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ABSTRACT 

 

California's ecosystems are facing longer fire seasons and warming temperatures that increase fire 
potential. Understanding the distribution of fuel loads and how fuel types and quantity interact to 
influence fire behavior could help managers devise fuel management strategies to effectively 
maintain ecosystem health. In this study, I aimed to determine how fuels influence fire size in 
different California ecoregions. I used ArcGIS Pro and Python to determine the spatial distribution 
of fuels in California’s 13 ecoregions from 2001-2015. Next, I evaluated the trends in fuel density 
through time, and finally I evaluated the relationship between fuel density and fire size. The 
forested ecoregions contained the greatest average fuel density across the 1 hour, 10 hour, and 100 
hour fuel classes and there was a statistically significant (p < 0.001) difference between the 
forested and non-forested fuel classes. Average fuel density and burn area were not correlated for 
any fuel classes (1 hour R2 = 0.002; 10 hour, R2 = 0.0002; 100 hour, R2 = 0.0003). Fuel loading 
decreased over time and year had no impact on the relationship between fuel and fire size. Fuel 
loading has been suggested as a key contributor to the severity of California wildfires yet my study 
did not conclude a clear relationship between fuels and fire size. This can be attributed to the 
complexity of wildfires. Additional research on the interactions between fire regime variables is 
necessary to fully understand the implications of fuel distribution across the state.  
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INTRODUCTION 

 

Global climate change is causing increased wildfire severity worldwide (Harvey 2016). 

Locally, California ecosystems are facing longer fire seasons and warming temperatures that 

increase fire potential (Liu et al. 2013). This acceleration in fire severity was demonstrated in the 

2017 Tubbs Fire, the most destructive fire in California history, which killed 22 people and 

destroyed 5,636 structures (Herring et al. 2020). In 2018, the Camp Fire, which caused 85 deaths 

and destroyed 19,000 structures, surpassed the Tubbs fire and became the most deadly and 

destructive fire in California history (Herring et al. 2020). The 2020 fire season followed the same 

trend. The August Complex fire spanned seven counties, burned 1,032,648 acres, destroyed 935 

structures, and resulted in one death (CAL FIRE 2021). Area burned and the length of fire seasons 

are projected to significantly increase by mid-century (Yue et al. 2013).  

The behavior of wildfire is influenced by three key factors with different temporal 

properties: topography, fuels, and weather (Belongie and Minnich 2018). Topography is 

considered stable because it does not change over short time periods and weather is considered the 

most dynamic because it changes frequently and can vary greatly over landscapes (Belongie and 

Minnich 2018). Fuel impacts are dictated by the fire adaptations of vegetation and the spatial 

distributions of fuel quantity, structure, and flammability (Stephens et al. 2018). Because many 

variables influence fire, it is a challenge to predict the effects of climate change and human 

influence on California’s varied fire regimes. 

Fuels are a key factor that influence fires. They are the focus of current fire management 

strategies due to their ability to limit fires and the success of management procedures at directly 

altering fire regimes. Key components of fuel loads include fuel type (surface, ladder, or crown), 

fuel quantity, and the size of fuels (Stephens et al. 2018). Furthermore, surface fuel moisture is 

dictated by timelag theory, the time it takes for two-thirds of fuel to respond to atmospheric 

moisture (Bradshaw et al. 1984). Fuels are classified based on size because the proportion of fuel 

exposed to the atmosphere is related to the surface area to volume ratio (Bradshaw et al. 1984). 

Small fuels have a high surface area to volume ratio and dry out quickly whereas large fuels have 

a low surface area to volume ratio so the fuel piece dries out more slowly (Bradshaw et al. 1984). 

The timelag fuel classes are grouped based on how quickly they can respond to atmospheric 

conditions. These classes are 1 hour fuels (less than .25 inches in diameter), 10 hour fuels (between 

https://www.zotero.org/google-docs/?nXPQWf
https://www.zotero.org/google-docs/?azIECN
https://www.zotero.org/google-docs/?vcv0ZQ
https://www.zotero.org/google-docs/?iBalp7
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.25 and 1 inch in diameter), and 100 hour fuels (between 1 and 3 inches in diameter) (Bradshaw et 

al. 1984). Ultimately, understanding the distribution of California’s fuel loads and how fuel types 

and the quantity of fuels interact to influence fire behavior can help managers adjust fuel 

management strategies to more effectively maintain ecosystem health. 

Fire regime variables interact throughout California’s ecosystems creating a varied 

landscape of wildland fire. Seven attributes are proposed to classify fire regimes including 

seasonality, fire return interval, size, spatial complexity, fire intensity, severity, and type (Sugihara 

et al. 2018b). Fire size is a spatial fire regime variable that measures the unburned and burned area 

within a fire perimeter (Sugihara et al. 2018b). The size of a fire is determined by fuel continuity, 

site productivity, topography, weather, and fuel conditions (Sugihara et al. 2018b). Fire size 

attributes differ throughout California and are linked to the status of fuel loads. In this study, I will 

assess the fire regime attribute fire size. To better help California prepare for future disturbances, 

it is critical to understand the variables that influence fire behavior. 

This study aims to determine how fuels influence fire size in different California 

ecoregions. I aim to answer: (1) What is the spatial distribution of surface fuel loads in each 

ecoregion? (2) Is fuel density changing over time?, and (3) What is the relationship between fuel 

density and fire size?. I expect to find that the fuel density will be significantly different across 

ecoregions. The ecoregions with larger burned areas will have a greater average of tons per acre 

of surface fuels and that fires will decrease fuel density over time.   

 

METHODS 

 

Study site  

 

California is divided into diverse ecoregions and within many of these ecoregions, fire 

provides an important service. These regions include Cascades, Central Basin and Range, Central 

California Foothills and Coastal Mountains, Central California Valley, Coastal Range, Eastern 

Cascades Slopes and Foothills, Klamath Mountains/California High North Coast Range, Mojave 

Basin and Range, Northern Basin and Range, Sierra Nevada, Sonoran Basin and Range, Southern 

California Mountains, and Southern California/ Northern Baja Coast (Table 1) (Griffith et al. 

2016). I grouped the ecoregions into three groups (forest, oak woodland/chaparral, and 

https://www.zotero.org/google-docs/?etKuIY
https://www.zotero.org/google-docs/?etKuIY


Sarah L. Hettema  Fuel and Fire in California’s Ecoregions Spring 2021 

4 

grassland/desert) based on their dominant vegetation types. Throughout this varied landscape, 

approximately 54% of the state requires fire to maintain the health of vegetation (Sugihara et al. 

2018a).  
 

Table 1. Ecoregion groups. Three ecoregion groups determined by dominant vegetation type.  
 

Ecoregion Group Ecoregions  

Forest 1 - Coast Range (CR), 4 - Cascades (CAS), 5 - Sierra Nevada (SN), and 8 - Klamath 
Mountains (KM) 

Oak Woodland/ 
Chaparral 

6 - Central California Foothills and Coastal Mountains (CCFCM), 9 - Southern California 
Mountains (SCM), and 13 - Eastern Cascades Slopes and Foothills (ECSF) 

Grassland/Desert 2 - Central Basin and Range (CBR), 3 - Mojave Basin and Range (MBR), 7 - Central 
California Valley (CCV), 10 - Northern Basin and Range (NBR), 11 - Sonoran Basin and 
Range (SBR), and 12 - Southern California/Northern Baja Coast (SCNBC) 

 
 

Data selection   

 

For this study, I used an ecoregion shapefile developed by the U.S. Geological Survey 

(USGS) and partner organizations (Figure 1, Griffith et al. 2016). I characterized the relationships 

between fuels and fire size within California's 13 ecoregions, and aggregated to the groupings in 

Table 1, because LANDFIRE fuels data (described below) is more accurate on a large scale 

(Ottmar et al. 2007).    

https://www.zotero.org/google-docs/?T8uspH
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Figure 1. Ecoregion map. 13 ecoregions used in this study (Griffith et al. 2016). Forest ecoregions: 1-Coast Range 
(CR), 4-Cascades (CAS), 5-Sierra Nevada (SN), and 8-Klamath Mountains (KM). Oak woodland/chaparral 
ecoregions: 6-Central California Foothills and Coastal Mountains (CCFCM), 9-Southern California Mountains 
(SCM), and 13-Eastern Cascades Slopes and Foothills (ECSF). Grassland/desert ecoregions: 2-Central Basin and 
Range (CBR), 3-Mojave Basin and Range (MBR), 7-Central California Valley (CCV), 10-Northern Basin and Range 
(NBR), 11-Sonoran Basin and Range (SBR), and 12-Southern California/Northern Baja Coast (SCNBC).  

 

In this study, I analyzed fuel and fire size data. For fuels data, I used the California Air 

Resource Board (CARB) (Table 2) annual fuel density rasters (Foster et al. 2019). These data are 

based on LANDFIRE Fuel Characteristic Classification System (FCCS) developed by the 

Wildland Fire Science, Earth Resources Observation and Science Center, U.S. Geological Survey 

(LANDFIRE 2020). FCCS includes calculations of fuelbeds, a measure of physical characteristics 

and potential fire behavior, and was developed by compiling published literature, fuel photo series, 

other fuels data sets, and expert opinion (LANDFIRE 2020). The CARB fuelbed data contains six 

horizontal fuel layers (canopy, shrub, non-woody vegetation, woody fuel, litter/lichen/moss, and 

ground fuel), taken from the LANDFIRE Existing Vegetation Type (EVT) layer, which are further 

classified into 1 hour, 10 hour, and 100 hour categories to represent the complexity of wildland 

fuels. Because the CARB data use qualitative classifications, which limits its accuracy compared 

to quantitative data, it is recommended for use on larger scales because it has limited accuracy for 

local assessments (Ottmar et al. 2007).  

https://www.zotero.org/google-docs/?MMldh9
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For fire size data, I used the Monitoring Trends in Burn Severity Project (MTBS) (Table 

2) dataset, which includes the burn severity and extent of fires larger than 1000 acres (400 hectares) 

in the western United States from 1984 to the present (Eidenshink et al. 2007).  The project was 

started in 2005 and is conducted by the U.S. Geological Survey Center for Earth Resources 

Observation and Science (EROS) and the USDA Forest Service Geospatial Technology and 

Applications Center (GTAC) (Eidenshink et al. 2007).  

 
Table 2. Summary of data used for analysis.   
 

Layer Variables Reference 
Ecoregions of California California ecoregion boundaries Griffith, G. E., J. M. Omernik, 

D.W. Smith, T. D. Cook, E. Tallyn, 
K. Moseley, and C. B. Johnson. 
2016. Ecoregions of California: 
U.S. Geological Survey. Accessed 
15 November 2020 at 
http://ecologicalregions.info/htm/ca
_eco.htm. 
 

California Air Resources Board 
(CARB) - Fuel Characteristic 
Classification System (FCCS)  

Surface fuels –  
1 Hour, 10 Hour,  
100 Hour fuel density (tons/acre) 

Foster, D., B. Collins, and S. 
Stephens. 2019. Final Report for 
15-AQP007:33. California Air and 
Resources Board. University of 
California, Berkeley, California, 
USA.  
 

Monitoring Trends in Burn Severity 
project (MTBS) 

Fire Size – total acres burned 
(acres) 

Eidenshink, J., B. Schwind, K. 
Brewer, Z.-L. Zhu, B. Quayle, and 
S. Howard. 2007. A Project for 
Monitoring Trends in Burn 
Severity. Fire Ecology 3:3–21. 

 

Data analysis  

 

To understand the spatial distribution of surface fuel loads I calculated summary statistics 

of fuelbeds in each ecoregion from 2001 to 2015. I downloaded the shapefile for ecoregions and 

TIFF files for the surface fuels data and added the raster and vector data layers to ArcGIS Pro. I 

then reprojected all layers to the same coordinate reference system (CRS), Albers Conic Equal 

Area. After confirming all layers were in the same projection, I joined the fuelbed loading table to 

match the corresponding raster value. Next, I split the ecoregion shapefile into 13 separate layers 

and clipped the fuel raster to each ecoregion. I exported the attribute tables from all 13 ecoregions 

for each fuel raster from 2001 to 2015.  

https://www.zotero.org/google-docs/?Ukjci3
https://www.zotero.org/google-docs/?LcudkN
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I completed my analysis in Python by reading in each table and compiling the data into one 

data frame using pandas (McKinney 2010). To normalize the size of the ecoregions, I created an 

average fuel density metric by dividing the fuel amount by the area of each ecoregion. I used an 

independent t-test to determine if there was a significant difference between forested and non-

forested ecoregions. For the t-test my null hypothesis was there is no difference in the mean fuel 

density between forested and non-forested ecoregions and the alternative hypothesis was there is 

a difference in the mean fuel density between forested and non-forested ecoregions. I used the 

scipy.stats package to determine the t-statistic and p-value for the t-test (Virtanen et al. 2020). I 

plotted the fuel density data using plotnine, a python graphing package based on ggplot2 (Kibirige 

2021). 

To determine the relationship between fuel density and fire size, I used the spatial 

distribution of fuel density and fire size data to better understand fire size over the landscape. I 

added the MTBS shapefile to ArcGIS Pro and reprojected the CRS to Albers Conic Equal Area. I 

then used the Clip Raster by Polygon tool to clip the MTBS layer to the extent of California and 

created a new layer that included only the fires from 2001-2015. I then used the Spatial Join tool 

to add the ecoregion location to each fire. For each year, I further subset the fires to include fires 

that started in the same year.  

Next, I clipped the fuel raster to the subset fire layer. Because the fuel data account for the 

disturbances that occurred in the same year, the fuel raster was offset by one year from the fire size 

data (ie. for 2002, I used 2001 fuel data and 2002 fire perimeters). I computed the mean fuel 

loading for the three fuel classes within each fire using the zonal statistics tool and joined the mean 

fuel load of each fire to the fire perimeter tables. Finally, I exported the combined fire and fuel 

data to Python and compiled all attribute tables into a comprehensive data frame. I excluded fires 

with a burn area of above 50,000 acres in my analysis. I visualized the relationship between fuel 

and fire size by creating scatter plots. I also ran a regression analysis computing the least-squares 

regression equation and R2 to determine the linear relationship between the variables using the 

sklearn.linear_model package (Pedregosa et al. 2011).  

 
RESULTS 

 

What is the spatial distribution of surface fuel loads in each ecoregion? 



Sarah L. Hettema  Fuel and Fire in California’s Ecoregions Spring 2021 

8 

 

 The forested ecoregions (Table 1) had the highest fuel densities (Figure 2, Table 3). The 

CR (1) ecoregion contained the greatest average density of 100 hour fuels (1.951 tons/acre) over 

the 2001-2015 period followed by the CAS (4) (1.603 tons/acre), KM (8) (1.428 tons/acre), and 

SN (5) (1.395 tons/acre, Figure 2). The CAS (4) had the greatest density of 10 hour fuel (1.748 

tons/acre), followed by the CR (1) (1.455 tons/acre), KM (8) (1.417 tons/acre), and the SN (5) 

(1.365 tons/acre). The oak woodland/ chaparral dominated ecoregions contained the next highest 

average 10 and 100 hour fuel densities (Figure 2, Table 3). The CCFCM (6) contained 0.352 

tons/acre 10 hour fuels and 0.418 tons/acre 100 hour fuels, SCM (9) contained 0.476 tons/acre 10 

hour fuels and 0.619 tons/acre 100 hour fuels, and ECSF (13) contained 0.352 tons/acre 10 hour 

fuels and 0.418 tons/acre 100 hour fuels. The grassland/desert dominated ecoregions contained the 

lowest fuel densities across the three fuel classes (Figure 2, Table 3). These ecoregions include 

CBR (2), MBR (3), CCV (7), NBR (10), SBR (11), and SCNBC (12). There was a statistically 

significant difference between the forested and non-forested ecoregions for all three fuel classes 

(1 hour, p < 0.001, t-stat = 6.791; 10 hour, p < 0.001, t-stat = 13.887; 100 hour, p < 0.001, t-stat = 

9.648). 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Average fuel density by fuel class for California’s 13 ecoregions. 1 hour fuel (blue), 10 hour fuel (yellow), 
100 hour fuel (grey).  Forest ecoregions: 1-Coast Range (CR), 4-Cascades (CAS), 5-Sierra Nevada (SN), and 8-
Klamath Mountains (KM). Oak woodland/chaparral ecoregions: 6-Central California Foothills and Coastal Mountains 
(CCFCM), 9-Southern California Mountains (SCM), and 13-Eastern Cascades Slopes and Foothills (ECSF). 
Grassland/desert ecoregions: 2-Central Basin and Range (CBR), 3-Mojave Basin and Range (MBR), 7-Central 
California Valley (CCV), 10-Northern Basin and Range (NBR), 11-Sonoran Basin and Range (SBR), and 12-Southern 
California/Northern Baja Coast (SCNBC).  
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Table 3. Average fuel density for 1, 10, and 100 hour fuels in 13 ecoregions. Averages computed for the 2001-
2015 period.  
 

Ecoregion 1 hour fuel 
density(tons/acre) 

10 hour fuel 
density(tons/acre) 

100 hour fuel 
density(tons/acre) 

1 - Coast Range (CR) 0.466928 1.455890 1.951268 

2 - Central Basin and Range (CBR) 0.076147 0.179660 0.284453 

3 - Mojave Basin and Range (MBR) 0.074289 0.146259 0.016720 

4 - Cascades (CAS) 0.507037           1.748633           1.603653 

5 - Sierra Nevada (SN) 0.409609           1.365144           1.395988 

6 - Central California Foothills and Coastal 
Mountains (CCFCM) 

0.264256           0.389429           0.543982 

7 - Central California Valley (CCV) 0.124403           0.178433           0.228040 

8 - Klamath Mountains (KM) 0.465428           1.417144           1.428170 

9 - Southern California Mountains (SCM) 0.296906           0.476442           0.619096 

10 - Northern Basin and Range (NBR) 0.033467           0.054452           0.110589 

11 - Sonoran Basin and Range (SBR) 0.051305           0.094968           0.016934 

12 - Southern California/Northern Baja 
Coast (SCNBC) 

0.136168           0.172185           0.207318 

13 - Eastern Cascades Slopes and Foothills 
(ECSF) 

0.126383           0.352863           0.418274 

 

Is fuel density changing over time? 

 

 The forested ecoregions (CR (1), CAS (4), SN (5), and KM (8)) contained the highest fuel 

density for the three fuel classes in all years during 2001-2015 period (Table 3, Figure 3). This 

was followed by the oak woodland/chaparral ecoregions (CCFCM (6), SCM (9), and ECSF (13)). 

The grassland/desert dominated ecoregions contained the least amount of fuel over the time period. 

There was a downward linear trend over all ecoregions from 2001-2008. In 2009, the KM (8) 

experienced a slight increase in 100 hour fuels (2008, 1.360 tons/acre to 2009, 1.431 tons/acre). 

From 2008-2014, the downward trend continues but in 2015 the CR (1) (2014, 0.438 tons/acre to 

2015, 0.469 tons/acre) and SCM (9) (2014, 0.247 tons/acre to 2015, 0.251 tons/acre) experienced 

an increase in 1 hour fuels, CR (1) (2014, 1.366 tons/acre to 2015, 1.444 tons/acre) and CCFCM 
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(6) (2014, 0.364 tons/acre to 2015, 0.385 tons/acre) experienced an increase in 10 hour fuels, and 

CR (1) (2014, 1.855 tons/acre to 2015, 1.933 tons/acre) and SCM (9) (2014, 0.535 tons/acre to 

2015, 0.577 tons/acre) experienced an increase in 100 hour fuels.  

 

A  

B  
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               C  

 
Figure 3. Fuel density for three fuel classes from 2001-2015. (A) 1 hour fuel density, range (y-axis) from 0 tons/acre 
to 0.6 tons/acre. (B) 10 hour fuel density. (C) 100 hour fuel density. 

 

What is the relationship between fuel density and fire size? 
 

I found that average fuel density and burn area are not correlated in any fuel classes (1 

hour, R2 = 0.002; 10 hour, R2 = 0.0002; 100 hour, R2 = 0.0003 (Figure 4).  There is not sufficient 

evidence of a relationship between fuel and fire size when looking at fires by ecoregion (Figure 

4), nor by year (Figure 5). The Sierra Nevada (5) ecoregion demonstrates this lack of relationship 

(Figure 6). In the Sierra Nevada (5), average fuel density and burn area are not correlated in any 

fuel classifications (1 hour, R2 = 0.0006; 10 hour, R2 = 0.0042; 100 hour, R2 = 0.0046) (Figure 6).  
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A  

B  

C  
 

                            
 

Figure 4. Fuel density and burn area by ecoregion for three fuel classes. (A) Regression equation for 1 hour fuel 
density vs burn area y = 6856.601x + 10245.580, R2 = 0.0020. 1 hour fuel density range (x-axis) from 0 tons/acre to 
1 tons/acre. (B) Regression equation for 10 hour fuel density vs burn area y = 544.308x + 12061.64, R2 = 0.0001. (C) 
Regression equation for 100 hour fuel density vs burn area y = 847.764x + 11768.524, R2 = 0.0003.  
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A  

B  

             C  

Figure 5. Fuel density and burn area by year for three fuel classes. (A) Regression equation for 1 hour fuel density 
vs burn area y = 6856.601x + 10245.580, R2 = 0.0020. 1 hour fuel density range (x-axis) from 0 tons/acre to 1 tons/acre. 
(B) Regression equation for 10 hour fuel density vs burn area y = 544.308x + 12061.64, R2 = 0.0001. (C) Regression 
equation for 100 hour fuel density vs burn area y = 847.764x + 11768.524, R2 = 0.0003. 
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A  

B  

C  

 
Figure 6. Sierra Nevada fuel density and burn area for three fuel classes. (A) Regression equation for 1 hour 
fuel density vs burn area y = -3416.806x + 12921.793, R2 = 0.0006. 1 hour fuel density range (x-axis) from 0 
tons/acre to 1 tons/acre. (B) Regression equation for 10 hour fuel density vs burn area y = -2408.768x + 15023.006, 
R2 = 0.0042. (C) Regression equation for 100 hour fuel density vs burn area y = -3308.870x + 16278.223, R2 = 
0.0046.   
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DISCUSSION 

 

 I found that forested ecoregions contain the greatest fuel density across the three fuel 

classes followed by chaparral/oak woodland ecoregions, and the desert/grassland ecoregions 

contained the least amount of fuel. From 2001-2015 there was an average downward trend in fuel 

density across all 13 ecoregions. Even with this decrease, fuel density and fire size do not have a 

statistically significant relationship. This lack of relationship between fuel density and fire size 

over 2002-2016 suggests that other variables are impacting fire size. Wildfire is a complex system 

with many variables and studying these variables in isolation does not result in clear relationships. 

 

What is the spatial distribution of surface fuel loads in each ecoregion? 

 

Fuel is an important driver of high severity fire in forested regions (Park et al. 2018) and 

the larger fuel classes have the potential to contribute to larger more damaging fires (Bradshaw et 

al. 1984). The forested ecoregions had the greatest quantity of 1 hour, 10 hour, and 100 hour 

surface fuels. The higher level of 10 and 100 hour fuels can be attributed to trees as the dominant 

vegetation type (Omernik and Griffith 2014). The difference in average fuel density between the 

forest and non-forested ecoregions was significant. The forested ecoregions contain a greater 

density of fuels indicating there should be a focus on managing the fuelbeds in higher density 

ecoregions (Keeley and Syphard 2019).  

 

Is fuel density changing over time? 

 

Over the 2001-2015 period, on average the fuel density decreased over time. Again the 

forested ecoregions contained the greatest fuel density for the three fuel classes followed by the 

chaparral/oak woodland ecoregions, and grassland/desert ecoregions. This is indicative of the fuel 

consumed in a fire over the time period. In other studies, a significant linear relationship between 

fuel loading and consumption of dead and downed woody material has been observed across a 

range of fire intensities (Reid et al. 2012, Clark et al. 2015, Ottmar et al. 2016). Further research 

on how surface fuels are consumed in a fire can help plan prescribed burns and improve 

understanding of fire behavior (Clark et al. 2020).  

https://www.zotero.org/google-docs/?dNFDHe
https://www.zotero.org/google-docs/?dNFDHe
https://www.zotero.org/google-docs/?3bqVPx
https://www.zotero.org/google-docs/?d89NAa
https://www.zotero.org/google-docs/?wBXKYL
https://www.zotero.org/google-docs/?eePfzU
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I did not analyze fuel density and fire area relationships in 2016, which included an increase 

in all fuel class densities across all ecoregions. This increase was likely due to mass tree mortality 

during the California drought (Fettig et al. 2019); however, because I did not include drought 

metrics in my study I am not able to draw this conclusion. Determining the relationship between 

fire regimes and ecoregions is extremely useful for land managers so they can better prepare 

California for wildfires (Bailey 2010).   

 

What is the relationship between fuel density and fire size? 

 

 Between 2002 and 2016 fire size was not limited by fuels. These results were contrary to 

my prediction that as fuel density increased burn area would increase. Recent studies show that 

extreme weather conditions can dominate the behavior of fires and heavy fuel loads do not 

determine the ultimate size of fires (Keeley and Syphard 2019). In lower elevation ecoregions with 

foehn winds, fuels are not the dominant driver of fire behavior whereas in higher elevation forested 

ecoregions fuel treatments can be an effective management strategy (Keeley and Syphard 2019). 

However, in forested ecoregions fuel treatments have yet to be deployed at an effective scale 

(Keeley and Syphard 2019). An additional study found no trends in the burned area over time but 

found an increase in the mean size of high severity burn area within fires (Rivera-Huerta et al. 

2016).  

I found that fuel and fire size do not have a significant relationship but this does not mean 

that these variables are unrelated. Fire is a complex system with many variables influencing fire 

behavior (Keeley and Syphard 2016). Studying two variables in isolation is not a holistic 

representation of a wildfire’s effect. Additional variables impact fuel including quantity, structure, 

and flammability (Stephens et al. 2018) and fire suppression has strongly impacted the quantity 

and structure of fuelbeds. Fire suppression policies started in 1904, inhibiting indigenous fire 

stewardship and leaving California ecosystems without the necessary ecosystem service of fire 

(Taylor et al. 2016). Suppression allowed for the accumulation of fuels, increased continuity of 

fuels, reduced fuel patch heterogeneity, and diminished the self-limiting effect of burns (Taylor et 

al. 2016). The diversity of California’s ecoregions brings a range of dynamics affecting the overall 

impact of fire variables across the landscape.  

 

https://www.zotero.org/google-docs/?kvIqbv
https://www.zotero.org/google-docs/?6YdQml
https://www.zotero.org/google-docs/?44YiRB
https://www.zotero.org/google-docs/?4PrUDx
https://www.zotero.org/google-docs/?bLX29u
https://www.zotero.org/google-docs/?bLX29u
https://www.zotero.org/google-docs/?ZGgOWk
https://www.zotero.org/google-docs/?jz0mkL
https://www.zotero.org/google-docs/?PLwq8I
https://www.zotero.org/google-docs/?PLwq8I
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Limitations 

  

 In this study, I used pre-collected data for my analysis. Because these datasets were 

produced for general fire research, they contribute to the limitations of this study. I used ecoregion 

borders as an approximation for fire regimes. Because of climate change and the diversity of the 

California ecosystems it may be necessary to create ecoregion borders that account for expected 

changes in vegetation that drive fire regime changes (Syphard and Keeley 2020). Having a fire 

ecoregion map that incorporates projected vegetation and other fire regime variables could lead to 

a better understanding of fuel and fire dynamics (Syphard and Keeley 2020).  

The fuel data also have limitations due to fuel classification inaccuracies (Keane et al. 

2013). Because it is difficult to scale the classification scheme across large spatial domains the 

classification struggles to differentiate fuel bed components within the fuel classes (Keane et al. 

2013). There are few projects that gather comprehensive fuel loading data despite fuel’s 

importance in determining fire behavior effects (Keane et al. 2013). The 2020 LANDFIRE remap 

has been revised with disturbances between 2010 and 2016 and is able to estimate expected 2020 

vegetation conditions (Picotte et al. 2019). The CARB project processed the FCCS data to include 

the effects of wildfire, timber harvest, and fuel treatments for 2001, 2008, and 2014 (Foster et al. 

2019). An effort to apply the CARB methods to the remapped FCCS data may yield informative 

fuel loading results. Furthermore, the fire size data only maps fires above 400 hectares and because 

of this my analysis had an artificial lower limit for the fuel and fire size analysis (Whittier and 

Gray 2016).  

Climate change and ecosystems changes are continually altering fire regime borders. 

Additionally, geospatial fuel data lacks high quality training and validation data (Keane et al. 

2013). This combination of factors highlights the fundamental flaws of using top down geospatial 

analysis to model the effects of fire. My study could be improved by addressing the limitations of 

currently available fire data and better incorporating the known variables that influence fire.   

 

Future Directions 

 

 Further research into fire regime variables and ecoregions is needed to better understand 

the interactions between variables. The first step in understanding these dynamics would be to redo 

https://www.zotero.org/google-docs/?3A4KwC
https://www.zotero.org/google-docs/?svCtXu
https://www.zotero.org/google-docs/?svCtXu
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my analysis with other databases. The 2020 FCCS remap data would provide a 2016 base map and 

with additional processing, one could compare the fuel loading from this study. Additionally, the 

CAL FIRE Fire and Resource Assessment Program (FRAP) contains fires from 1950-2001 

including sizes of 10 acres and greater from the US Forest Service, 300 acres and greater from 

CAL FIRE, and starting in 2002 fires 10 acres and greater from the Bureau of Land Management 

and the National Park Service (CAL FIRE 2017). The FRAP fire perimeters would allow for an 

analysis of smaller fires. Finally, creating a fire regime-based ecoregion shapefile that maps 

vegetation changes would add additional depth to this study by accounting for the ecosystem 

changes that have occurred in the past century.  Incorporating the amount of each fuel class 

consumed in each fire could further understanding of the spatial distribution of fuels over time.  

 

Broader Implications 

 

California fuel management is focused on prescribed burns and mechanical fuel treatments 

to decrease fuel loading because they have been found to reduce fire severity, crown scorch, and 

tree mortality (Kalies and Yocom Kent 2016). An ecosystem-based approach to current fuel 

management is essential because it would decrease tree density, increase mean canopy base height, 

and reduce surface fuels (Winford et al. 2015). Treatments that target surface fuels and tree density 

have been shown to have a positive effect on forest resilience to disturbances and stress (Winford 

et al. 2015). Fuel loading is a key contributor to the severity of California wildfires yet my study 

did not conclude a clear relationship between fuels and fire size. This indicates fire are not 

currently fuel-limited and there is substantial opportunity for large scale fuels treatments. 

Additional research on the interactions between fuels and fire regime variables is necessary to fully 

understand the implications of fuel distribution across the state.  
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