

containing wells from the ten-year datasets than in sections already containing wells from the ten-

year datasets. The larger geographic footprint of townships likely lowers the probability of a water 

well gained in a twenty-year dataset intersecting a township without any water wells in the ten-

year dataset. 

 Different spatial patterns of MCL violations arose for the four contaminants, which is in 

part due to where sources of contamination are located and where consistent water sampling is 

performed. The N models benefited from additional water sampling data provided by specialized 

programs like the Irrigated Lands Project (“Irrigated Lands Regulatory Program” 2019). Other 

contaminants had far less data. Coordinated efforts at the state level to bolster databases for 

contaminants like CR-6 and 1,2,3-TCP would improve the accuracy of future modeling efforts. In 

this study, I assumed that using data from sources other than the domestic wells dataset from 

GeoTracker GAMA, like pre-treatment Public Water System sampling data, still represented the 

quality of water accessed by domestic water wells. Other groups, like the GAMA group, decided 

to employ additional data cleaning methods on these datasets such as depth filtration (Methodology 

to Estimate Groundwater Quality Accessed by Domestic Wells in California 2019). These 
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additional data filtering methods further reduce the amount of data available to input into a model. 

In the absence of more frequent and extensive water quality monitoring from domestic water wells, 

it is impossible to say if one model is more “right” and estimates water quality more accurately 

than other models. Considering this, future modeling efforts should include sensitivity analyses 

that acknowledge and evaluate the impacts that different key choices have on model outcomes. 

 

Data availability and 1,2,3-TCP 

 

 The case of 1,2,3-TCP illustrates how technological limitations in water contamination 

detection can impact future quality estimates and policy decisions. In the approach taken with the 

1,2,3-TCP_1 models, any water quality measurements in both the ten-year and twenty-year 

datasets for which the reporting limit was missing were included in the final datasets. By contrast, 

the water quality measurements for which the reporting limit was missing were removed from the 

final datasets for the 1,2,3-TCP_2 models. The GAMA group recommended the second approach 

due to the unverifiable nature of the samples recorded without reporting limits (Methodology to 

Estimate Groundwater Quality Accessed by Domestic Wells in California 2019). This choice 

resulted in a drastic reduction in geographic coverage at both the section and township levels. For 

example, the difference between the number of sections with concentration data in 1,2,3-TCP_1 

SECT20 model and the 1,2,3-TCP_2 SECT20 model was 2,430 sections (Table 1). 

 Notably, the estimates of at-risk populations varied on the magnitude of tens of thousands 

of people between these two approaches. At its greatest estimation difference, 87,032 people were 

estimated to be at-risk in the 1,2,3-TCP_1 TS10 model that were not predicted to be at-risk in the 

1,2,3-TCP_2 TS10 model (Table 1). The results of the 1,2,3-TCP_1 and 1,2,3-TCP_2 models 

further support the assertion that modeling choices, including data cleaning choices, greatly impact 

model outcomes. The case of 1,2,3-TCP also highlights the need for more technologically reliable 

and geographically consistent water quality testing. Encouragingly, new methods such as in situ 

chemical reduction and in situ bioremediation appear promising for 1,2,3-TCP treatment, 

treatment methods are only as good as the methods used to identify areas of contamination (Merrill 

et al. 2019). 
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Future directions 

 

 Like with most research, this study dealt with an imperfect dataset curated throughout time 

by different organizations and people. The problematic nature of the 1,2,3-TCP data calls for 

instrumentation upgrades for future sampling efforts and for better training on how to determine 

and record reporting limits. Without reporting limits, it is difficult to determine if sampling data is 

in fact accurate and if it should truly be recorded as a value above or below the MCL. It is important 

to note also that the MCL is a convenient threshold that can be used to develop public health goals 

and track progress. MCLs will continue to change as public health research, detection ability, and 

cost of treatment change. It would be remiss to say that a community served by drinking water that 

is 0.0001% below the MCL is “safe” from any health effects. It is important to remind ourselves 

what modeling really does for us: Modeling helps us take a complicated system and simplify it so 

as to better understand it. The models produced in this and previous studies are not a literal 

depiction of water quality conditions in every community throughout California. Instead, models 

allow us to identify problematic areas to focus on. It is important, especially when modeling 

advises funding allocations for improvement projects, to still evaluate proposals on a community-

by-community basis. That way, researchers best serve the people who have been institutionally 

refused clean, safe, and affordable drinking water and aid in achieving the Human Right to Water 

for everyone in California. 
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APPENDIX A: Data Source Selection 

 

 GeoTracker GAMA contains the following datasets: Department of Pesticide Regulation; 

Department of Water Resources; GAMA – Domestic Wells; GAMA – Special Studies; GAMA – 

Priority Basin Project; Local Groundwater Projects; Monitoring Wells (Water Board Regulated 

Sites); Public Water System Wells; and National Water Information System (“GAMA 

Groundwater” 2019). 

 

Data availability from different sources 

 

 The availability of data is inconsistent between datasets depending on the contaminant. 

For example, the Department of Pesticide Regulation does not have data for As, 1,2,3-TCP, CR-

6 or N, and therefore it is not a data source used in this analysis. Out of the four contaminants 

included in this study, N has the most observations in terms of both the number of datasets and 

the number of unique water wells with available data. In contrast, CR-6 has the least 

representation of the four contaminants. 

 

GeoTracker GAMA water well types 

 

 Although the data in GeoTracker GAMA are measurements of groundwater quality, the 

measurements are taken from different types of wells. The wells measured in the GAMA – 

Domestic Wells dataset are strictly domestic water wells. The Public Water System (PWS) Wells 

dataset is the largest dataset in terms of number of unique wells measured and geographic 

coverage. The measurements in the PWS dataset are raw groundwater quality measurements, 

suggesting that they are representative of the aquifer quality from which nearby domestic wells 

source their water. I included all water wells regardless of depth even though PWS wells tend to 

be deeper than domestic wells (Faust et al. 2017). The Department of Water Resources, GAMA – 

Special Studies, GAMA – Priority Basin Project, and Local Groundwater Projects datasets 

represent measurements from a mixture of domestic, public, irrigation, and monitoring wells. 
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Monitoring wells: Data exclusion rationale 

 

 The wells measured in the Monitoring Wells (Water Board Regulated Sites) dataset 

typically represent water wells that are installed on industrial land-use sites (“State Water 

Resources Control Board” 2015). For instance, there are sub-categories in the dataset that 

distinguish water wells installed on Leaking Underground Storage Tanks cleanup sites, land 

disposal sites, military sites, and oil and gas development sites (“State Water Resources Control 

Board” 2015). The subset of the Monitoring Wells dataset that includes wells located in residential 

areas is the Irrigated Lands Program (“Irrigated Lands Regulatory Program” 2019). 

 

Selected data sources 

 

 The goal of this research is to elucidate the implications of model choices when using 

environmental data in a public health context. I selected the following eight GeoTracker GAMA 

datasets because they are representative of groundwater that could potentially supply domestic 

wells: Department of Water Resources; GAMA – Domestic Wells; GAMA – Special Studies; 

GAMA – Priority Basin Project; Local Groundwater Projects; Irrigated Lands Projects (a subset 

of the Monitoring Wells dataset); Public Water System Wells; and National Water Information 

System (NWIS). 

 

  



Claire A. Krumm California Well Water Quality Modeling Spring 2020 

 28 

APPENDIX B: Data cleaning 

 

 The goal of this data cleaning was to standardize the data within and between datasets. I 

cleaned the data using three columns in GeoTracker GAMA datasets: the contaminant 

concentration (RESULTS), qualifier (QUALIFER), and reporting limit (RL). In the first stage, I 

cleaned the QUALIFER column (Table B1). If there were any rows for which the RESULTS and 

RL columns were missing (‘NA’ or ‘UNK’) and the QUALIFER was an equal sign (‘=’), the row 

was removed because it lacked any useful data on the contaminant concentration at the time of 

sampling. If a number was provided for the RESULTS and RL columns, then the QUALIFER 

column was cleaned so that only two QUALIFER values remained (‘<’ and ‘=’). This methodology 

is in line with that of the State Water Resources Control Board’s (Methodology to Estimate 

Groundwater Quality Accessed by Domestic Wells in California 2019 p. A-1) 

 In the second stage, I cleaned the RESULTS column. If for any rows the result was either 

missing a value or zero (‘NA’ or ‘0’), the qualifier was a less than sign (‘<’), and the reporting 

limit was missing a value (‘NA’), the result was assigned a zero. If for any rows the result was a 

number but the qualifier was a less than sign (‘<’) and the reporting limit was missing or a number 

(‘NA’ or Number), the assumption was that the result was below the reporting limit and was 

therefore assigned a zero. If the qualifier was an equals sign (‘=’), the result was kept as reported. 

 
Table B1: Data cleaning decisions according to the results (RESULTS), qualifier (QUALIFER), and reporting 
limit (RL) columns in the GeoTracker GAMA datasets. The bolded entries indicate the exact value in the dataset. 
The non-bolded entry (Number) represents any positive decimal. 
 

Stage Results 
(RESULTS) 

Qualifier 
(QUALIFER) 

Reporting Limit 
(RL) Action 

1 

NA = NA Remove the row. 

Number ND, < Number Assign < to QUALIFER. 

Number NA, I, Q, S, - Number Assign = to QUALIFER. 

2 

NA < NA Assign 0 to RESULTS. 

0 < NA Numerical entry (0) is 
taken as RESULTS. 

Number < Number Assign 0 to RESULTS. 

Number = Number Numerical entry taken as 
RESULTS. 
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Reporting limit less than the MCL 

 

 In some cases, the reporting limit (RL) exceeded the MCL but the recorded contaminant 

concentration (RESULTS) was less than the reporting limit. For example, an As measurement 

could have a recorded concentration of 5 μg/L and a reporting limit of 15 μg/L. The MCL for As 

is 10 μg/L, meaning that the reporting limit for this measurement exceeded the MCL. Because the 

concentration is less than the reporting limit, it is unclear whether 5 μg/L is an accurate result. It 

is possible that the actual result was above the MCL of 10 μg/L (between 10 μg/L and 15 μg/L). 

Therefore, I dropped all rows for which there was a numeric reporting limit greater than the 

contaminant’s MCL and a concentration less than the reporting limit. If the reporting limit was 

greater than the contaminant’s MCL but the recorded concentration was greater than the reporting 

limit, the value was kept as the result. 

 

Missing reporting limits and 1,2,3-TCP 

 

 All of the contaminants’ ten-year and twenty-year datasets contained rows with missing 

reporting limits. For these rows, the same cleaning methods detailed above could not be applied. 

For As, CR-6, and N, the year-average reporting limits were above the MCLs I used in this study 

(10 μg/L, 10 μg/L, and 10 mg/L, respectively). Because the average reporting limits were above 

these contaminants’ MCLs, I kept all of the rows for which the reporting limit was missing. 

 For 1,2,3-TCP, however, the average reporting limit was above the MCL (0.005 μg/L) each 

year from 2000 to 2019. This indicates that there were serious limitations in monitoring technology 

for 1,2,3-TCP, and that many of recorded concentrations could be inaccurate. In order to 

understand the effects of monitoring limitations on modeling outcomes, I produced two sets of the 

1,2,3-TCP datasets (1,2,3-TCP_1 and 1,2,3-TCP_2). For the first approach (1,2,3-TCP_1), I 

included the recorded concentrations with missing reporting limits (‘UNK’). For the second 

approach (1,2,3-TCP_2), I removed all rows for which the reporting limit was missing. Therefore, 

there are eight total models for 1,2,3-TCP representing two different data cleaning approaches in 

this study. 


