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ABSTRACT 

Winter cover crops are a vital part of sustainable crop systems due to their ability to improve soil 
quality, increase soil carbon sequestration, and reduce water pollution from agricultural land. 
Remote sensing offers a cost effective and efficient approach to mapping cover crop adoption on 
California’s Central Coast. Producing spatial and quantitative information on local cover cropping 
practices is necessary to inform agricultural policies and practices in the region. This study used a 
Random Forest and CART classifier with Sentinel-2 satellite imagery on Google Earth Engine to 
remotely sense cover crops in the Central Coast of California. To classify winter crop cover in the 
region and identify cover crops, normalized difference vegetation index (NDVI) was used. 
Random Forest was found to be the most accurate at detecting cover crops with an accuracy of 
86.7% compared to CART at 74.7%. A total of 72.56 km² of land was found to be cover cropped 
over the winter season, representing 4.78% of Central Coast farmland. Cover crops were classified 
with a producer’s accuracy of 61.5% and a consumer’s accuracy of 80.0% indicating a potential 
underestimation of cover cropped land. The results of this study provide important baseline data 
and monitoring methods for scientists and policy makers implementing environmental programs 
in the region. Results indicate a need for policies that reduce farmers’ risks and incentivize cover 
cropping.  
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INTRODUCTION  

 

As populations and food demand grow, sustainable alternatives to conventional food 

production are becoming increasingly important. Current intensive agricultural practices prioritize 

high yields and profitability at the cost of water quality, soil health, and carbon emissions 

(Schipanski 2014). Nitrate pollution from traditional fertilizers has polluted waterways, leached 

into freshwater drinking supplies, and led to anoxic conditions in coastal waters (Harter and Lund 

2012). Intensive, monocultural agriculture practices also lower soil’s ability to store carbon, 

resulting in reduced soil quality, and an increase in carbon emissions (Schipanski 2014). Allowing 

fields to go fallow during the winter season, which often occurs after fall harvest, exacerbates 

issues of nitrate leaching, lowered carbon sequestration, and soil health as root systems are 

removed from the soil.  

Recent decades have seen a rise in agricultural management practices that take the ecology 

of agricultural systems into account. Agroecological practices aim to minimize negative 

environmental impacts while cultivating productive cropping systems (Wezel 2013). Examples of 

agroecological practices include intercropping, crop rotation, no-till, cover cropping, and 

agroforestry. Cover cropping in particular has emerged as an agroecological practice with high 

potential to mitigate unwanted environmental impacts associated with conventional agricultural 

practices. The use of wintertime cover crops involves planting non-economic crops after fall 

harvest for the primary goal of preserving field quality (Klonsky 1994). Cover crops provide 

increased soil carbon storage, weed suppression, reductions in nitrate leaching, beneficial insect 

conservation, reduced erosion, improved soil structure, and increased organic soil-matter (Brennan 

2009, Brennan 2017, Schipanski et al. 2014). The root system and nutrient uptake of cover crops 

reduce a field’s vulnerability to leaching when winter rains fall on fields which might otherwise 

be fallow (Schipanski et al. 2014). Cover crop’s root systems also provide an important carbon 

source to bacteria, fungi, and earthworms which helps to increase soil carbon levels over time 

(Schipanski 2014). The use of cover crops support additional agroecological practices such as no-

till farming, which is put into place to reduce soil erosion and nutrient loss. Although no-till 

practices have been shown to decrease weed management and crop yield, cover crops have 

demonstrated the ability to overcome these issues when no-till farming is paired with cover 

cropping (Büchia et al. 2018). In addition to their ecological benefits, cover crops have shown to 



Jennifer Symonds                                           Central Coast Cover Crops                                                    Spring 2021 

3 

increase yields of subsequent crops, providing potential economic benefits to farmers (Schipanski 

2014, Büchia et al. 2018). Despite their innumerable benefits, farmers hesitate to implement cover 

cropping practices due to economic risk.  

 Reliable data on cover crop usage is vital to informing agricultural policies that can 

incentivize adoption. This information is also valuable to scientists looking to study the impact of 

cover cropping on pollution mitigation. The 2017 USDA Census of Agriculture estimated that 

around 5.6% of harvested land in the US overall uses cover crops, while the Central Coast in 

particular is estimated to have less than 5% of harvested land cover cropped each year (Brennan 

2017, Myers and LaRose 2017). However there is currently no published quantitative, spatially-

explicit data on cover cropping in the region, or anywhere in California. In California, fields often 

produce multiple different crops in a given year with cash crops planted over the winter season in 

addition to cover crops (Zhong 2012, Heinrich et al. 2014). This makes it extremely difficult to 

know how many farmers and exactly how much farmland utilize cover cropping in the Central 

Coast region year to year. In addition, on the ground agricultural monitoring is difficult for 

quantifying cover crops due to their short planting season, typically 3-4 months (Brennan 2009). 

Fortunately, remote sensing offers an efficient way to observe large swaths of land by using 

satellite imagery to monitor farmland (Campbell and Wynne 2011). Developing a remote sensing 

method to identify cover crops from satellite imagery provides a quick and affordable way to 

quantify cover crop extent compared to the high cost and time required of on-the-ground 

monitoring. This study will not only develop an efficient method of cover crop monitoring, but 

also provide a quantitative baseline of cover crop adoption levels in the region. This baseline 

understanding of cover crop extent in the Central Coast, vital to informing agricultural policy and 

future research, is missing from current literature.  

 This study uses remote sensing to quantify the extent of wintertime cover crops in the 

Central Coast region of California. To quantify cover crop extent I explored two sub questions. 

The first question asks what is the spatial distribution of cover crops in the Central Coast region 

over the winter 2020-2021 season? The second is how accurate are the classifying techniques I 

develop at remotely sensing cover crops on California’s Central Coast? To answer these questions 

I used Sentinel-2 satellite imagery and ground truth data to train and test a classification algorithm 

that can detect cover crops from satellite imagery of the Central Coast.  
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BACKGROUND 

 
 
California Central Coast cover cropping practices 
 

The intensive production and scale of California’s Central Coast agricultural market, 

makes the region an ideal location to study the extent of cover cropping practices. The region, 

made up of Monterey, San Benito, Santa Cruz, Santa Barbara, and San Luis Obispo counties, 

represents an over 5 billion dollar a year agricultural industry (Stuart 2008). Salinas Valley, known 

as “the salad bowl of America” stretches from Monterey to San Luis Obispo, and is a key region 

for US leafy green production (Stuart 2008). The unique cropping patterns associated with the 

region must be accounted for when designing remote sensing methods. The region's fertile land 

and mild climate make it ideal for highly productive agricultural systems, with fields typically 

producing 2-3 crops a year (Zhong 2012, Heinrich et al. 2014). Along with leafy green production, 

the region harvests large amounts of strawberries, broccoli, and winter crops such as artichokes 

and asparagus (UCCE Monterey County 2020). Typical cover crops used in the region are mixes 

of cereal rye, mustards, and legumes (Jackson et al. 1993, Brennan 2009, Heinrich et al. 2014). 

Analysis must be able to distinguish cover crops from fallow fields, as well as other crops planted 

over the winter months. Cover crops in the region are planted after fall harvest, typically around 

October/November, and are removed before the start of spring planting in February (Brennan 

2009).  

The region implements intensive and industrialized practices with crop specialization and 

high food safety standards. The intensive agricultural practices of the Central Coast region have 

resulted in detrimental impacts to local water quality from nutrient and sediment pollution. 75% 

of the land surrounding the three major watersheds of the region—the Pajaro River, Salinas River, 

and Elkhorn Slough—is used for agriculture (Stuart 2008). Nitrate from agricultural land poses a 

huge threat to local water quality from fertilizer leaching into local waterways. Nitrate leaching 

primarily occurs in the wet winter season when rain falls on nitrate rich fallow fields and carries 

the nutrients and sediment into aquifers and surface waters. When cover crops are planted, their 

root systems help prevent this leaching from occurring (Jackson et al. 1993). Ninety six percent of 

the region’s groundwater nitrate pollution comes from agricultural land, with 51% of all nitrogen 

applied in the Salinas Valley region eventually leached to groundwater supplies (Harter and Lund 
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2012). Ninety five percent of Monterey’s water supply is drawn from aquifers, which often fail 

quality standard tests for nitrate levels (Stuart 2008, Harter and Lund 2012). San Benito and Santa 

Cruz counties also rely heavily on groundwater supplies. Nitrate contaminated water has major 

environmental justice implications as well, as high water nitrate levels can lead to infant death, 

reduced cognitive functioning, and cancer for farm workers in the region (Harter and Lund 2012). 

Cover crops are a valuable tool for reducing nitrate pollution associated with agricultural land 

while maintaining crop yields (Jackson et al. 1993). Cereal cover crops in the Chesapeake Bay 

watershed successfully reduced nitrate leaching by 80%, demonstrating a 60% decrease in 

groundwater nitrate concentration over a 9 year period (Staver and Brinsfield 1998).  

Despite the success of cover crops in mitigating nitrate pollution, the Central Coast region 

still experiences low adoption of cover cropping practices (Heinrich et al. 2014, Brennan 2017). 

The high costs of land, food safety standards, and high demand associated with the commercialized 

farming practices of the region make cover cropping economically risky. One source of economic 

risk is in cover crop residue, which can be costly to clear at the end of the winter season and can 

cause delays in spring planting (Heinrich et al. 2014, Brennan 2017). Food safety concerns have 

also influenced agroecology practices in response to E.coli outbreaks in the region. Food safety 

audits have disincentivized various environmental practices, such as the use of non-food 

vegetation, which can cause farmers to lose points on safety audits resulting in fines and lost 

revenue (Stuart 2008). Non-food vegetation is discouraged due to its ability to attract wildlife 

suspected of carrying E.coli. Overall, 15% of surveyed farmers in the region have discontinued 

environmental practices in direct response to food safety pressure (Stuart 2008). It is important to 

measure cover cropping levels in order to understand how pressures such as food safety affect 

cover crop implementation.  

 

Remote sensing 

 
Satellite imagery and remote sensing are valuable resources that can be used to quantify 

regional cover cropping practices. Remote sensing involves the observation of earth’s surface from 

a distance via electromagnetic radiation (Campbell and Wynne 2011). Remote sensing is an 

extremely useful tool for agricultural monitoring as it can be used to observe large swaths of land 
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over long periods of time with high observational frequency. High frequency satellite monitoring 

is especially useful in California, where cropping patterns change throughout the year and from 

one year to the next, making ground monitoring more difficult. Normalized difference vegetation 

index (NDVI), which uses visible (red) and near infrared spectral properties to analyze vegetation 

based on chlorophyll content, is the primary indicator used in remote sensing analysis of 

agricultural fields (Atzberger 2013). NDVI measurements combined with ground truth data from 

the field can be used to identify crop types, crop biomass, cropping patterns, and ecosystem 

services such as nutrient uptake and carbon sequestration (Hively et al. 2009, Bégué et al. 2018). 

Crop classification methods can be used to distinguish between different crop types using satellite 

imagery of agricultural land (Zhong 2012).  

Studies on the remote sensing of cover crops have typically been conducted in regions such 

as Iowa, Missouri, and Pennsylvania, where economic crops are not grown over the winter season 

due to winter frost (Hively et al. 2009, Howard et al. 2012, Li et al. 2015, Seifert et al. 2018, and 

Thieme et al. 2020). Remote sensing in these regions is relatively straightforward: if vegetation is 

detected on agricultural land during winter months, it is likely to be a cover crop. In the Central 

Coast region however, a mild climate allows economic crops to be grown year-round. Non-cover 

crops found over the winter season included crops such as artichokes, kale, strawberries, and 

brussel sprouts. The presence of various winter crops required more complex remote sensing 

methods than simply sensing the presence of vegetation. Regional agricultural practices such as 

field size and short planting times, were taken into consideration within the study design.  

 
Classification models 
 
 

Several classification algorithms can be used for crop classification using remotely sensed 

data such as Random Forest, maximum likelihood, classification and regression trees (CART), 

support vector machines, or Max Entropy. Maximum likelihood classification uses parametric 

classification, which assumes normal distribution of class data (Yang et al. 2011). The other 

algorithms are non-parametric and use AI machine learning to make decisions by learning from 

the data (Ok et al. 2017). In each classification algorithm, ground truth data is used to train the 

algorithm to classify satellite imagery’s pixels into crop type. Several studies have compared 

classification algorithms for crop classification. One study looking to classify crop types in 
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Ukraine found high overall accuracies for various classifiers: CART (75%), Maximum Entropy 

(72%), and Random Forest (68%) (Shelestov 2017). Other studies show high performance with 

overall accuracies by Random Forest at 85.86% and maximum likelihood classification at 77.87% 

(Ok et al 2017). This indicates that high accuracy crop classification can be achieved by several 

different classification models. It is thus best to choose a classification algorithm that fits the study 

system and sampling constraints.   

CART algorithms use decision trees to classify data. Data is split at a parent node into two 

child nodes based on a subset of predictors chosen randomly at each node (Ok et al. 2017). Each 

child node becomes a parent node and subsequent splits are made until a terminal node is reached. 

The splits are made using the GINI index which measures the homogeneity of data (Ok et al. 2017). 

Higher GINI values indicate greater heterogeneity and lower GINI indicate greater homogeneity 

(Ok et al. 2017). Each split is made so that the child nodes have a lower GINI than the parent node. 

When GINI is 0, the terminal node has been reached and further splitting is not required. The result 

of the decision tree gives a crop type classification result for each pixel. Multiple CARTs can be 

combined into a Random Forest algorithm.  

 Random Forest classifiers use a collection of decision trees to increase classification 

accuracy. In Random Forest classification, multiple decision trees run through classification and 

return a classification result. Each decision tree “votes” with their classification result and the class 

with the most votes “wins” resulting in the pixel being assigned that class (Ok et al. 2017). In 

Random Forest classification two parameters are set: number of trees (N) and the number of 

variables used in feature selection to split each node (m) (Pal 2007). If 100 trees are generated, 

then there are 100 “votes” used to decide each pixel’s classification. During each split, a chosen 

number (m) of random features are examined to determine the split.  

 This study will compare the accuracy of a Random Forest and CART classifier in 

classifying cover crops in the Central Coast. Random Forest is an aggregate of CART results which 

can provide greater accuracy power than using a single decision tree. However the Random Forest 

model requires large amounts of training data, thus a CART classifier will be compared, given the 

constraints of ground truth collection. The Maximum Entropy algorithm will not be used as it has 

only recently been adapted as a classifier and many gaps in knowledge remain. Support vector 

machines are useful when a class’s spectral extremes are already known. Crop classification has 

not been done in the region, so class extremes are unknown, thus the benefits of support vector 
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machines are not relevant. The maximum likelihood classifier will not be used as it is not integrated 

with Google Earth Engine. Random Forest and CART were chosen due to their high accuracy in 

crop classification and availability within Google Earth Engine.  

 

METHODS 

 

Study area 

 

My study focused on cover crops within the Central Coast region of California including 

Monterey, San Benito, and Santa Cruz counties. Cover crops found in the area include cereals 

(Avena sativa L, Hordeum vulgare L. and Secale cereale L.), legumes (Pisum sativum L. and 

Vicia), radishes (Raphanus raphanistrum), and mustards (Brassica juncea, B. hirta Moench) 

(Brennan 2009). A common method of cover cropping found in the region are mixes of cover 

crops such as a grain with a legume and/or radish (Figure 1).  

 

 
 

Figure 1. Typical Cover Crop Mix Most of the cover crops I identified were a 
grain/vetch mix with either a legume or radish as seen in the image. 

 

I used crop classification methods to distinguish bare fields from the different crops planted 

over the winter season. In California, crop type can change on an annual or semiannual basis and 

agricultural fields range in size, with small parcels common in the region (Zhong 2012). A variety 

of different crops are planted over the winter season, some more common like strawberries, others 
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less common like parsley. Less common crop types such as parsley may only be planted on a few 

fields in the Central Coast, preventing the collection of enough samples to train a classifier to 

identify the crop.  

I acquired shapefiles for farmland boundaries from county offices and merged them into a 

single farmland shapefile. I limited my analysis to these farmland boundaries. San Benito 

shapefiles contained polygons for all county plots including residential and commercial properties. 

I limited the shapefile to agricultural crop land by creating a Definition Query on ArcGIS to include 

only polygons of cropland and remove grazing, commercial, and residential land. Grazing land 

was also removed from the Monterey County shapefile. The Santa Cruz County shapefile was 

already limited to crop land and did not require any preprocessing.  

 

Ground truth data collection 
 

 

I collected ground truth data points throughout the Central Coast counties of San Benito, 

Santa Cruz, and Monterey to train and test the classification algorithm. Ground truth data points 

included GPS coordinates and crop type. I used the mobile app MapPlus to take photographs of 

each ground truth point while recording GPS coordinates, capture time, and notes on crop type 

(Duwei Apps). I used GPS coordinates to match crop type from ground truth data to corresponding 

satellite imagery pixels to create training and testing points for the classification algorithms.  

I conducted sampling in San Benito and Santa Cruz Counties on January 11-12th, 2021 

and in Monterey County on January 16th-17th, 2021 before crops were removed for spring 

planting. I created random routes by generating 40 random points within each county’s farmland 

boundaries on Google Earth Engine. I then moved each point to the nearest accessible road and 

generated a route on Google Maps connecting the points. My sampling procedure involved driving 

the randomly generated routes in Monterey, Santa Cruz, and San Benito counties and identifying 

crop type from road/property boundaries and recording the information using MapPlus. I used crop 

guides from the University of California Cooperative Extension and local agricultural knowledge 

for crop identification. I gathered additional perennial crop testing points by locating perennial 

orchards on Google Maps. 
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The “Brassica” crop class was created for fields that I identified as leafy brassicas such as 

kale or cabbage, but were unable to be further distinguished. Grape vineyards were identified by 

vineyard infrastructure and recorded as “Grapes” despite being bare during the winter season. I 

recorded cover crops mixes whose parts could not be distinguished as cover crops. 

When I collected ground truth points, the GPS coordinates recorded were associated with 

the car’s location rather than the center of the crop field. I plotted each point in Google Earth 

Engine and created new points within the center of the field to create the final training and testing 

points used in classification.  

 

Classification on Google Earth Engine 

I performed my remote sensing analysis on Google Earth Engine. Google Earth Engine 

(GEE) is a free cloud based geospatial processing tool used to perform remote sensing analysis 

(Gorelick 2017). I used Sentinel-2 satellite imagery and both a Random Forest and CART classifier 

to perform my classifications of the Central Coast region on Google Earth Engine. Crop fields in 

the Central Coast can be small in size, with common satellite imagery having too course of a 

resolution to detect fields smaller than 30m² (Zhong 2012). To capture small fields, I chose 

Sentinel-2 imagery for its high spatial (10 m) and temporal resolution (5 day), ideal for capturing 

small fields and multiple dates of imagery (Sentinel-2). The spatial resolution refers to the physical 

size of each imagery pixel, while the temporal resolution refers to the frequency of imagery 

capture. The high resolution of Sentinel-2 imagery, ensures that small farming parcels down to 

10m² were properly captured by the imagery.  

The farming practices of the Central Coast made it difficult to perform a simple crop 

classification to identify cover crops. Certain crops such as parsley and carrots were uncommon 

and did not provide enough ground truth points to build a classifier that could accurately detect 

them. I performed multiple classifications to narrow cropland down as much as possible given the 

limitations of data due to the study region, and measure accuracy at each step.  

I limited analysis to the farmland boundary shape files by clipping the Sentinel-2 image 

collection to the farmland boundaries. I pre-processed satellite imagery to remove cloud cover and 

create clean images for analysis. I added an NDVI band to the Sentinel 2 image collection to allow 

for classification based on NDVI.  I used temporal aggregation to create composite images by 

combining multiple days of imagery. For my Random Forest/CART classifiers I took the median 
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pixel values of December 15, 2020 through January 15, 2021. For my threshold classification I 

took the minimum pixel values from June 15th, 2020 to January 15th, 2021.  

I used 80% of ground truth data points per class for classifier training, while the remaining 

20% were used for accuracy testing (Zhong 2012 and Shelestov et al. 2017). The number of 

training points recommended by literature is 10-30x the number discriminatory wavebands used 

in classification per class (Mather and Koch 2004). NDVI uses two wavebands in analysis, red and 

near infrared, thus at least 20-60 samples are recommended per class. For classification with NDVI 

plus blue and green bands, 40-120 samples are required per class. To create training and testing 

points I added ground truth points for each class on their own Excel sheet and randomized the 

order to determine training vs testing points. 

For my first classification I separated fields with vegetation from bare fields. For the 

vegetation class I included all crops as training data except for strawberries, as they are primarily 

covered with plastic over the winter season and have low NDVI values. Grape data points were not 

used in training, as they are bare over the winter season. I created a feature collection of the points 

randomly selected for training. I used this feature collection to train a Random Forest and CART 

classifier. I used 100 trees for the Random Forest algorithm. I ran the classifiers which produced 

maps of the region showing cropped and bare land. I clipped the classification results to the 

farmland boundaries. I then exported the classified maps as GEE assets. I used the assets to calculate 

the area of land for each class and compared the crop area and bare soil area to the total farmland 

area. I calculated areas of cropped and bare soil for each county, as well as total Central Coast 

farmland. 

I then performed a NDVI threshold classification in order to distinguish perennial crops 

from non-perennial crops. I created a minimum composite image of June 15th, 2020 to January 

15th, 2021, taking the minimum NDVI from that time period. I created an NDVI threshold of 0.2. 

Any pixels that fell below 0.2 NDVI at some point between June 15th, 2020 and January 15th, 2021 

were classified as non-perennial, while those that did not fall below 0.2 were classified as perennial. 

I used 0.2 NDVI as it is a common cutoff for differentiating between bare soil and vegetation 

(Sobrino et al 2001). If the NDVI of the pixel never dropped below 0.2, it indicates the soil was 

never bare and the pixel contained a perennial crop. The use of a threshold for classification did not 

require any training data, but I used 38 perennial and 38 non-perennial testing points. I calculated 

the area of perennial and non-perennial land from threshold classification results. I exported the 
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classification to ArcGIS where I used the “Extract by Attribute” tool to extract only the non-

perennial pixels. I then used the “Raster to Polygon'' tool to convert the classification results raster 

to a vector. I then used the non-perennial farmland vector as boundaries for subsequent 

classifications. I ran the same bare vs vegetation classification as before, this time clipping the 

classification to the non-perennial farmland boundaries. I then exported these classified maps as 

GEE assets and performed the same area calculations as the previous classification to find the area 

for non-perennial vegetation and bare land.  

I then performed a classification to distinguish non-perennial vegetation, perennial 

vegetation, strawberries, and bare fields. I used NDVI, along with blue and green bands to perform 

the classification. I performed the same classification as bare vs vegetation with the new training 

classes, and the results were clipped to the non-perennial vegetation boundaries. I calculated areas 

for each class using the same methods as previous classifications.  

For my last classification I used cover crops, non-perennial vegetation, perennial vegetation, 

strawberries, and bare field classes. I used NDVI, along with blue and green bands to perform the 

classification.  I performed the same classification as bare vs vegetation with the new training 

classes, and clipped my results to the non-perennial vegetation boundaries. I calculated areas for 

each class using the same methods as previous classifications.  

 

Accuracy assessment  

  In order to test the success of the classification algorithm at remotely sensing cover crops, 

I used testing data points to measure accuracy. I used 20% of ground truth data from each class as 

testing/validation data. I compared the results of the classification to ground truth testing data 

points in order to find the percent accuracy of each classification. I used Google Earth Engine to 

generate a confusion matrix showing overall, producer’s, and consumer’s accuracy.  

 

RESULTS 

 

Ground truth survey of Central Coast farmland 
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 I collected a total of 425 points in the ground truth survey, with 171 bare field points, 67 cover 

crop points, 178 points of various winter crops and 9 points of unidentified seedlings (Figure 1). 

Cover crops were predominantly grasses or grain/vetch/radish/legume mixes with some vetch, 

mustard, legume, and radish cover crops also recorded. 

 

 
 

Figure 2. Map of Ground Truth Data Points I collected GPS coordinates and identified crop type throughout 
Monterey, Santa Cruz, and San Benito farmland in the Central Coast of California. Crop types are distinguished by 
colors.  

 
Classification results and cropland extent  
 

I found Random Forest to have the highest accuracy for each classification (Table 1). Due 

to its higher accuracy, I used Random Forest results to calculate areas map results of each 

classification. Multiple classifications were performed to ensure an understanding of accuracy at 
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each step. Results include a Bare vs Crop classification, followed by a threshold classification 

separating out perennial land, then a Bare vs Crop vs Strawberry, and then a final Bare vs Crop vs 

Strawberry vs Cover Crop classification.  

 
Bare vs Crop classification 
 
I found a total of 496.77 km² of farmland within Monterey, Santa Cruz, and San Benito counties 

was planted with crops over the ‘20-’21 winter season, making up 32.7% of farmland (Table 2).  I 

created maps of classifier results showing the spatial extent of farmland that had crops over the 

winter season (Figure 4). Farmland in Santa Cruz County had higher levels of crop cover than San 

Benito and Monterey (Figure 3). Much of the farmland that had crop cover over the winter season 

was found in Santa Cruz County, and in the northern areas of Watsonville and Salinas. Much of 

the farmland along the Pajaro and Salinas Rivers was bare over the winter season as seen in the 

inset maps (Figure 9). San Benito and Monterey Counties had similar crop cover levels as the 

Central Coast overall (Figure 3). 

 

 
 
Figure 3. Chart of Bare vs Crop classification area per county I calculated areas for each class of Random Forest 
classification results. 
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Figure 4. Map of cropped farmland over the 2020-2021 winter season I mapped Random Forest classification 
results for Bare vs Crop. 
 
 
Perennial vs Non-Perennial threshold classification  
 
 
I found 172.63 km² of farmland in the Central Coast to be perennial farmland, representing 11.4% 

of farmland. I found 993.48 km² of non-perennial land to be bare, representing 65.4% of farmland. 

I found 351.53 km² of non-perennial land to have crop cover, representing 23.2% of farmland.  I 

created maps of classifier results showing the spatial extent of perennial crops, non-perennial 

crops, and bare farmland over the winter 20’-21’ season (Figure 10). A large portion of the land 

classified as perennial, was forested regions in the Santa Cruz and Monterey mountains that were 

included in county obtained farmland boundaries. I found Santa Cruz County to have the highest 

percentage of perennial land (23.2%) likely due to the forested mountain regions included in the 

farmland boundaries (Figure 5). This indicates that some of the perennial land is actually forested 



Jennifer Symonds                                           Central Coast Cover Crops                                                    Spring 2021 

16 

regions included in county farmland boundaries. I found large portions of perennial farmland in 

the mid and southern portions of Monterey County (Figure 6).  

Figure 5. Chart of Bare vs Non-Perennial Crop vs Perennial Crop classification area per county.  I calculated 
areas of threshold classification results.  
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Figure 6. Map of perennial vs non-perennial farmland over the 2020-2021 winter season I mapped threshold 
classification results with my Bare vs Crop classification. 

 

Strawberry vs Crop vs Bare classification 

 

I found 144.7 km² of Central Coast farmland had strawberry fields, representing 9.5% of farmland 

overall. I found 851.22 km² of bare crops, representing 56.1% of farmland. Perennial crops made 

up 172.64 km² (11.4%) of farmland, while non-perennial, non-strawberry crops made up 349.09 

km² (23.0%). I found a majority of strawberry crops to be in northern Monterey and southern Santa 

Cruz counties (Figure 8). I found a large portion of land in southern Monterey County to be 

classified as strawberry as well (Figure 8). Monterey County had the highest area of strawberry 

crops at 115.46 km², with Monterey and Santa Cruz having about equal percent of their farmland 

devoted to strawberry fields (Figure 7).  
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Figure 7. Chart of Bare vs Crop vs Strawberry classification area per county I calculated areas of Bare vs Non-
Perennial Crop vs Perennial Crop vs Strawberry Random Forest classification. 
 

 
Figure 8. Map of Strawberry classification over the 2020-2021 winter season  I mapped Bare vs Crop vs 
Strawberry Random Forest classification with threshold results.  
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Cover Crop vs Strawberry vs Crop vs Bare classification 
 
 
I found 72.56 km² of Central Coast farmland was planted with cover crops over the winter 2020-

2021 season, representing 4.78% of farmland. My findings are consistent with literature estimates 

of less than 5% of Central Coast farmland cover cropped (Brennan 2017). I found 881.78 km² 

(58.1%) was bare, 172.64 km² (11.4%) was perennial crops, and 162.67 km² (10.7%) was 

strawberry fields.  I found 227.99 km² (15.0%) of Central Coast farmland was non-perennial/non-

cover crop/non-strawberry crops such as carrots, onion, brussel sprouts, etc. Santa Cruz had the 

largest percentage of cover cropped farmland at 14.4% (Figure 9). Monterey had the largest area 

of cover cropped farmland at 44.74 km², but they only made up 4.0% of farmland (Figure 9). Bare 

fields made up a majority of farmland except in Santa Cruz where only a quarter of farmland was 

bare (Figure 9). This could also be attributed to the large area of forested land included in the Santa 

Cruz farmland boundaries that was classified as perennial (Figure 9 and 10). Cover crop plots 

tended to be grouped nearby likely due to owners applying the practice to their various fields 

(Figure 10). I found cover crop fields to be scattered throughout the Central Coast, making up a 

small minority of farmland (Figure 10).  

Figure 9. Chart of cover crop classification area per county I calculated areas of each crop class from Random 
Forest classification. 
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Figure 10. Map of cover crop classification over the 2020-2021 winter season I mapped results of Random 
Forest classification showing Central Coast cover crop distribution.  

 
Accuracy assessment 
 

I found Random Forest to have a 86.7% accuracy at detecting cover crops in the Central Coast 

(Table 6). I found the highest degree of accuracy for my Bare vs Crop vs Strawberry classification 

using Random Forest, at 93.3% (Table 6). My strawberry classification showed the highest degree 

of accuracy likely due to the inclusion of blue and green bands, and high number of training points 

for each class. Producer’s accuracy gives the probability of a ground truth point being correctly 

identified, while consumer’s accuracy gives the probability of the classified pixels actually 

representing the class (Congalton 1991). For the Bare vs Crop vs Strawberry vs Cover Crop 

Random Forest classification I found Bare and Strawberry classes to have high consumer and 

producer accuracies. Of the Cover Crop points, eight were correctly classified as Cover Crops, 
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three were misclassified as Bare, one misclassified as Crop, and one misclassified as Strawberry 

for a producer’s accuracy of 61.5% (Table 13). Only two points were misclassified as Cover Crop, 

both were crop points, with no Bare or Strawberry points included as Cover Crops representing an 

80.0% consumer’s accuracy (Table 13).  

 
Table 1.  Overall accuracy and kappa values of classification results I calculated the overall accuracy and kappa 
values for each classification on Google Earth Engine. 
 

Classification  Overall Accuracy Kappa 

Bare vs Crop - Random Forest 89.8% 0.79 

Bare vs Crop - CART 84.7% 0.69 

Perennial vs Non-Perennial Threshold 84.2% N/A 

Bare vs Strawberry vs Crop - Random Forest 93.3% 0.90 

Bare vs Strawberry vs Crop - CART 85.3% 0.77 

Bare vs Strawberry vs Crop vs Cover Crop - Random Forest 86.7% 0.78 

Bare vs Strawberry vs Crop vs Cover Crop - CART 74.7% 0.63 

 
Table 2. Bare vs Crop accuracy error matrix - Random Forest I used ground truth testing points to perform an 
accuracy assessment of classification results for the Bare vs Crop classification with Random Forest. 
 

Ground Truth Data 

  Crop Bare Total Consumer Accuracy 

Classification Crop 23 3 26 88.5% 

Results Bare 3 30 33 90.9% 

 Total 26 33 387  

 Producer 
Accuracy 

88.5% 90.9%   
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Table 3. Bare vs Crop accuracy error matrix - CART I used ground truth testing points to perform an accuracy 
assessment of classification results for the Bare vs Crop classification with CART. 
 

Ground Truth Data 

  Crop Bare Total Consumer Accuracy 

Classification Crop 23 6 29 88.5% 

Results Bare 3 27 30 90.0% 

 Total 26 33 59  

 Producer 
Accuracy 

88.5% 81.8%   

 

Table 4. Perennial vs Non-Perennial accuracy error matrix - 0.2 threshold I used ground truth testing points to 
perform an accuracy assessment of classification results for the Perennial vs Non-Perennial threshold classification. 
 

Ground Truth Data 

  Perennial Non-Perennial Total Consumer Accuracy 

Classification Perennial 26 0 26 100% 

Results Non-Perennial 12 38 50 76.0% 

 Total 38 38 76  

 Producer 
Accuracy 

68.4% 100%   
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Table 5. Bare vs Crop vs Strawberry accuracy error matrix - Random Forest I used ground truth testing points 
to perform an accuracy assessment of classification results for the Bare vs Crop vs Strawberry classification with 
Random Forest. 
 

Ground Truth Data 

  Bare Crop Strawberry Total Consumer 
Accuracy 

Classification Bare 31 2 1 34 91.2% 

Results Crop 1 24 0 25 96.0% 

 Strawberry 1 0 15 16 93.8% 

 Total 33 26 16 75  

 Producer 
Accuracy 

93.9% 92.3% 93.8%   

 

Table 6. Bare vs Crop vs Strawberry accuracy error matrix - CART I used ground truth testing points to perform 
an accuracy assessment of classification results for the Bare vs Crop vs Strawberry classification with CART. 
 

Ground Truth Data 

  Bare Crop Strawberry Total Consumer
Accuracy 

Classification Bare 26 1 1 28 92.9% 

Results Crop 5 24 1 30 80.0% 

 Strawberry 2 1 14 17 82.4% 

 Total 33 26 16 75  

 Producer 
Accuracy 

78.8% 92.3% 87.5%   
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Table 12. Bare vs Crop vs Strawberry  vs Cover Crop accuracy error matrix - Random Forest I used ground 
truth testing points to perform an accuracy assessment of classification results for the Bare vs Crop vs Strawberry vs 
Cover Crop classification with Random Forest. 
 

Ground Truth Data 
  Bare Crop Strawberry Cover 

Crop 
Total Consumer 

Accuracy 

Classification Bare 32 3 0 3 38 84.2% 

Results Crop 0 8 0 1 9 88.9% 

 Strawberry 1 0 16 1 18 88.9% 

 Cover Crop 0 2 0 8 10 80.0% 

 Total 33 13 16 13 75  

 Producer 
Accuracy 

97.0% 61.5% 100.0% 61.5%   

 
 
 
Table 13. Bare vs Crop vs Strawberry  vs Cover Crop accuracy error matrix - CART I used ground truth 
testing points to perform an accuracy assessment of classification results for the Bare vs Crop vs Strawberry vs 
Cover Crop classification with CART. 
 

Ground Truth Data 
  Bare Crop Strawberry Cover 

Crop 
Total Consumer 

Accuracy 

Classification Bare 30 3 2 3 38 78.9% 

Results Crop 1 8 1 4 14 57.1% 

 Strawberry 2 0 13 1 16 81.3% 

 Cover Crop 0 2 0 5 7 71.4% 

 Total 33 13 16 13 75  

 Producer 
Accuracy 

90.9% 61.5% 81.3% 38.5%   
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DISCUSSION 

Remote sensing classification was used to quantify Central Coast cover crop use over the 

2020-2021 winter season. I found 72.6 km² of cover crops, representing 4.78% of Central Coast 

farmland. Random Forest had the highest overall accuracy for identifying cover crops at 86.7%. 

The high accuracy of classification indicates a successful model for quantifying and mapping cover 

crops in the Central Coast region was developed. Results of this study provide an important 

baseline of cover crop adoption in the region, previously missing from literature. The study region 

presented complex challenges to traditional remote sensing methods used for cover crop 

monitoring and crop classification.  

 

Central Coast cover crop adoption levels 

 

Cover crop adoption remains low at 4.78% of farmland in the Central Coast region, 

indicating a need for policies that incentivize adoption. Results are consistent with literature 

estimates based on expert estimates of less than 5% of farmland in the region being cover cropped 

(Brennan 2017). While winter cash crops may outcompete cover crops, 58.1% of farmland remains 

bare over the winter season. These findings indicate a huge opportunity for increasing cover crop 

adoption in the region that is not being utilized. Remote sensing of cover crops in other regions 

have found greater rates of cover crop adoption. Cover crops cover 5.1%-9.4% of land in the 

Midwest, and up to 75% in certain Pennsylvania counties (Hively et al. 2015, Seifert et al. 2018).  

Cover crops are being underutilized in the Central Coast due to several direct and 

opportunity costs for farmers. Barriers to cover crop adoption on the Central Coast involve a 

combination of economic costs, awareness, perceptions of risk, and policy programs and incentives 

(Stuart 2009). Residue management is one of the largest obstacles for farmers when implementing 

cover crops (Brennan 2017). Residue management involves clearing cover crops and/or 

incorporating them into the soil prior to spring planting (Brennan 2017). Central Coast farms often 

have multiple crops grown on a field in a given year (Klonsky et al. 1994). Adding a cover crop to 

this rotation has direct economic costs associated with planting and clearing the land. Aside from 

the direct costs, cover crops add an additional rotation on top of the 2-3 cash crops that can delay 

or prevent spring planting. This can have enormous economic implications, especially to small 
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economically constrained farmers, if cover crop management causes a subsequent cash crop to 

fail. Unpredictable rain patterns such as the 2021 atmospheric river, can also delay the clearing 

and incorporation of cover crop residue when soils are heavily saturated late in the winter season 

(Hartz and Johnstone 2006). The high land costs and intensive production of the region make these 

risks economically impractical for many farmers (Bauer 2020).  

The high food safety standards of the region also influence cover crop adoption levels. Risk 

of food safety audits have led farmers to discontinue agroecological practices such as use of non-

food crops due to economic risk (Stuart 2008). Farmers can face a huge economic loss if their 

harvest is rejected by food safety certifiers. This increases the perception of economic risk, leading 

to lowered rates of cover crop adoption. Methods of monitoring cover crop adoption, as developed 

by this study, are important for understanding how cover cropping responds to food safety events 

such as the 2006 E.coli outbreak and subsequent tightening of food safety standards. 

Santa Cruz showed the highest percentage of cover cropping at 14.4%, more than double 

that of San Benito (4.5%), or Monterey (4.0%). Santa Cruz has a much higher percentage of land 

devoted to smaller farms with diversified farming practices, than Monterey or San Benito counties 

(Klonsky 1994). Smaller, diversified organic farms are much more likely to practice cover 

cropping, than the larger conventional farms common in Monterey and San Benito counties. 

Organic farms are also less likely to discontinue conservation practices due to concerns over food 

safety standards (Stuart 2009). Larger farms, more common in Monterey and San Benito counties, 

have the highest food safety pressure due to their large retail buyers (Stuart 2009). These factors 

disincentivize larger farms from adopting cover crops, and can explain the difference in cover 

cropping levels between Santa Cruz, and San Benito and Monterey counties.  

Farmers face several competing pressures when deciding whether to adopt cover cropping 

or not. Farmers juggle soil health, environmental quality, economic viability, and food safety 

priorities when making management decisions (Baur 2020). The low levels of cover cropping 

indicate the status quo does not sufficiently incentivize cover crop adoption. Given the severity of 

nitrate pollution from the region’s agricultural practices, the risks disincentivizing farmers from 

cover cropping must be addressed for the good of public and environmental health. The low cover 

crop levels observed demand more robust policy to incentivize cover crop adoption in the region.  
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Accuracy of remotely sensing cover crops 

 

Cover crops were classified with a 86.7% accuracy using Random Forest, indicating a 

successful methodology for remotely sensing cover crops was developed. Results are comparable 

to other crop classifications which found accuracies of 68%, 78%, 84.31%, and 86% (Howard et 

al 2012, Ok et al. 2012, Phan et al. 2020, Shelestov et al. 2017). Regions where remote sensing of 

cover crops was based solely on vegetation presence found higher accuracies of 91.5% using 

Random Forest (Seifert et al. 2018). Random Forest outperformed CART in each classification, 

indicating it is the optimal classifier to use for cover crop classification in the region.  

Classification of cover crops had a consumer’s accuracy of 80.0% and producer’s accuracy 

of 61.5%. The 61.5% producer’s accuracy shows ground truth cover crop points were not identified 

with a high degree of accuracy (Congalton 1991). Three cover crop points were incorrectly 

identified as bare, likely due to low growth in the monitoring window. However, the high 

consumer’s accuracy confirms that classification accurately represents actual cover crop levels 

(Congalton 1991). Only two points were misclassified as cover crops that were not actually cover 

crops. The points were both cash crop points; no bare or strawberry points were misclassified as 

cover crops. These results indicate that while cover crop points may sometimes be misclassified 

as other classes, it is rare that another class is misclassified as a cover crop. This means that cover 

crop area is likely underestimated rather than overestimated by the classifier. 

The Bare vs Crop vs Strawberry classification had the highest accuracy of all classifications 

at 93.3% with Random Forest. The high accuracy is likely due to the large number of training 

points and inclusion of green, and blue spectral bands in addition to NDVI. The vegetation of the 

Crop class, plastic tarp of the Strawberry class, and bare soil of the Bare class gave each class 

highly distinguishable spectral properties. In contrast, the cover crop classification’s greatest 

misclassifications were between cash crops and cover crops, two spectrally similar vegetation 

classes.  

 The threshold classification had a high accuracy of 84.2% at detecting perennial farmland 

from non-perennial farmland. Perennial land was misclassified as non-perennial for 12 of the 38 

testing points, while none of the non-perennial testing points were misclassified as perennial. This 

indicates that while some perennial crops may have been included in subsequent classifications, it 

is unlikely that non-perennial crops were misclassified out. 
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Limitations and future directions 

 

The intensive farming practices of the Central Coast, coupled with a diverse array of 

possible crops including ones that overwinter, make it an exceptionally difficult region to remotely 

sense cover crops. Typical remote sensing of cover crops is conducted in regions where cash crops 

are not grown over the winter season. In these studies cover crops are identified by the presence 

of vegetative ground cover on farmland, without the need to distinguish between different 

vegetative cover (Hively et al. 2015, Seifert et al. 2018). Crop classification that distinguishes 

vegetation is typically conducted in regions already well documented by crop maps, with typically 

large and well defined field boundaries (Howard et al 2012, Li et al. 2015, Ok et al. 2012). 

Established crop maps allow these studies to gather hundreds of training points without the 

limitations of ground truth data collection. One crop classification was able to use 50,000 points 

for training and testing from crop map data of the region (Howard et al 2012). Other studies that 

rely on ground truth have similar numbers (200-500) to the 425 ground truth points collected for 

this study (Bargiel 2017). Ground truth data collection showed a variety of winter cash crops, 

however certain crops like carrots and fennel are unlikely to be planted in enough fields to generate 

the recommended 40-120 training points needed per class (Mather and Koch 2004). Due to the 

limited number of ground truth points for many of the crops, winter cash crops were grouped into 

a single class. In combining multiple crop types, the class contained a high variation of  spectral 

properties. This made distinguishing the crop class from the cover crop class more difficult for the 

classifier. The limitations of ground truth data collection also resulted in a small number of 

testing/validation points, ranging from 13-38 points. If a greater number of testing points were 

available for the accuracy assessment, a higher or lower accuracy may have been revealed. In 

addition, typical crop classification distinguishes crops based on unique NDVI values, often 

associated with phenological stages (Zhong 2012). Most cover crops found in the region were a 

combination of a grain with a legume and/or radish. The combination of crops in cover cropped 

fields makes distinguishing by phenological NDVI patterns more difficult. Meanwhile certain 

brassicas may be planted as both a cover crop and a cash crop depending on the field. In this case 

the crop could be distinguished, but it would not be known if it was planted as a cash crop or as a 

cover crop.  
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 The Central Coast also lacks accurate field boundaries, making field based classification 

more difficult. Field based classification is shown to have a higher accuracy than pixel based 

classification (Ok et al. 2012). In these studies, established field boundaries are used to classify 

whole fields, based on the average result of classified pixels in the field (Ok et al. 2012). In the 

Central Coast, even if there were accurate field boundaries already mapped, oftentimes several 

different crops are planted on one field, or only a portion of the field is used. Object based 

segmentation is a remote sensing method that can be used to detect field boundaries (Li et al. 

2015). Object based segmentation could be combined with field based classification to try and 

improve the accuracy of remotely sensing cover crops in the Central Coast.  

 While this study quantified cover crop usage in the Central Coast over the 2020-2021 

winter season, additional monitoring years can reveal adoption trends. Additional ground truth 

data would need to be collected to confirm if initial training data can be used for classification of 

subsequent years. Understanding how adoption levels change over time, especially in response to 

different policy measures and food safety incidents, can inform policy makers on how to 

incentivize cover crop adoption. 

 

Conclusion 

 

A Random Forest classifier was successfully developed to establish a baseline of cover 

crop usage in the Central Coast of California. Accuracy results confirm an efficient and accurate 

methodology for monitoring cover crop adoption was created. The baseline level of cover crop 

usage that this study established is vital for informing the region's climate management strategies. 

Regional cover crop adoption levels were previously unknown, with only estimates and no 

spatially explicit information available. The remote sensing methods developed will allow 

progress on cover crop adoption to be efficiently tracked.  

Understanding cover crop adoption levels is extremely valuable for meeting state climate 

goals. Cover crops are considered a key management practice for their carbon sequestration 

potential (Lugato et al 2020). California’s 2030 Natural and Working Lands Climate Change 

Implementation Plan calls for an increase of land management practices that increase carbon 

sequestration potential in order to meet state carbon neutrality goals (CARB 2019). Farm 

management practices, including cover crops, are funded through the state’s Healthy Soils 
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Program to implement the plan’s soil conservation objectives. The plan includes a goal of 

increasing the amount of farmland covered by the Healthy Soils program by 5x the amount of 

acres currently covered (CARB 2019). The baseline 72.56 km² of cover cropped land established 

by this study is pertinent to evaluation of the Natural and Working Lands Climate Change 

Implementation Plan’s objectives. The plan includes specific goals of increasing cover cropping 

in California by 10,400-20,800 acres each year (CARB 2019). The Central Coast’s progress will 

be key to meeting this goal. Without an efficient method of monitoring cover crop adoption, these 

state goals cannot accurately be tracked. The plan acknowledges the continued need for developing 

improved monitoring tools. Results of this study provide an accurate cover crop monitoring 

method to track the objectives of the state’s Natural and Working Lands Climate Change 

Implementation Plan. 

In addition to carbon sequestration, the results of this study will be valuable for tracking 

various environmental goals for the region, such as nitrate pollution and soil erosion. Incorporating 

cover cropping into yearly crop rotations is vital to the sustainability of a productive system. 

Despite their numerous benefits, cover crop levels remain low at 4.78% of Central Coast farmland. 

Without a method of tracking cover crop adoption, previous efforts have had limited data for 

understanding how to increase and monitor cover cropping. The results of this study provide 

important data for scientists and policy makers hoping to increase, incentivize, and monitor cover 

crop adoption.  
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