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ABSTRACT 

 

 The Florida Panther (Puma concolor coryi) is an endangered species with a recovery goal 
of 3 independent populations of 240 individuals each, planned to be achieved by habitat expansion 
and reintroduction into public and private lands. Landowner support for this effort is contingent 
on their tolerance of panther presence, which is directly related to their perception of panther 
associated risk. In order to address this potentially disproportionate perception of risk, this study 
aimed to (i) identify hotspots of depredation risk within the Collier County, (ii) quantify the 
influence of various landscape variables on depredation, and (iii) assess the utility of a depredation-
based model, as opposed to established resource intensive telemetry models. I constructed a 
Maxent model of reported depredation incidents and relevant environmental variables, finding that 
it was significant with moderate performance. My model indicated that the highest probabilities of 
panther depredations occur in the low intensity urban – natural areas interface, contrasting with 
the literature on panther habitat models, which generally predict the highest probability of panther 
presences away from urban areas. This result suggests that depredations and observed panther 
habitat preferences may exhibit different spatial patterns and requires further research. 
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INTRODUCTION 

 

The human wildlife interface has been plagued by conflict as human populations increase 

and expand their activities onto landscapes that have historically been wildlife habitat, resulting in 

an overall loss of biodiversity. Since the 1900s, the human population has grown beyond billions 

and become the primary ecological determinant on Earth, changing and appropriating the 

environment on local and global scales (Nyhus 2016). Accordingly, resources available to wildlife 

have diminished, in some cases driving species extinction (Parks and Harcourt 2002).  Wildlife is 

constrained, with interactions devolving into conflicts (that is, interactions negative for one or both 

parties), exacerbated by high human density and resulting resource demand (Nyhus 2016). Factors 

such as agriculture commercialization (direct competition over land use), transportation expansion 

(as a source of collisions and habitat fragmentation), energy production, and human perception of 

risk (Nyhus 2016) are all contributing to human wildlife conflict (HWC). Humans have 

domesticated, exterminated, consumed, competed with, and recently implemented measures to 

mitigate conflict and conserve wildlife (García-Rangel and Pettorelli 2013).  If not mitigated, 

HWC incurs consequences on humans: injuries/death, economic damages, and opportunity costs; 

and drive more species to extinction (Nyhus 2016), which negatively impacts humans through loss 

of intrinsic value and of ecosystem services. To mitigate these potential negative impacts, HWC 

must be alleviated. 

The Florida Panther, Puma concolor coryi, is a subspecies of Puma that once ranged 

throughout the Southeast US but is currently limited to less than 5% of its previous range, with 

one documented breeding population in Southern Florida (U.S. Fish and Wildlife Service 2008). 

The panther, the state animal of Florida, has nearly faced the plight of the California Grizzly Bear, 

with the population estimated to have been less than 20 adult individuals in 1960s, prompting its 

listing on the Endangered Species List in 1967 (U.S. Fish and Wildlife Service 2008) and has since 

recovered to an estimated 230 adults (Florida Fish and Wildlife Conservation Commission 2019). 

The most recent Florida Panther Recovery Plan was revised in 2008 and stipulates delisting upon 

the establishment of 3 viable independent populations of 240 individuals each, via reintroduction 

and habitat expansion (U.S. Fish and Wildlife Service 2008). 

Listing panthers has achieved significant results and largely eliminated one of the initial 

primary drivers of panther extinction: intentional human depredation of panthers (Roelke et al. 
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1993) by making take illegal, however, the consequences of population bottleneck and additional 

anthropogenic threats remain. Genetic variation plummeted within the population, with inbreeding 

exhibiting defects such as reduced reproductive rates and pathogen resistance, though the 

reintroduction of 8 female panthers from Texas has alleviated the negative effects (Johnson et al. 

2010). Human population expansion and resulting increase in land use often directly compete with 

wildlife land use and thus is directly correlated to human wildlife conflict (Nyhus 2016). Panther 

populations are most threatened by the loss, fragmentation, and degradation of habitat (U.S. Fish 

and Wildlife Service 2008); with projections forecasting increases in Florida county populations 

and land use (Mulkey 2007), inevitably, more habitat will be altered for urban and agricultural 

uses. Additionally, human population increases will exacerbate panther road mortalities and 

constrain their range expansion (U.S. Fish and Wildlife Service 2008). 

Perhaps the greatest barrier to panther recovery efforts such as reintroduction is human 

perception of the risk associated with panther coexistence, which directly determines their 

tolerance. As there are no longer sufficient public lands to provide adequate panther habitat to meet 

the delisting criteria, private lands must be included as panther habitat (U.S. Fish and Wildlife 

Service 2008), requiring cooperation of the landowners. There have long been trends of support 

toward wildlife conservation, with statewide surveys finding the overwhelming majority of 

respondents supporting conservation and reintroduction efforts (Bonnie et al. 2020), however, 

there have also been longstanding trends of divide between rural and urban/suburban support of 

conservation actions (Bonnie et al. 2020). News articles exemplified this, with local articles 

highlighting panther risk more than statewide (Jacobson et al. 2012). Indeed, rural Floridians are 

subjected to panther associated risks to a greater extent. Depredations are categorized as panther 

attacks on livestock or domestic animals, accordingly, those most impacted are the landowners 

living within panther ranges. As panther populations expand their range into private lands, 

depredations increase, landowners are increasingly concerned about their livestock and potential 

economic and emotional damages (Kreye et al. 2017). 

Florida cattle ranchers have been observed to be mistrustful of government panther 

management, even perceiving agencies as “condescending” and “invasive,” perhaps adding to their 

disproportionately high perceptions of panther depredations and thus opposition to recovery efforts 

(Pienaar et al. 2015). While even cattle ranchers doubt high panther depredation rates and 

acknowledge that some livestock mortalities may be misattributed to panthers, panther depredation 
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risk is often concatenated with other predator depredations and the resulting economic and 

psychological damages (Pienaar et al. 2015). Furthermore, some cattle ranchers have professed 

that they may employ a “shoot, shovel, and shut up” approach if they perceive panthers as an 

economic threat (Kreye et al. 2017). Nevertheless, many ranchers professed the desire for 

conservation, so long as the government involved them in decisions and properly compensated 

depredation losses, perceiving the ecosystem, and panthers, to be under their stewardship (Kreye 

et al. 2017). 

Thus, it is essential to address the issue of depredation risk. Previous studies have primarily 

focused on correlating panther depredation risk with hunting habitat models derived from panther 

telemetry data, generally with high predictive accuracy (Thatcher et al. 2009, Jacobs et al. 2015). 

However, there has long been controversy on the conclusions of Florida panther telemetry studies, 

as the methodology of numerous studies is based on diurnal data, with other researchers finding 

diel telemetry data the most rigorous (Beier et al. 2003). Additionally, telemetry depends on a 

sample of the species, which, due to limited logistical resources, may not be entirely representative 

or costly to achieve (Beier et al. 2003, Aarts et al. 2008). 

In this study, I generated depredation risk maps of the Florida Panther using the species 

distribution modelling program Maxent, with reported depredation incidents as the dependent 

variable and landscape conditions as the independent variables. In this the objectives are to (i) 

identify hotspots of depredation risk within the study area, (ii) quantify the influence of various 

landscape variables on depredation, and (iii) assess the utility of a depredation-based model, as 

opposed to established telemetry models. In determining areas and variables of risk, agencies can 

prioritize outreach to high risk communities and communities can be informed, determining the 

best course of action to mitigate risk. It is expected that depredation risk will be greatest in areas 

adjacent, or comprising, of suitable panther habitat (Jacobs et al. 2015). In predicting which 

locations are most susceptible to depredation and which contributing variables are impactful, 

mitigating measures such as translocation, guarding, and barriers (Nyhus 2016) are prioritized, 

minimizing expenditures and effort. 
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METHODS 

 

Study Area 

 

 I conducted my study in Collier County, Florida, where the bulk of depredation reports the 

Florida Fish and Wildlife Commission (FWC) receives occur. Collier County contains a significant 

portion of panther habitat, with protected areas such as Big Cypress National Preserve, 

Fakahatchee Strand Preserve State Park, Florida Panther National Wildlife Refuge, and Picayune 

Strand State Forest composing the entirety of its southern half. Indeed, Collier is 68% conservation 

lands, ranking third among all other counties, and ranks first in total conservation land area with 

882,120 acres (Florida Natural Areas Inventory 2020). The region consists of a variety of land 

covers, divided among public and private land uses. Public lands are predominantly freshwater 

wetlands and forests, of which 74% are federally owned (Florida Natural Areas Inventory 2020). 

Private lands add urban areas, agriculture, orchards, and pastures to the previous ecosystems. 

Private and protected lands are not mutually exclusive, with private individuals or organizations 

holding >1% of conservation land area (eighth in private conservation area per county) that 

provides panther habitat (Florida Natural Areas Inventory 2020). One focal land use, livestock 

pastures, has a long history. Cattle ranching in Florida began in the 16th Century under Spanish 

occupation, where the practice was to leave cattle largely unsupervised, therefore requiring the 

removal of predators, ie, the Florida Panther (Kreye et al. 2017). This trend remains, as current 

livestock owners continue to leave livestock unsupervised, even when aware that cattle losses are 

harder to monitor (Kreye et al. 2017). 

Panther recovery is a demanding project as they are large solitary predators with expansive 

home ranges: 435–650 km2 for males and 193–396 km2 for females, with male home ranges having 

minimal overlap (Beier et al. 2003). There has been contention on the preferred habitat type being 

forest cover, as the majority of such studies used daytime telemetry (panthers are active mostly at 

night) (Beier et al. 2003), with other studies concluding that panthers are habitat generalists 

(excluding water bodies and severely disturbed land) that may use forest cover as hunting habitat 

but are not restricted to it (Comiskey et al. 2002). Recorded panther locations span all but the 

northwestern coastal area, avoiding the mostly densely urbanized areas. Several previous studies 

on panther habitat (Frakes et al. 2015, Jacobs et al. 2015) have limited their study area to the FWC 
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defined priority panther conservation zones delineating primary panther habitat, secondary habitat, 

and dispersal areas (U.S. Fish and Wildlife Service 2008), however, this was discounted on the 

basis of depredations occurring outside of those zones. To narrow my study focus, I designated 

my study area to be outside of single use protected areas under the assumption that single use 

protected areas are designated solely for conservation and should not incur any major human uses, 

such as livestock farming, that provide depredation targets. 

 
Figure 1: Study Area Land Cover. Reclassified land cover (Table 1) present in the study area. Wetland and upland 
forest are intentionally similar to help visualize uninterrupted forest cover. 
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Depredation 

 

 Depredation data was collected from the FWC database, which the agency compiles from 

reported and verified reports of depredations (Florida Fish and Wildlife Conservation Commission 

2018). This data was subset to the study area, ranging from reported incidents in 2005 to 2018 and 

included livestock animals such as cattle and goats as well as domestic pet animals (eg, dogs and 

cats). Panther identity was classified by recording the telemetry collar identification number; 

however, the majority of attacking panthers were uncollared. There is a possibility that there might 

be a subset of uncollared panther range that the FWC telemetry data does not represent accurately. 

This, in addition to the fact that FWC telemetry data was primarily collected at diurnal periods, 

precluded the use of telemetry data in my model and inspired the third objective of this study, as 

panthers are primarily nocturnal and avoid other members of their species (Beier et al. 2003). 

 

Environmental Variables 

 

 Eight environmental variables were collected from online databases (Table 2). Land cover 

was derived from the Cooperative Land Cover Map version 3.3 (CLC), a product of FWC and 

Florida Natural Areas Inventory (FNAI) most recently updated in 2018 (Florida Fish and Wildlife 

Conservation Commission and Florida Natural Areas Inventory 2018). I reclassified it into 11 

major classes, loosely framed on the schemes of Jacobs et al. 2015 and Frakes et al. 2015 (Table 

1). The 11 classes were further categorized according to whether they provided cover for panther 

movement or were forested, which panthers select for their home range (Beier et al. 2003, COX et 

al. 2006, Onorato et al. 2011). In addition to the land cover classes, computer generated building 

footprints (Microsoft 2018) and digital elevation models (DEM) (U.S. Geological Survey 2019) 

were collected for the study area. As while many previous studies, including Jacobs et al. 2015, 

included livestock density, I decided to exclude them on the basis that the data was on a global 

scale (Robinson et al. 2014) and appeared to have high error on the local scale of my study area, 

or were discrete at the county level. Additionally, less traditional livestock such as alpacas, or pet 

animals were not represented in the livestock density data sets. 

 



Natasha Thompson Florida Panther Depredation Spring 2020 

8 
 

Table 1: Land Cover Classification Scheme. Land cover was downloaded from the Cooperative Land Cover 
database, version 3.3, and reclassified according to their importance to panthers. 

Land Cover Class #ID Description Cover Forest 
Agriculture 4 Agricultural crops with low height No No 
Forest-Upland 1 Forest on dry land habitat Yes Yes 
Forest-Wetland 7 Forest on wetland habitat Yes Yes 
Pasture-Improved 10 Pasture with managed vegetation No No 
Pasture-Unimproved 11 Pasture with unmanaged vegetation Yes No 
Open Water 8 Water bodies with depth (lakes, reservoirs) No No 
Orchard 9 Agricultural tree crops that provide cover Yes No 
Scrub/Brush/Prairie 2 Low vegetation with height that provides cover Yes No 
Urban-High Intensity 5 Urban areas with little or no undisturbed land No No 
Urban-Low Intensity 3 Urban/Rural areas with less disturbed lands No No 
Wetland 6 Freshwater wetlands with little or no cover (swamps, 

marshes) 
No No 

 

 I processed the data into 10 m2 raster grid cells, projected into the local Florida State Plane 

901. Land cover data was again approximately based on Jacobs et al. 2015 and Frakes et al. 2015, 

with some subtractions and additions. Density and percentage data layers were calculated within 

a circular 4.5 km2 area for each cell, as panthers were observed to utilize an area of 4.5 km2 in a 

24 hour day (Florida Fish and Wildlife Conservation Commission and Fish and Wildlife Research 

Institute 2014) (Table 2). From this, a circle of radius 90 m was subtracted from the center, as 

panthers move chiefly within 90 m from preferred habitat (Maehr and Cox 1999), eliminating 

potential confounding effects of cells located in nonpreferred habitat. Variables were tested for 

correlation and discarded if R2 > 0.50 (Phillips 2008, Merow et al. 2013) and treated as continuous 

barring the categorical landcover classes. 
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Table 2: Environmental variables used in the study. Landscape variables processed and input into the species 
distribution modelling software Maxent. 

Variable Description Hypothesized Relationship with Depredation 

DEM (m) Elevation (+) Panthers prefer higher altitudes to hunt and minimum 
flooding (Daniel Kissling et al. 2009, Zarco-González et al. 
2013, Frakes et al. 2015, Miller 2015) 

Distance from 
Cover Edge (m) 

Euclidean distance from 
cover class edge 

(-) Panthers use edge as hunting habitat and generally stay 
within a certain distance (Maehr and Cox 1999, Laundré and 
Hernández 2003, Daniel Kissling et al. 2009, Miller 2015) 

Forest Edge 
Density (m) 

Density of forest class 
(upland and wetland) 
boundaries within 4.5 km2 
of a cell 

(+) Panthers use edge as hunting habitat, especially when 
several prey species prefer edge habitat (Maehr et al. 1990, 
Waller and Alverson 1997, Maehr and Cox 1999, Laundré and 
Hernández 2003, Daniel Kissling et al. 2009, Miller 2015) 

Forest Cover 
Percent 

Percent forest (upland and 
wetland) within 4.5 km2 
of a cell 

(+) Panthers prefer forest habitat in both day and nighttime 
(Beier et al. 2003, Onorato et al. 2011, Zarco-González et al. 
2013, Miller 2015) 

Improved Pasture 
Area (m) 

Size of individual 
improved pasture patch 

(-) Panthers favor cover habitat for stalking, preferring pasture 
patches (an non cover habitat) with a higher ratio of edge to 
area (Laundré and Hernández 2003, COX et al. 2006, Johnson 
et al. 2010) 

Land Cover Reclassified land cover 
from CLC v3.3 

(Variable) (+) Panthers prefer forest habitat in both day and 
nighttime (Beier et al. 2003, Land et al. 2008, Onorato et al. 
2011, Zarco-González et al. 2013, Miller 2015) 

Prevalent Land 
Cover 

Reclassified land cover 
(from CLC v3.3) with 
majority area within 4.5 
km2 of a cell 

(Variable) (+) Panthers prefer forest habitat in both day and 
nighttime (Beier et al. 2003, Land et al. 2008, Onorato et al. 
2011, Zarco-González et al. 2013, Miller 2015) 

Building Density Number of buildings 
within 4.5 km2 of a cell 

(-) Panthers avoid highly populated, disturbed areas (Comiskey 
et al. 2002, Beier et al. 2003, Frakes et al. 2015) 

 

 

Modelling 

 

 The data was then input into Maxent version 3.3.3k, a free, open source machine learning 

software for modelling species distributions with presence only records (Phillips et al. 2006). The 

software maximizes entropy (or spread) in species distribution across the environmental conditions 

which the presence samples were observed, as compared to all other randomly generated points 

(background points), yielding a probability of presence map and variable relationship statistics 

(Elith et al. 2011). Maxent is popular for its ease of use, various nonlinear modelling functions, 

and for retaining high predictive power even among small sample sizes, commonly outperforming 

other methods (Elith et al. 2006, Hernandez et al. 2006, Wisz et al. 2008, Merow et al. 2013). 
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 To determine the distribution and variables of panther depredation, I input the 263 reported 

depredation incidents within the study area into Maxent as the dependent sample presence data, 

with the environmental layers serving as the independent predictive variables. Maxent was run 

with 10 fold cross validation which maximizes data utilization and allows for the assessment of 

prediction uncertainty and function fitting error (Elith et al. 2011, Merow et al. 2013). Model 

performance was evaluated by the Area Under the Curve (AUC) of the Receiver Operator 

Characteristic (ROC) curve, which plots sensitivity on the y axis, measuring the accuracy of 

predicted presences, and one minus specificity on the x axis, which measures the accuracy of 

predicted absences (Phillips et al. 2006). An AUC value above 0.5 indicates that the model has a 

higher probability of correctly ranking random presence (ie, depredation points) and random 

background (pseudo absence) points than by random, with values approaching 1 identifying 

models with good fit (Phillips et al. 2006, Merow et al. 2013).  

However, as AUC has a tendency of penalizing predictions outside of presence localities, 

thus ignoring potential model overfitting with increasing geographical extents, among other issues 

such as insensitivity to prevalence (Raes and Ter Steege 2007, Lobo et al. 2008, Merckx et al. 

2011), I developed a null model for significance testing. The null model was constructed by 

randomly sampling 263 points (to match the observed depredation distribution) within the study 

area 100 times, input into Maxent under the same conditions as the depredation model, as per the 

methods of van Proosdij et al. 2016. The AUC value of each iteration was collected to create a null 

distribution, within which the depredation model’s AUC value would need to rank 95th or above 

to be considered significant at a p-value of 0.05 (Raes and Ter Steege 2007, van Proosdij et al. 

2016). Ranking above 95th in the null distribution would indicate that the model was more 

predictive than at random, correcting for the bias toward inflated AUC values in presence only 

models (van Proosdij et al. 2016). 

 

RESULTS 

 

Depredation 

 

 I found the panther depredation model to be of intermediate performance, with a mean 

AUC value of 0.872 across the 10 iterations run for 10 fold cross validation (minimum: 0.822, 



Natasha Thompson Florida Panther Depredation Spring 2020 

11 
 

maximum: 0.907); while models above the 0.9 threshold are generally accepted to be high accuracy 

(Swets 1988, Manel et al. 2001). My model was significant, more accurately predicting panther 

depredations than the 100 generated null models (ie, the highest AUC value was from the 

depredation model), with a p-value of 0.01 finding strong evidence against my model being no 

more accurate than if by chance alone. 

 In examining the panther depredation risk map, it is seen that the highest predicted 

probabilities of depredations are predominantly where previous depredations have occurred 

(Figure 2).  I further categorized depredation risk zones into a high risk class (0.6-1.0), identifying 

~10% of my study area with predicted depredation risk above 60% (Figure 3). 
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Figure 2: Panther depredation risk map. The Maxent predicted probability of panther depredation across the 
study area. 
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Figure 3: Classified panther depredation risk map. It is seen that low density urban areas are the most prone to 
panther depredations. 

 
 

Environmental Variables 

 

 The environmental variables all had various levels of contribution to the probability of 

panther depredation (Table 3). Land cover type (29.7%) and forest edge (27.7%) overwhelmingly 

had the highest contribution to the model, with all other variables having contributions <15%. 

Improved pasture area had the lowest contribution at 1.6%. None of the variables had uniformly 
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linear relationships with depredation probability, though there were observable trends. Distance 

from cover edge and pasture area had consistently negative relationships with depredation (Figure 

4). Forest edge had a clear positive influence on depredations. Building density (peak: ~400 

building/4.5km2), elevation (peak: 4 m), and percent forest (peak: 2.5-6.5%) had peaks (Figure 4). 

The low intensity urban and improved pasture land cover classes had the highest probability of 

panther depredations (Figure 4). 

 
Table 3: Environmental Variable Contributions. Percentage contribution of each variable to the Maxent Panther 
Depredation Model. 

Variable Contribution (%) 
Land Cover 29.7 
Forest Edge Density 27.7 
Prevalent Land Cover 12.2 
Building Density 11.3 
DEM 9.2 
Forest Cover Percent 6.5 
Distance from Cover Edge 1.7 
Improved Pasture Area 1.6 
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Figure 4: Environmental Variable Response Curves. Environmental variable relationship with panther 
depredation probability (See Appendix for full size images). 
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DISCUSSION 

 

In conserving and coexisting with the endangered Florida panther, it is essential to address 

residents’ perception of panther associated risk, which can directly determine their tolerance for 

panther presence (Pienaar et al. 2015, Rodgers and Pienaar 2018). My model was found to be 

significant and moderately accurate, identifying landscapes with (1) low intensity urban land use 

and improved pasture, (2) high forest edge, (3) intermediate forest percent, (4) low building 

density, (5) elevations above sea level, and (6) small improved pasture sizes to have high 

depredation risk. This is consistent with most panther habitat preference studies (Beier et al. 2003), 

yet presents a unique challenge in that the model is not optimizing for the most suitable panther 

habitats, instead on habitats that are on the urban edge, therefore contrasting with expected panther 

densities. 

 

Depredation and environmental variables 

 

My model found that the highest depredation probabilities occurred where low intensity 

urban and natural land uses interfaced. Low density residential housing areas with surrounding 

properties containing landcovers such as forests (upland or wetland) were predicted to have high 

depredation rates, following observed trends of panther edge habitat selection for hunting (Waller 

and Alverson 1997, Jacobs et al. 2015). Logically, the low intensity urban – natural area interface 

is one of the only feasible locations of depredation (besides pastures), providing panthers suitable 

hunting habitat from which to target domestic animals located in urban areas. This phenomenon 

also explains the relationship of forest percent to depredation probability, which is positive until 

about 30% forest cover and then declines (Figure 4). In a habitat suitability model, one would 

expect a uniformly positive relationship with forest percent and panther habitat selection (Frakes 

et al. 2015, Jacobs et al. 2015), however, when accounting for the location of domestic animals 

being on or near urban areas, it is impossible to have 100% forest cover. Similarly, panthers are 

observed to avoid populated areas (Beier et al. 2003), but building density shows a positive 

relationship until ~400 buildings per surrounding 4.5km2 and low intensity urban land cover 

exhibits the highest probability of panther depredation (Figure 4). Low intensity urban areas 

contain panther attractants in the form of domestic animal prey, and are apparently below the 
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threshold of repellant factors such as human population density and road density (Frakes et al. 

2015). 

 

Telemetry comparison 

 

I found my panther depredation risk model to be of intermediate performance, comparable 

in accuracy to previous telemetry-based studies, answering the question of depredation-based 

model utility. In visually comparing my distribution of depredation probability with distributions 

of panther population (COX et al. 2006, Frakes et al. 2015, Florida Fish and Wildlife Conservation 

Commission et al. 2019) or panther habitat models (Thatcher et al. 2009, Jacobs et al. 2015) 

derived from telemetry data, there appear to be discrepancies on the map. Areas of high panther 

depredation probability are not always consistent with areas of high panther presence probability. 

This would suggest that zones of high depredation are not habitats which panthers are typically 

expected to select for. Indeed, several studies were restricted to the FWC designated priority 

panther conservation lands (Jacobs et al. 2015), excluding several areas with observed panther 

depredations.  

Conventionally, urban or disturbed areas are found to be unattractive to panthers 

(Comiskey et al. 2002, Beier et al. 2003, Frakes et al. 2015), perhaps implying that panther 

depredations are outside of regular panther patterns. This is supported by findings of low frequency 

of pet and livestock prey in panther diets (Maehr et al. 1990, Caudill et al. 2019) and overall low 

calf depredation rates ranging from 0.5 to 5.3 % (1/219 calves Immokalee Ranch and 10/190 calves 

JB Ranch, respectively) annually (Jacobs et al. 2015). Within my study area, 263 depredations 

occurred on pets and livestock from 2005 to 2018, or an average of 20 depredations per year, over 

an area of > 2,000 km2. The total number of depredations reported to the FWC is 304, over the 

span of 2004-2018, or ~22 depredations per year (Florida Fish and Wildlife Conservation 

Commission 2018). Under the assumption that panthers need to consume approximately 1 adult 

deer per week (or the equivalent) (Ackerman et al. 1986) and that there are 120-230 total individual 

panthers currently in Florida (Florida Fish and Wildlife Conservation Commission 2019), 

depredation events are exceedingly rare. In consideration of this rare status, it is potentially useful 

to consider depredation events separately from telemetry data in order to achieve more 

representative results, which my model tentatively illustrates. 
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Limitations 

 

 While the model was found to be significant, it is limited by the underlying assumptions 

of its data. In discussing telemetry and depredation-based models above, it was noted that 

telemetry data may not be as indicative of depredation events as would be liked, therefore casting 

issues on the criterion of my environmental variable selection. If the telemetry data is truly not 

representative of depredation data, the selection and processing of my environmental data that 

heavily relied on telemetry-based studies may not be optimally configured to predict depredation. 

Instead, variables derived solely from depredation occurrences should be implemented to remove 

the potentially confounding effects of telemetry-based study habitat preferences. For example, 

forest percentage within a certain area of a low intensity urban land cover or distance from 

buildings would be variables that apply more consideration toward the urban factor of 

depredations. 

 Additionally, the depredation data itself has restricted my model. As the depredations 

reported to the FWC are self-reported, there is a strong potential for non-response bias. Livestock 

farmers that encountered panthers threatening their livestock may believe it in their best interests 

to covertly and illegally dispose of the panther, or “shoot, shovel, and shut up” (Kreye et al. 2017), 

instead of reporting the depredation. Furthermore, it is difficult to identify the exact number of 

livestock lost to a specific predator, especially if the livestock is unsupervised (Pienaar et al. 2015). 

If this creates a systematic bias in the reported depredation data, the model accuracy will be stunted 

(Kramer-Schadt et al. 2013, Syfert et al. 2013, Yackulic et al. 2013). Ideally, community members 

would be trained to identify depredation incidents over a period of several years, such as in Sitati 

et al. 2003, with increased livestock supervision to reduce misidentified panther depredation 

incidents. The reported depredation data is also a total of only 263 incidents, paling in size when 

compared to telemetry based studies which had sample sizes in the thousands (Comiskey et al. 

2002, Onorato et al. 2011, Frakes et al. 2015); for while Maxent handles small sample sizes well, 

larger sample sizes generally return higher AUC values and therefore higher performance 

(Hernandez et al. 2006). 
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Implications 

 

 The results of my study point at the need to examine depredation incidents independently 

and at a greater depth. My model highlighted the depredation risk of the low intensity urban – 

natural areas interface, providing agencies knowledge of at-risk communities to prioritize conflict 

mitigation discussions in and posing the question of whether telemetry-based studies are 

representative of depredation events, as they usually do not take into account urban attractive 

factors. Conversely, my depredation risk map can inform at-risk communities in planning their 

livestock management, changing to behaviors such as livestock supervision which deter panthers 

(Kreye et al. 2017). Perhaps the most important result is the significance and predictive accuracy 

of my depredation model, which specifies the importance of accurate and comprehensive 

depredation data collection, incentivizing community input, especially when livestock owners feel 

uninvolved or marginalized in panther conservation (Pienaar et al. 2015). In recognizing the 

communities most negatively affected by panther conservation, outreach can be targeted to ensure 

they do not bear the burden of conservation but instead perceive themselves to be relevant 

stakeholders, active and willing participants in future panther conservation efforts. 
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APPENDIX A: Environmental Response Curves 
 
Figure 4: Environmental Variable Response Curves. Environmental variable relationship with panther 
depredation probability. 
 

 

Response of Puma concolor coryi to Pasture Area (m) 
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Response of Puma concolor coryi to Prevalent Land Cover 

 

Response of Puma concolor coryi to Land Cover Response of Puma concolor coryi to Land Cover 

 



Natasha Thompson Florida Panther Depredation Spring 2020 

26 
 

Response of Puma concolor coryi to Percent Forest 

 
Response of Puma concolor coryi to Forest Edge Density (m/4.5km2) 
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Response of Puma concolor coryi to Edge Distance (m) 

 
Response of Puma concolor coryi to Elevation (m) 

 



Natasha Thompson Florida Panther Depredation Spring 2020 

28 
 

 
 

Response of Puma concolor coryi to Building Density (# buildings within 4.5km2) 

 


