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ABSTRACT 

 

It is well known that poor diet, lack of exercise, and genetics are all factors that contribute to 
metabolic diseases. New research reveals associations between long-term air pollution exposure 
and subclinical inflammation, including metabolic syndrome in adults; however, these associations 
are less explored in children. Communities of lower socioeconomic standing, especially those of 
minority populations, are most vulnerable to sources of air pollution. In many of these areas, both 
houses and schools are located close to areas of concentrated sources of air pollution, such as 
highways or factories. In this study, we conduct cross-sectional regression analyses in a 
predominantly low income sample of children (n=218) to explore associations between several 
traffic-related air pollutants: NO2 , NOx, elemental carbon (EC)  and polycyclic aromatic 
hydrocarbons (PAHs) and blood biomarkers for risk of metabolic disease: high-density lipoprotein 
(HDL, the “good” type of cholesterol) and C-reactive protein (CRP, a marker of systemic 
inflammation. Overall, the results demonstrated a pattern of decreasing HDL with increases in 
NO2, with the strongest for short term exposure (1-day) and an estimate of -15.4 mg/dL decrease 
per IQR increase in NO2 (95% CI = -27.4, -3.4). Bringing to light possible associations between 
air pollution and adverse health outcomes could promote policy change and community-wide 
programs to alleviate issues of environmental justice stemming from unequal burden of 
environmental stressors.  
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INTRODUCTION 

 

Particulate air pollution, especially that of small particles such as PM2.5, has been of great 

health concern since the incidence of the “London Fog” in the early 1950s, where a sharp increase 

of mortality resulted from air pollution produced during coal burning (Corton et al. 2015, Schwartz 

et al. 1990). Emerging evidence showed that prolonged increases in air pollution led to impaired 

resistance to illnesses, resulting in increased cardiopulmonary deaths observed during air pollution 

episodes that may be due to a compromised respiratory system (Peters et al. 1997). There were 

also indicators of increases in morbidity, such as higher incidences of pneumonia, insurance claims 

and hospital admissions from November 1952 to January 1953 compared to previous years (Bell 

and Davis 2001). Four years later, the Clean Air Act of 1956 was enacted by the United Kingdom 

in direct response to the Great Smog of London in 1952 (Corton et al. 2015). Later on, the United 

States followed suit when the newly established Environmental Protection Agency (EPA) began 

using the Clean Air Act of 1970 to enforce air quality standards to control air pollution. From 

1990-2015, annual concentrations of PM10 have significantly decreased by 39% in the US (Park 

2017, EPA 2016). However, despite effective public policy improving ambient air quality, air 

pollution remains a leading contributor to the global burden of disease (Park 2017, Cohen et al. 

2017) and growing evidence suggests an association with metabolic dysfunction and PM2.5 

exposure at a population level (Bowe et al 2016).  

Metabolic syndrome, a cluster of conditions that increase the risk of heart disease and 

diabetes (Mayo Clinic), has recently been associated with exposure to air pollution in mouse model 

studies, adult and pediatric epidemiological studies. The contributing components of metabolic 

syndrome, such as insulin resistance, central adiposity, elevated blood pressure, and dyslipidemia 

have also been shown to have a positive association with air pollution exposure in literature 

(Haberzettl et al. 2016, Sun et al. 2009, Alderte et al. 2017, Toledo-Corral et al. 2018, Park 2017). 

Currently, the hypothesized biological mechanism behind this association is that pollutants 

entering the bloodstream induce upregulated inflammatory responses in tissues of distant organs 

(liver, pancreas), leading to clinically harmful effects such as glucose intolerance from insulin 

resistance (Bowe et al 2016, Alderte et al. 2017, Miller et al. 2012). Studies using mouse models 

have investigated the biological mechanism by which particulate matter might contribute to 

metabolic diseases. Mice fed either a normal or high fat diet were exposed either to HEPA filtered 
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air or air with concentrated PM2.5 and were followed for changes in systemic and organ-specific 

insulin sensitivity and inflammation (Haberzettl et al. 2016). In these mice, short term exposure to 

PM2.5 inhibited insulin signaling, resulting in vascular insulin resistance and inflammation caused 

by pulmonary oxidative stress (Haberzettl et al. 2016). Exposure to PM2.5 was also observed to be 

associated with deviations of insulin sensitivity and amplified adipose inflammation in mouse 

models of diet induced obesity (Sun et al. 2009). In another study, PM10 exposure induced in vivo 

expression of MetS related genes in mice, specifically genes related to inflammation, lipid and 

cholesterol metabolism and atherosclerosis (Brocato et al. 2014). Based on this evidence from air 

pollution exposure in mouse models, insulin resistance, dyslipidemia and central adiposity may be 

related to particulate matter exposure via inflammatory pathways.  

Several epidemiological studies have observed an association between air pollution 

exposure and metabolic biomarkers of inflammation in large population studies. A cross sectional 

study of adults exposed to household air pollution showed that fine particulate matter on epithelial 

cells lining the airways can activate inflammatory signaling cascade events, triggering adverse 

respiratory health effects such as asthma (Miller et al. 2012, Haberzettl et al. 2016, Villarreal et al. 

2008). Moreover, in a random sample of 3256 adults during the winter of 1984–85, those with 

more air pollution exposure had increased plasma viscosity, thought to result from peripheral 

airways inflammation. The study results discuss that increased blood coagulability could result in 

increased cardiovascular events following urban pollution episodes (Peters et al. 1997).  Several 

of these studies suggest that direct airway inflammatory effects from air pollutants such as ozone, 

secondhand tobacco smoke, and wood smoke, can lead to indirect effects on the circulatory system 

via the inflammatory response (Villarreal et al. 2008, Nightingale et al. 2018). Other 

epidemiological studies analyzed the correlation between air pollution exposure and markers of 

metabolic dysregulation. For example, the MESA Air study (The Multi-Ethnic Study of 

Atherosclerosis and Air Pollution) looked at the development of arteriosclerosis and 

atherosclerosis biomarkers in a population of 7,551 older adults that did not have cardiovascular 

disease at the start of the study. There were positive associations between longer-term exposure to 

TRAPs and markers of inflammation and coagulation, as well as increased rate of development of 

atherosclerosis measured by coronary artery calcium (CAC) (Kaufman et al. 2016). The Swiss 

Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (3769 participants) 

demonstrated a positive association between traffic-related air pollutants (NO2 and PM10) with 
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impaired fasting glycemia (Eze et al. 2015). A recent study found an association between exposure 

to higher levels of traffic-related air pollution and significantly lower levels of high-density 

lipoprotein (HDL) cholesterol and apoA-I in a healthy study population with no cardiovascular 

complications (Li et al. 2019).  In an analysis of US counties, there was a positive correlation 

between the ambient level of PM2.5 and the prevalence of type II diabetes, but not obesity, 

suggesting that the exposure to air pollution to type II diabetes might be obesity independent 

(Mazidi et al. 2017).  

Although there is abundant research in adults on the relationship between air pollution 

exposure and effects on metabolic dysregulation, there are still gaps in the literature concerning 

the effect in children. A cohort study on school children, 158 asthmatic and 50 non-asthmatic, 

demonstrated a positive association of air pollution exposure and inflammatory biomarkers such 

as interleukin-8 (IL-8) in nasal lavage and Fractional exhaled Nitric Oxide (FeNO), suggesting 

significant increases in airway inflammation (Villarreal et al. 2008). Additionally, another cross-

sectional study cohort studied populations of overweight and obese African American and Latino 

children in urban Los Angeles suggests that TRAP exposure is positively associated with lower 

insulin sensitivity, higher fasting insulin and higher fasting glucose (Toledo-Corral et al. 2018). 

Similarly, in a longitudinal cohort study of overweight and obese Latino children (ranging from 8-

15 years, n=314) between 2001 and 2012 in Los Angeles, CA, there was a positive association 

between NO2 and PM2.5 exposure and a faster decline in insulin sensitivity (Alderete et al. 2017). 

More studies in this area of interest can further provide evidence of ambient air pollution associated 

with atherosclerosis, as low levels of HDL could be a risk factor for atherosclerosis, heart failure, 

and future cardiovascular death (Li et al. 2019). Thus, early work suggests that the inflammatory 

biomarkers of airway inflammation triggered by air pollution are related to diabetes and that early 

life exposure to risk factors of obesity in children can contribute to metabolic dysregulation later 

on in life.  

The Children’s Health and Air Pollution Study (CHAPS) is a research project looking at 

the adverse health outcomes of air pollution in early childhood. This thesis investigates the 

exposure to TRAPs and blood biomarkers of metabolic disease in a population of low-SES, mostly 

Latinx children, in the San Joaquin Valley of California. The aim is to build upon an early CHAPS 

project which analyzed TRAPs association with other markers signaling risk of metabolic 

syndrome, which found a significant association between 1-year average NO2 exposure and waist-
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height ratio, a measurement for obesity, and an associations between ambient PAH exposure levels 

and increased HbA1c and 8-isoprostane (Mann et al., in press). The purpose of this continuation 

is to provide further evidence of how early air pollution exposure can lead to adverse health effects, 

with regards to inflammation and metabolic disorders in children. This cohort has exceptionally 

detailed exposure data relative to other cohorts of children. If we find the expected association 

between TRAPs and markers of metabolic status in children, this could be a reason to push for 

efforts to increase awareness of environmental health effects in a clinical setting. We hypothesize 

that oxidative stress induced by exposure to ambient air pollutants such as PM 2.5 and ozone in 

highly polluted areas in San Joaquin Valley leads to systemic inflammation and metabolic 

dysfunction. This can be gauged by an increase in biomarker levels measured in the blood of these 

school children. Evidence of a link between traffic related air pollution and these 

biomarkers would suggest that air pollution plays a contributing role to abnormal fat and glucose 

metabolism, which could then lead to increased risk of obesity and diabetes.  

 
 

METHODS 
 

Our hypothesis is that oxidative stress induced by exposure to traffic air pollutants in highly 

polluted areas of San Joaquin Valley leads to systemic inflammation and metabolic dysfunction. 

This can be gauged by an increase in CRP levels, an indicator of inflammation, and decrease in 

HDL cholesterol, a key regulator in normal metabolism, measured in the study cohort. Evidence 

of a link between traffic-related air pollution and these biomarkers would suggest that air pollution 

plays a contributing role to abnormal fat and glucose metabolism, which may then lead to increased 

risk of obesity and diabetes. 

 

Study population 

 

         The data for this analysis comes from the Children’s Health and Air Pollution Study 

(CHAPS), which is assessing the impact of air pollution on the health of children living in the San 

Joaquin Valley. This study population originally came from a CHAPS recruited study consisting 

of children aged 6 to 8 years enrolled in Fresno elementary schools in the Fresno Unified School 

District (FUSD) and asked to follow up with the same population two years later, which resulted 
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in the 8 to 10 year old study population for this project. Details of the recruitment of the cohort 

can be found in prior publications from the group (Mann, in press). For this analysis, there were 

218 subjects.  

 

Outcome variables 

 

HDL cholesterol was measured in mg/dL and C-reactive protein was measured in mg/L 

using standard clinical laboratory techniques. In order to minimize participant burden and 

maximize study participation, the study’s selection of biomarkers did not require children to fast 

before visit and blood draws.  Initially, we planned to also assess urinary 8 isoprostane, a marker 

for oxidative stress; however, due to COVID-19, analyses of the samples were suspended and the 

isoprostane data set is limited to only 55 subjects, so this thesis will only include analysis of 

outcome variables HDL cholesterol and C-reactive protein. C-reactive protein was plotted on a 

histogram and found to be a skewed distribution. To normalize the distribution, CRP levels were 

transformed to logarithmic values.   

 

Exposure variables 

 

         With the goal of measuring individual exposure, ambient air pollution exposure levels were 

used as a proxy to gauge each household’s exposure. The project used an Aethalometer, 

specifically model AE42 from Magee Scientific company, in order to measure levels of elemental 

carbon (EC). Ambient PAHs (polycyclic aromatic hydrocarbons) are measured by a valid data 

technique. NO2 and NOX were sent to Richmond Field Station testing facilities with special air 

quality monitors to measure air quality exposure.  Exposure was matched to households when 

participants reported their residential street address, city, and state. Each address was then 

geocoded using ESRI software or Google Earth, which links to a lifetime, residential history of 

each participant. Pollutants were measured at different time periods: 1 day, which is average 

pollutant exposure level the day of study date or office visit when participants had their biomarker 

level measured; mean week, which is average pollutant exposure the week before study date; 1, 3, 

6 month averages, which are the average exposures these number of months before study date; and 

1 year average, which is average exposure the year before study date.  
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Linear regression models 

         To quantify a relationship between biomarker levels and exposure level of air pollutants, 

regression models were conducted in the statistical programming language R version 3.6.3, using 

the packages ggplot2, gridExtra, lubridate, mgcv, ResourceSelection, tableone, tidyverse, tinytex. 

In the analysis, several parameters need to be considered as potential confounding variables: ethnic 

category, annual family income (as a proxy for socioeconomic status in this population), whether 

the child lives with a smoker, physical activity, and seasonality changes (Figure 1). This data was 

collected when each participant was interviewed with a detailed, structured health and general 

history questionnaire upon arriving at the study center. For the outcome variable HDL cholesterol, 

a generalized additive model was used, which is essentially a form of a linear regression in which 

the seasonality variable was related to the outcome via a smooth function, rather than a line. The 

strength of the associations between measured covariates (race/ethnicity, annual family income, 

household smoking, physical activity) were also included in the generalized additive models as 

linear terms. For outcome variable CRP, rather than utilizing the numerical lab value of CRP level, 

we converted the CRP into a binary variable of either above limit of detection or below limit of 

detection, because it is normal for children to be below the limit of detection, without seasonality 

effects expected. The binary CRP level was analyzed in a linear regression model and the estimate 

is an odds ratio of getting a CRP above limit of detection reading. A Hosmer-Lemeshow test, a 

goodness of fit test for logistic regression, was conducted to test how well data satisfies model 

assumptions. If the Goodness of Fit test has a p-value less than 0.05 it means the model does not 

fit well, indicating that the assumptions of the model would be violated. Almost all logistic 

regression models for outcome variables have p-values above 0.05, which suggests that the model 

does fit well. The other covariates as mentioned above (race/ethnicity, annual family income, 

household smoking, physical activity) were included in the regression model.  
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RESULTS 
 

Study population 

 

The study cohort consists of 218 children. 46.8% of the sample is female, and 81.7% is 

Latinx. This is a sample with low socio-economic status overall; nearly 76% of the study 

population consists of participants from a family of <$15,000 annual household income, and 70% 

of the study population do not own a home (Table 1).  

  

Figure 1. DAG (directed acyclic graph). This is the DAG for our regression model. Covariates variables to 
include in the regression model were determined using a directed acyclic graph.  
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Outcome variables 

 

HDL cholesterol levels in our sample were normally distributed with a median of 50 mg/dL 

(normal value for children is >45 mg/dL) and C-reactive protein levels were generally low but 

with a long right tail in the distribution (Quest Diagnostics). Because the normal value for CRP in 

kids is below the limit of detection (0.3 mg/L) (Quest Diagnostics), CRP lab values were used as 

below the limit of detection (n=76) and above the limit of detection (n=108) (Table 1).  

 

Exposure variables 

 
Table 2. Summary characteristics of air pollution exposure data. Median, 25th percentile, 75th percentile 
for pollutant exposures (NO2, NOX, PAH245, EC) 
 

Table 1. Socio-demographic characteristics of 7-year old cohort. Characteristics include the children’s activity level, 
BMI, and their mother’s highest level of education  
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The highest median exposure was 15.59 ppb of NOx from the 1-year average estimate 

(Table 2). Amongst the pollutants, there is most variability in the NOX exposures with a standard 

deviation of 11.35. In general, there is less variability with longer exposure windows (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution of air pollution exposure data. As a representative example of exposure data, NO2 
exposure (ppb) was plotted on histograms. Each exposure pollutant was plotted with 6 representative lag times: 
1 day average, 1 week average, 1 month average, 3 month average, 6 month average, and 1 year average.  
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Linear regression models 
 

In this cohort, exposure to NO2 was consistently associated with decreases in measured 

HDL, with the largest effect seen in 3-month average exposure (median = -15.4 mg/dL decrease 

per IQR increase in NO2, 95% confidence interval -27.4, -3.4) (Table 3). Though not all exposure 

windows reached statistical significance, there was a consistent pattern of decreased HDL with 

increased NO2 exposure, NOX exposure, PAH456 3-month, 6-month, and 1-year exposure, and 

EC 3-month, 6-month, and 1-year exposure. The estimate of change (the absolute difference) in 

the HDL cholesterol outcome per interquartile range increase of the pollutant were adjusted for 

whether or not the child lives with a smoker, whether or not the child is Latinx, physical activity, 

household income and a smoothed term for the day of the study (Table 3).  

 Table 3. HDL cholesterol generalized additive model regression analysis output. Result estimates are the 
change of HDL cholesterol values (in units of mg/dL) per intra-quartile range of the pollutant. The threshold for 
significance is p <0.01. P values below this threshold have been italicized. 
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For C-reactive protein, no significant association was found with exposure pollutants, but 

a consistent pattern of increased odds ratio of detectable CRP with increased NO2 1-month, 3-

month, 6-month, and 1-year exposure, NOX 1-day, 1-month, 3-month, and 6-month exposure, 

PAH456 exposure for all time windows, and EC 6-month exposure (Table 4). The odds ratio for 

having a detectable CRP value comparing children whose pollutant values are one interquartile 

range higher were adjusted for whether or not the child lives with a smoker, whether or not the 

child is Latinx, physical activity, and household income (Table 4). 

 

 

To compare the effect of estimates across pollutant time exposure, changes in HDL 

cholesterol were presented as estimates of 95% confidence interval for an interquartile change in 

each pollutant (Figure 3). Estimates of CRP are presented as odds ratio of having a CRP above the 

detection level (Figure 3). In general, the variability in confidence intervals is larger in exposure 

Table 4. C-reactive protein linear regression analysis output. Results are the estimate of change in the outcome 
(the odds ratio of getting a CRP above limit of detection reading) per intra-quartile range of the pollutant. The 
threshold for significance is p <0.01.  
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time frames that are longer. For instance, in HDL cholesterol outcomes, the pattern of exposure of 

NO2 has less variability in smaller time exposure windows (1-day and 1-week).    

 

 

  

Figure 3. Estimates of HDL cholesterol change (left) and odds ratio of getting detectable CRP level (right). Red 
error bars indicates 95% confidence intervals and estimates are plotted across 6 time frames. * = indicates significant p-
value 
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DISCUSSION 

 

In this well-characterized 9-year old child cohort, traffic-related air pollution (TRAP) was 

associated with HDL cholesterol, a biomarker of metabolic dysregulation. There is a significant 

association between HDL cholesterol and NO2 exposure in the prior day, and a pattern of results 

that suggest that NO2 may be associated with HDL cholesterol levels across longer time frames as 

well. Of the pollutants assessed, NO2 had the largest effect on HDL levels.  The estimated changes 

in HDL levels with NOX exposures were also negative, though with confidence intervals that 

crossed the null. No trend of decreased HDL cholesterol was observed for PAH456 exposure. For 

EC exposure, at longer time frames (3-month average and longer)), there is a nonsignificant trend 

of decreased HDL. These results suggest that there is some association between traffic-related air 

pollution and decreased HDL. 

For C-reactive protein, none of the exposure pollutants showed significant association. 

However, results across all pollutants suggest that those with higher pollutant exposure may have 

slightly increased odds of detectable CRP levels. These findings suggest that TRAPs may be 

associated with lower HDL levels and a higher odd of a detectable CRP. This set of findings is 

consistent with previous literature that suggests air pollution can lead to damage of airways lung 

cells that triggers a local inflammatory response, resulting in cytokine release that spills over to 

the circulatory system (Haberzettl et al. 2016, Miller et al. 2012). In turn, these sites of heightened 

vascular inflammation are the source of several chronic disorders, including metabolic dysfunction 

that can contribute to metabolic syndrome or type II diabetes (Hussain et al. 2016). Additionally, 

lack of protective measures to act against excess reactive oxygen species (ROS) produced by 

oxidative stress and inflammation can lead to damage of important cellular molecules, such as 

lipids including HDL cholesterol (Hussain et al. 2016). 

 

Limitations and Future Direction 

 

There are several strengths of this research study, including the comprehensive and high-

quality exposure data, a careful outcome assessment of biomarkers, and a highly exposed study 

population of vulnerable children of color. On the other hand, some weaknesses include the study 

being a cross sectional analysis, which makes it difficult to assess causality, and the study 
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population is a relatively small sample size. It is possible that our participants are from a small 

area, the part of Fresno served by FUSD, and for this reason seasonal and spatial variability may 

not be enough to detect association. Additionally, using ambient exposure matched to household 

and street address as a proxy for individual exposure may contain some estimation error.  

Some inconsistencies in data are present in NO2 1-month exposure analyses with outcome 

variable HDL cholesterol. The NO2 1-month exposure estimate for change in HDL cholesterol is 

close to the null and the confidence interval spans the null. This could be due to lack of variability 

in exposure or due to physiological factors that influence the outcome, since a 1-month period is 

neither acute nor chronic exposure. Another explanation would be if NO2 1-month exposure was 

not variable enough, but looking at the histogram of exposure, the data is fairly variable (Figure 

2), so it is most likely due to degree of exposure.  

Future directions include possibly conducting a prospective cohort study of following the 

data from the 7-year-old children to the 9-year old data set, looking at the same biomarkers of 

metabolic dysregulation, HDL and CRP. This could help provide a longitudinal view of air 

pollution exposure in a two-year time frame to investigate the effect of even longer exposure on 

the study cohort. We also plan to include urinary 8-isoprostane as a marker of oxidative stress in 

our final analyses when writing the manuscript for a paper that the group plans on submitting to a 

publication journal, and adding more exposure pollutants, including PM2.5, PM10, CO and O3.  

Overall, our results support the hypothesis that acute exposure to TRAPs primarily impacts 

inflammation that can affect metabolic dysfunction, including in young children. Low-grade 

systemic inflammation is associated with metabolic syndrome and is an important factor in 

instigating premature atherosclerosis (Marsland et al. 2010). For this reason, it is crucial to 

consider these obesity and metabolic indicators in children, as early life exposure to ambient air 

pollution has observed associations with later-life cardiometabolic disease (Fleisch et al. 2017, 

Park 2016).  
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