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ABSTRACT 

 

Nonpoint source pollution (NSP) is often difficult to manage because of the large amount of 
pollution sources spread out over a wide area. Nutrient NSP runoff in particular poses a significant 
risk in damaging surrounding aquatic ecosystems through eutrophication. In this paper, I modeled 
and analyzed NSP nutrient runoff for phosphorus and nitrogen within the Ala Wai watershed on 
the island of Oahu, Hawaii by creating a weighted risk map with Geographic Information Systems 
(GIS) and by performing a statistical analysis on water quality data. I then suggested potential 
control and remediation measures. I found that there were no exceedances in the acceptable water 
parameters for average values of total nitrogen ( ≥ .15 mg/L) or total phosphorus ( ≥ 0.02 mg/L) 
across the study period. However, the average values for chlorophyll a exceeded acceptable levels 
( ≥ 0.3 mg/L) for both years of the study period (2018-2019). Using the water parameter data in 
conjunction with the weighted risk map, I identified 3 neighborhoods with a high risk of producing 
high levels of nutrient NSP within the Ala Wai watershed: the Makiki, Manoa, and Palolo 
neighborhoods. Overall, I found to most effectively reduce nonpoint source runoff in these high 
risk neighborhoods, a multidimensional approach that combined policy, increased public 
education, and engineering controls was needed.  
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INTRODUCTION 

 

As the global population and overall standard of living increases, so do human activities 

and resources required to sustain such growth. These activities often produce pollution as a 

byproduct that due to factors such as improper storage, leakage over time, accidents, and 

negligence, contaminates the surrounding environment (Ballo et al. 2009). Remediating the 

damage to the environment and public health caused by pollution comes with a steep economic 

cost; it is estimated that pollution generated by the combined sectors of the United States economy 

accounts for about $184 billion worth of damages every year (Muller et al. 20011). Furthermore, 

anthropogenic pollution is a significant threat to public health and important natural resources such 

as potable water in developing and developed countries (Wang et al. 2019).  

Pollution is classified into two distinct classes based on origin. Point source pollution (PSP) 

is defined as pollution that can be traced to a single or clustered source while nonpoint source 

pollution (NSP) is defined as pollution that stems from diffuse sources over a wide area (Taebi et 

al. 2009). A classic example of point source pollution is an oil spill from a petroleum tanker sinking 

as the spill can be traced back to a single source. An example of nonpoint source pollution and the 

focus of this study is stormwater runoff, where pollutants originate from a wide area and many 

sources. Although governmental organizations can identify and penalize individual violators of 

environmental regulation, the dispersed nature of NSP makes it a challenge to regulate as it is 

difficult to assign liability to a specific party (Wang et al. 2019). Stormwater runoff from 

agricultural and urban areas are forms of NSP that are particularly detrimental to the environment. 

Because runoff pollutants such as nitrogen, phosphorus, and heavy metals can pollute groundwater 

used for drinking and bodies of water used for recreational activities, high levels of stormwater 

runoff pose a significant risk to the environment (Dillaha et al. 1989, Dwight et al. 2004).  

As the diffuse nature of NSP runoff also makes identifying and assessing the source of 

pollution in areas difficult, remote sensing and GIS can be used in conjunction with pollution 

runoff estimate models to assess high risk areas (Engel et al. 1993). For example, remote sensing 

images can be used to locate and identify agricultural zones and their proximity and elevation 

relative to surface water to predict pollutant concentrations (Wang et al. 2019). Likewise, in urban 

areas, remote sensing images can be used to classify urban infrastructure material and age, both of 

which are important factors in determining the concentration and type of urban runoff (Gromaire-
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Mertz et al. 1999). GIS software can use this geospatial data from remote sensing to generate a 

model that can identify areas that are likely to produce a large amount of NSP through a weighted 

risk analysis. The risk maps generated by this weighted risk analysis can be used to better inform 

policy decisions and remediation measures that target NSP.  

 One form of NSP that GIS and remote sensing can be used to assess is nutrient runoff, 

which is a particular environmental issue on the island of Oahu. Nutrients from runoff leaches into 

bodies of water and damages the unique aquatic ecosystems of the island (Glenn et al. 1995). The 

primary objective of this study is to delineate the best approaches to prevent nutrient runoff in 

Oahu from spreading throughout watersheds and into coastal waters. Currently, there is no modern 

geospatial model based on land use for Oahu that identifies areas with high amounts of NSP from 

stormwater runoff. With GIS, the data from the runoff model for the Oahu study site can be 

integrated with publicly available geospatial data such as land use boundaries and remote sensing 

data. I collected geospatial and water quality data from my subject areas to add to my risk map 

model. To do this, I identified areas and land uses that pose the largest risk for nitrogen and 

phosphorus runoff. I then used these classifications to generate a weighted risk map based on 

existing literature and data on the runoff risk of the respective areas. Finally, I used this risk map 

to locate areas within the study area that posed a high likelihood of producing large amounts of 

NSP. The risk maps and NSP runoff model from this study can play an important role in protecting 

Hawaii’s unique marine ecosystems from issues caused by NSP such as eutrophication and ocean 

acidification.   

 

METHODS 

 

Study site 

 

The study area chosen for this research project is the Ala Wai (Hawaiian meaning 

“freshwater way”) watershed on the island of Oahu, Hawaii. The hydraulic boundaries for the 

Oahu watersheds were determined by the Division of Aquatic Resources (DAR) of the Hawaii 

Department of Land and Natural Resources. The Ala Wai watershed has a total area of 49.1 square 

kilometers and a maximum elevation of 930 meters. The Ala Wai watershed is primarily made up 

of urban districts, with a land use breakdown of 59.1% urban, 40% conservational, and 0.9% 
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agricultural (Hawai'i Division of Aquatic Resources, 2008) (Figure 2). There are approximately 

181,288 residents living within the watershed area, according to data provided by the US Census 

Bureau in 2015.   

 

Geospatial data collection 

 

 For the geospatial data, I collected data on variables that I found through existing literature 

that had a significant impact on nutrient NSP runoff: precipitation, land use/land cover, stream 

proximity, slope steepness, and runoff curve data (Hobbie et al., 2017; Evans et al., 2002). I 

collected the necessary geospatial data from the State of Hawaii Office of Planning GIS program 

(Data Source 2), and obtained the curve numbers for each parcel from the USDA tables land use 

curve number table (USDA, 1986). This geospatial data was used as the basis for generating my 

risk assessment maps and creating the final weighted risk analysis and resulting map. 

 

Water quality data collection 

 

For water quality data, I focused on the two types of nutrient runoff that primarily causes 

eutrophication phosphorus and nitrogen. As my study is focused on how land use affects runoff 

pollutant concentrations, the geospatial and water quality data needed to be relatively recent: I 

collected data within 2 years of the start of my study. I collected total nitrogen, total phosphorus, 

oxygen concentration and chlorophyll a concentrations for coastal water quality data in my study 

area across a two year time period (2018-2019). The State of Hawaii’s Clean Water Branch 

provided the available data and the data is available for download on Hawaii’s Department of 

Health website. 

 

Site chemistry 

 

To understand the risk nutrient runoff posed for eutrophying coastal waters, I looked at the 

primary nutrients responsible for eutrophication: total phosphorus and total nitrogen 

concentrations (Ballo et al., 2009; Yang et al., 2018) . I then analyzed the relationship between the 

nutrients and chlorophyll a concentrations. To do this, I gathered publicly available coastal water 
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chemistry data from across 15 sampling points across the study site from 2018-2019, provided by 

Hawaii’s Clean Water Branch. I refined the raw data by organizing the available data, specifically 

for the total nitrogen, total phosphorus, and chlorophyll a values. I then performed a descriptive 

statistical analysis to gauge if there were any exeedences in acceptable coastal water quality 

parameters for the three variables (Hobbie et al., 2017). These water quality parameter 

exceedances were set by the State of Hawaii’s Clean Water Branch. Due to the non-parametric 

nature of the data, I then used Spearman’s rank-order correlation between the total nitrogen and 

chlorophyll a and between total phosphorus and chlorophyll a (Sánchez-Carrillo et al., 2006). I 

used the rho and p values generated from the analysis to measure if the monotonic relationships 

were statistically significant, and the gauge the strength between the relationships. 

 

Runoff pollution risk variables 

 

The geospatial analysis and mapping for this project was done using ArcMap 10.7.1 (Esri 

2020). I then input the risk variables: precipitation, slope, stream proximity, and land use/runoff 

data. For the precipitation risk map, I loaded the precipitation contour shapefile into ArcMap. 

Then, using the “Feature to Raster” tool (Esri 2020), I converted the precipitation contour into a 

raster. I added risk weight values to the precipitation raster by using the “Reclassify” tool (Esri 

2020) and generated the precipitation risk map using the original precipitation values. For the slope 

data, I loaded a digital elevation model (DEM) of Oahu and created a slope raster using the “Slope” 

tool (Esri 2020) (Ghuman et al., 2017). I then used the “Reclassify” tool to assign risk weight 

values to areas based on steepness: I assigned slopes less than 30 degrees a weight of 0, slopes 

between 30 and 50 degrees were a weight of 1, and slopes greater than 50 degrees a weight of 2. 

For stream proximity, I used the “Euclidean Distance” tool (Esri 2020) to generate a 300 meter 

buffer around the stream polygon. I then assigned risk weights using the Reclassify tool based on 

equal interval (50 meter) proximity to streams within the 300 meter buffer. For the land use risk 

map, I subdivided the watershed into parcels based on land use using the Clip Analysis tool in 

ArcGIS (Esri, 2020) and assigned each parcel a risk weight based on the Soil Concentration 

Survey’s (SCS) distributed surface runoff model for each parcel (Weng, 2001; Zheng et al., 2021). 
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Weighted risk analysis 

 

Using the rasters generated from these risk maps, I created a compound weighted risk map 

to model and predict which areas would produce the greatest amount of nutrient (nitrogen and 

phosphorus) runoff that would reach the surrounding coastal waters (Gromaire-Mertz et al., 1999; 

Lee and Bang, 2000; Taebi and Droste, 2004). This was done by using the Map Algebra “Raster 

Calculator” function (Esri, 2020) to combine the individual risk rasters into a single weighted risk 

map (Evans et al., 2002). I then used the results of the weighted risk analysis to identify 

neighborhoods within the watershed that pose a high likelihood of contributing a large amount of 

nutrient runoff to the surrounding watershed and coast (De Carlo et al., 2007). The resulting 

weighted risk analysis was then used to propose and discuss potential NSP runoff mitigation 

strategies suitable for the identified areas. 

 

RESULTS 

 

Site Chemistry 
 

 I found that throughout the two year period, there were no exceedances in the average 

levels of total nitrogen or  total phosphorus (Table 1,2). However, I found that the average levels 

of total nitrogen, total phosphorus, and chlorophyll a in the coast of the Ala Wai watershed were 

generally higher in the 2018 period than the 2019 period and the average total nitrogen level in 

2018 was not far from meeting the exceedance criteria (Table 1,2). Furthermore, the average 

chlorophyll a levels exceeded the set exceedance criteria for both years ( ≥ 0.3 mg/L) (Table 

1,2,3).  Using Spearman’s rank correlation, I also found that there was a statistically significant 

weak positive correlation between total nitrogen levels and chlorophyll a levels (rho = 0.26411, p 

= 0.00032) (Table 4). I also found that there was a significant very weak positive correlation 

between total phosphorus levels and chlorophyll a levels (rho = 0.16102, p =0.03034) (Table 5). 

 
  



Matthew I. Oh         Mitigating Nonpoint Source Pollution in Oahu                     Spring 2021 

7 

Table 1. Water quality sample results, 2018. I took a basic statistical analysis of the total nitrogen, total phosphorus, 
and total chlorophyll a levels along the coast of the Ala Wai watershed from 2018. 

 

2018 Samples Total N Total P Chlorophyll a 

 mg/L 

Mean 0.1459 0.0106 0.5632 

Minimum 0.037 0.005 0.12 

Maximum 0.487 0.038 2.61 

Standard Deviation 0.0758 0.0075 0.4780 

 

Table 2. Water quality sample results, 2019. I took a basic statistical analysis of the total nitrogen, total phosphorus, 
and total chlorophyll a levels along the coast of the Ala Wai watershed from 2019. 
 

2019 Samples Total N Total P Chlorophyll a 

 mg/L 

Mean 0.1191 0.0062 0.34222 

Minimum 0.025 0.005 0.05 

Maximum 0.229 0.034 1.69 

Standard Deviation 0.0406 0.0032 0.2329 

 

Table 3. Water Quality Parameters, Clean Water Branch. Acceptable water quality parameters for coastal waters 
provided by the Clean Water Branch of Hawaii. 
  

Water Quality Criteria Average Total N Average Total P Average Chlorophyll a 

 mg/L 

Exceedance Level 0.15 0.02 0.3 
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Figure 1. Nitrogen and Chlorophyll a scatter plot (Spearman’s rank correlation). I used Spearman’s rank order 
correlation to gauge the correlation between and significance of total nitrogen levels and total chlorophyll a levels.  
 

Table 4: Nitrogen and Chlorophyll a Spearman’s rank correlation. Correlation value and significance of total 
nitrogen compared with chlorophyll a in coastal waters.  
 

Spearman's Rank Correlation Total N vs. Chlorophyll a 

ρ (rho) 0.26411 

p value 0.00032 
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Figure 2: Phosphorus and Chlorophyll a scatter plot (Spearman’s rank correlation). I used Spearman’s rank 
order correlation to gauge the correlation between and significance of total phosphorus levels and total chlorophyll a 
levels. 
 
Table 5: Phosphorus and Chlorophyll a Spearman’s rank correlation. Correlation value and significance of total 
phosphorus compared with chlorophyll a in coastal waters.  
 

Spearman's Rank Correlation Total P vs. Chlorophyll a 

ρ (rho) 0.16102 

p value 0.03034 

 

Risk maps and weighted risk analysis 

 

 For the land use risk map, I assigned risk weights based on USGS provided curve numbers 

and land cover (Figure 3) (Appendix 1). I found that highways were highly significant in allowing 

NSP runoff to diffuse through the watershed and into the oceans and therefore assigned a 

proportionally high risk weight (w = 8) based on the curve numbers. Likewise, I assigned a 

relatively high risk weight for urban developed and residential areas based on these curve numbers 

(w = 5, 6). Conservational and undeveloped land posed little to no significant risk of nutrient NSP 

according to the curve numbers so I assigned a low weight (w = 0). For the precipitation risk map, 

I assigned risk weights based on the amount of precipitation within each parcel. I found that the 
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amount of precipitation increased toward the mountains and steadily decreased toward the coast 

(Figure 4). I found through the slope risk map that while high slope areas pose a greater risk for 

increasing NSP runoff, due to the difficulty of developing or farming on steep areas, the high slope 

areas also tended to be conservation areas (Figure 5). Finally, I assigned risk weights based on 

proximity to streams within a 300 meter buffer (within 50 meters, w = 5; 50 - 100 meters, w = 4; 

100 - 150 meters, w = 3; 150-200 meters, w = 2; 200-250 meters, w = 1; 250 - 300 meters, w = 0) 

(Figure 6).  Based on the risk factors, the completed weighted risk analysis, my model identified 

areas within the watershed that were highly likely to produce nutrient NSP from runoff (Figure 7). 

I noticed three neighborhoods within the watershed had particularly high risk weights ( ≥17), these 

were the Makiki, Manoa, and Palolo neighborhoods (Figure 8).  

 

 
Figure 3. Land use risk map. I determined the risk weights for each parcel based on land use and runoff curve 
numbers. 
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Figure 4. Precipitation Risk Map. I determined the risk weights based on precipitation curves and data provided by 
the State of Hawaii’s Office of Planning.  
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Figure 5. Slope Risk Map. I created a 10m resolution DEM slope model and added risk values corresponding to 
slope. 0-30 degree slopes were classified with a risk weight of 0, 30-50 were classified with a risk weight of 1, and 
slopes over 50 degrees were classified with a risk weight of 2. 
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Figure 6. Stream Proximity Risk Map. I generated a 300 meter buffer around existing streams within the Ala Wai 
watershed. I added risk weights based on stream proximity within this buffer: within 50 meters, w = 5; 50 - 100 meters, 
w = 4; 100 - 150 meters, w = 3; 150-200 meters, w = 2; 200-250 meters, w = 1; 250 - 300 meters, w = 0.  
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Figure 7. Final weighted risk analysis. I combined all risk variables into one weight classified raster. I identified the 
Manoa, Palolo, and Makiki neighborhoods as the highest risk for nonpoint source nutrient runoff.  
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Figure 8. Manoa, Makiki, and Palolo neighborhood boundaries. 

 

DISCUSSION 

  

These results indicate that managing NSP runoff in Oahu is a multifaceted, but critical  

challenge to overcome to keep coastal ecosystems healthy. The results of my water parameter data 

analysis of the Ala Wai revealed that NSP runoff in Oahu is an urgent matter of importance for 

maintaining the health and biodiversity of the surrounding coastal ecosystems. My risk analysis 

identified high priority neighborhoods within the Ala Wai watershed that would need a thorough 

and comprehensive NSP runoff management plan. I determined that the best NSP runoff mitigation 

plan required a varied approach of  managing stormwater, building infrastructure, and educating 

stakeholders rather than any individual approach. 
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Water Quality Parameters 

 

Total nitrogen and total phosphorus levels were shown to be weak (Nrho = 0.26411) and 

very weak (Prho = 0.16102) predictors of chlorophyll a levels (Tables 4, 5). However, given the p 

values (pn =  0.00032, pp = 0.03034 ) along with the statistically large sample size for Spearman’s 

Rank Correlation (n > 20), this positive monotonic relationship between the nutrient loads and 

chlorophyll a levels cannot be attributed to sheer chance. This suggests that total nutrient 

concentrations are linked to the amount of chlorophyll a in water, which indicates the level of 

eutrophication. Furthermore, while the data shows that average nutrient loads found in coastal 

waters along the Ala Wai watershed do not currently exceed the State of Hawaii’s Clean Water 

Branch’s acceptable coastal water quality parameters, consistent average chlorophyll a 

exceedances indicate a present threat for the surrounding coastal ecosystems (Tables 2, 3)  (De 

Carlo et al., 2007).  

Considering anthropogenic activities and urban development have been shown to be 

directly related to increased nutrient release into coastal waters, it is critical to assess the effect 

nutrient NSP has on the coastal ecosystems in islands like Oahu that are seeing increasing 

development (Weng, 2001; Lewis, 2002; Zhou et al., 2020). Coastal ecosystem diversity is 

threatened by increased nutrient loads from stormwater, which have been shown to fuel the growth 

and spread of non native algae while decreasing the abundance and diversity of native algae in 

Hawaiian coastal waters. This in turn threatens native endemic aquatic species which depend on 

the native algae. (Lapointe and Bedford, 2010).  

 Furthermore, eutrophication has been shown to compound the effects of other threats to 

coastal ecosystems.Ocean acidification and increased coral reef vulnerability to acidic conditions 

have shown to be linked to nutrient pollution and eutrophication (Laurent et al., 2018; Silbiger et 

al., 2018). Coupled with rising greenhouse gas emissions even further acidifying the oceans, these 

related issues underscores the need for the increased regulation of and careful monitoring of NSP 

nutrient pollution now more than ever. 

 

Nutrient Runoff Controls  
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 The three high risk neighborhoods (Makiki, Manoa, and Palolo) within the Ala Wai 

watershed identified by the weighted risk analysis are all known to be elevated residential 

neighborhoods with a greater than average amount of rainfall and a multitude of streams, variables 

that I identified that have a significant impact on the generation of nutrient nonpoint source 

pollution (Figures 7, 8). My risk weightings created a decently accurate map of critical nonpoint 

source pollution risk areas, but had trouble accurately mapping risk weights of minimally disturbed 

elevated watersheds, such as those near mountain streams. I believe this to be a result of streams 

being overvalued in areas minimally disturbed by anthropogenic activities. To better account for 

this I would need to create separate risk weights for streams based on the type of land use 

surrounding them.  Furthermore, my risk weight model had some trouble with underweighting 

some mid risk urban areas such as those near the Ala Wai canal as lower risk. This is likely due to 

the underweighting of the precipitation risk variables in these areas. 

 Reducing NSP runoff from these neighborhoods therefore, is critical and my analyses and 

suggested nutrient runoff management practices are designed specifically with these 

neighborhoods in mind. Because these neighborhoods are predominantly suburban, the majority 

of nutrient NSP runoff stems from anthropogenic sources (Gromaire-Mertz et al., 1999; Lee and 

Bang., 2000). The primary sources for nutrient NSP identified for residential areas include 

chemical fertilizers used in lawns and gardens, leaf litter and other decomposing vegetation, and 

human waste leaking from faulty sewage and septic systems (Xia et al., 2020; Yang and Lusk, 

2018; Kris et al., 2017). Because of the highly different natures of these sources, an optimal NSP 

runoff management plan for these neighborhoods will need to incorporate policy/regulation and 

public awareness along with engineering controls (Xia et al., 2020). 

 Across the Makiki, Manoa, and Palolo watersheds, increased regulation and maintenance 

of sewage and septic systems is needed to reduce nutrient NSP from these sources. Street sweeping 

programs that reduce the amount of dead vegetation and leaf litter should also be implemented to 

reduce nutrient runoff from those pathways (Yang and Lusk, 2018). To implement these programs 

and regulations, state policies specifically addressing NSP runoff should be created or updated. On 

the other hand, managing nutrient NSP from individual lawns and gardens would likely prove too 

challenging to regulate or enforce, public education in such issues has been proven to be more 

effective (Yang and Lusk, 2018). Furthermore, while engineering controls such as vegatative strip 

filters and porous pavement have been proven to be effective to reduce nutrient NSP from entering 
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streams and the ocean, because of the wide area the watershed encompasses and to keep costs 

relatively low they should be used sparingly across areas that pose the greatest amount of risk such 

as near streams in a residential neighborhood (Dillaha et al., 1988 Prosser et al., 2020; Zhou et al., 

2020)).  

 

Limitations and future directions 

 

Although my weighted risk analysis models areas that pose a high risk for NSP nutrient 

runoff within the Ala Wai watershed, my model is restricted by the limitations of a land based 

weighted risk analysis. One such limitation is representational accuracy: how accurate my maps 

and models are at representing real world problems through the use of objective data and my own 

subjective biases as a researcher (Malczewski, 2004). Ideally, any model would present objective 

information and data in a way that is both accurate and free of subjectivity. However, weighted 

risk analysis maps done through GIS are often intrinsically tied to the researcher's subjectivity: 

from choosing which variables and data to include to deciding how to weigh risk variables it is 

difficult, if not impossible, to completely remove subjective bias from GIS based weighted risk 

analysis. Another limitation in my risk model is the lack of other watersheds with different land 

usage across the island. While the Ala Wai watershed is predominantly developed and residential 

areas, I would have liked to have seen how my weighted risk analysis modeled watersheds with 

different/minimally disturbed land cover. This was not possible in this study because of the lack 

of available coastal water quality data from other watersheds. Furthermore, as the only consistent 

and publicly available water chemistry data was for coastal water within the Ala Wai watershed, 

my weighted risk analysis and water quality analysis was limited by a lack of water quality data 

from along streams or from runoff during stormwater events within the watershed. Therefore, to 

further this study, a more in depth analysis on the nutrient runoff process in the Ala Wai watershed 

is necessary which could be done by taking regular water quality samples along streams within the 

watershed and analyzing the data would give a more accurate picture of how and where nutrient 

NSP travels throughout watersheds in Oahu. Moreover, based on the risk maps generated by the 

current weighting systems further optimization in risk weighting each variable is necessary, 
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Broader implications 

 

Using GIS to create weighted risk maps can be extremely powerful tools in modeling and 

analyzing complex pollution systems. Because the risk weight model is designed to map areas that 

pose a significant risk of producing a large amount of nutrient NSP, it is well suited to inform 

general policy decisions and management plans over a wide area rather than for estimating 

pollutant loads. Overall, my research on NSP runoff in the Ala Wai watershed shows that there is 

currently a significant opportunity for more GIS based analysis and models when discussing and 

creating environmental policies not only in Oahu, but around the world.  
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