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ABSTRACT 

 

Mountain snow is a virtual reservoir that stores and releases water, and mountain snow can provide 
essential water resources for local agriculture. For areas where droughts often occur, water melting 
from mountain snow has become a very valuable resource for the local farms and ranches 
(Margulis 2016). However, this water resource is highly seasonal and closely connected to the 
timing of summer and winter, and also to natural disasters such as fire. The primary research 
objective behind this study is to find how the megafires would impact the snow cover in the Sierra 
Nevada mountain range in California, US. Specifically, I want to research whether the melt 
durations of snow changed in the Sierra Nevada from 2000 to 2016 and whether the severity of 
megafires relate to the changes of landscapes of snow cover in the Sierra Nevada during that time. 
I found that the melt duration decreased and with major drops in year with long periods of wildfires. 
Moreover, the average Snow Water Equivalent value were lower when the fire was more severe, 
indicating a negative correlation between these two factors. Overall, my study indicates that 
wildfires have brought many negative effects on the snow cover in Sierra Nevada. 
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INTRODUCTION 

 

Mountain snow is a virtual reservoir that stores and releases water, and mountain snow can 

provide essential water resources for local agriculture. For areas where droughts often occur, water 

melting from mountain snow has become a very valuable resource for the local plantations and 

ranches (Margulis 2016). However, this water resource is highly seasonal and closely connected 

to the timing of summer and winter. In normal situations, when a certain region enters summer, 

mountain snow will melt, and the water will be able to irrigate lands and benefit local agriculture. 

When the region enters winter, the precipitation is stored as mountain snow as a reservoir for next 

year. But with the higher frequencies of wildfires in recent years, the amount of water from 

mountain is decreasing (Margulis 2016), which negatively impact on the local social and economic 

development. Because mountain snow is so important to the local agriculture, quantitative tools 

have been designed to observe and monitor the melting water for this seasonal storage and use 

(Bormann 2018).  

Snowpack water storage, measured as Snow Water Equivalent (SWE), is a meaningful and 

necessary index to track and predict for water resource management (Margulis 2016). SWE is a 

common measurement used by hydrologists and water managers to gage the amount of liquid 

water contained within the snowpack (Koch 2019). Most mountainous areas have a regular spatial 

and temporal pattern of SWE, but other factors slightly influence the pattern. For example, climate 

change is one main factor that influences the seasonal pattern of SWE. This change is “long-term” 

(Bormann 2018), and long time series of SWE map can be compared to capture these changes 

from the global warming accurately. For the recent ten years, the normal period of SWE is 

gradually lower than the SWE in the past due to the increasing temperatures.  

Unlike the long-term changes, sometimes a significant external disturbance, like wildfires, 

will drastically influence the ratio between water and snow, thus the SWE values in the mountain 

areas (Margulis 2016). For example, in San Joaquin watershed, in normal summers, the regional 

average SWE values are around 220-230 millimeters, which means that there is around 220-230 

millimeters of water stored in the snow cover. However, in summers with significant wildfires, the 

average SWE values are around 60-150 millimeters (DOI 2005), which has a lower range than 

normal situations. Due to the accuracy range of the measuring instruments, researchers typically 

get a value range of 170 to 200, which underestimate the true value and even not in the actual 
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range, making the further predictions much harder. Therefore, this sudden and drastic disturbance 

brings technical difficulties for researchers to observe and predict the patterns of SWE under the 

impacts from wildfires, based on previous fieldwork.  

Remote sensing technology then is a tool which can solve the aforementioned issue 

efficiently because fieldwork is both expensive in terms of time and cost. Researchers can 

manually measure the SWE by removing cores from the snowpack or installing devices that lie 

flat on the ground that weighing snow as it accumulates on top of the device (Pomeroy 1998). 

However, the researchers cannot manually measure the SWE patterns across a large area due to 

costs of time and money, and snow cover that occurs after wildfires are often in inaccessible and 

dangerous zones. Another method is to use a non-contact technology, which is named as “CS725”, 

but it must be calibrated under snow-free conditions, which also makes field observations very 

inconvenient. In contrast, remote sensing can provide high quality geospatial data on a wide range 

of snow cover. More importantly, electromagnetic radiation from and to Landsat 5-8 satellites can 

be directly converted into relevant Earth information which can be analyzed though the platform 

like Python or MATLAB (Margulis 2016). For example, daily change of SWE values in a part of 

snow cover can be analyzed to track the impacts of wildfires on the snow cover (Mathieu 2018). 

Currently, remote sensing has been used in modeling the terrestrial water cycling in mountain areas 

and assimilating data to calculate the impacts of climate changes on snow cover (Margulis 2016). 

However, this research built numerical models that predict snow with maps of forests from 

previous years. For major disturbances, such those caused by recent wildfires, much uncertainty 

and inaccuracy is introduced into the current models and previous because these disturbances make 

SWE change in a less regular pattern, making these older versions unreliable for the future. 

         Thus, the primary research objective of this study is to determine how the megafires would 

impact the snow cover in the Sierra Nevada using its snow maps. To meet this objective, I identify 

two sub-questions. The first one is whether the melt durations of snow change in the Sierra Nevada 

from 2000 to 2016, and the second one is whether the severity of megafires relates to the changes 

of landscapes of snow cover in the Sierra Nevada. I expect that the melt duration will decrease and 

with major drops in the year with long periods of wildfires. Moreover, I expect that the average 

SWE value will lower when the fire is more severe. The first research objective seeks to collect 

the data of SWE in the research area (Sierra Nevada), the frequency of wildfires in the selected 
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research area, the date of each wildfire. The second research objective aims to collect the data for 

the fire severity map and the corresponding Snow Water Equivalent (SWE) in the research area.  

 

METHODS 

 

Study site description 

 

The study site is the San Joaquin watershed in the Sierra Nevada, which is in central 

California. It has a latitude range of 36° to 38° and a longitude range of -120° to -118°. It extends 

from the Sacramento-San Joaquin River Delta in the north to the Tehachapi Mountain in the south 

and from coastal regions in the west to the Sierra Nevada in the east. The watershed’s primary 

river is San Joaquin, which drains north through about half of the valley into the river delta 

(Lundquist 2003). This river is mostly for local agricultural uses and highly depends on the melting 

of the snow from the mountain top. The San Joaquin watershed is also extremely hot and dry 

during the summers, and it has experienced a severe drought from 2011 to 2017 (Margulis 2016). 

These conditions contribute to the spread of wildfires. These years, wildfires happened with high 

frequency and severity in the San Joaquin watershed, which disordered the local water cycle from 

the snow cover in mountains (Maxwell 2019).  

  

Data sources 

 

         To prepare the SWE dataset for analysis, I cleaned the dataset from Margulis Research 

Group and clipped them into the specific regions of the San Joaquin watershed in MATLAB 9.10 

(MathWorks 2020). First, I downloaded the Sierra Nevada Snow Reanalysis dataset from Margulis 

Group’s website and selected the water years from 2000 to 2015. The reanalysis’ method (fully 

Bayesian), resolution (daily and 90 m), temporal extent (31 years), and accuracy provided a unique 

dataset for investigating snow processes (Margulis 2016), so I selected this dataset as the main 

research resources. Then, I verified the data by choosing a specific water year (2010) and loading 

the data on MATLAB to see whether it works on this platform.  

To clip the dataset into San Joaquin watershed. I defined the specific latitude and longitude 

of the research region, San Joaquin watershed, to be from 36.7250° to 37.7379° and longitude 
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range of -120.3667° to -118.6542° and stored these numeric values as the maximum and minimum 

of latitude and longitude ranges. I chose this specific region because this part of the San Joaquin 

watershed has experienced several wildfires in the past, and its snow cover structure and snow 

melting timing have changed considerably as a result of these major disturbances (Margulis 2016). 

Then I applied these range values to the original dataset to clip the dataset into my research region 

in one water year. Finally, I redesigned the function to be recursive to operationalize same clipping 

analysis on the dataset of all water years. This process resulted in the ready-to-use SWE dataset at 

the San Joaquin watershed from the water year 2000 to 2015. 

I also collected the frequency, level, and date of the wildfires through the files and records 

from California Government. These records are collected by CAL FIRE, which provides the 

preliminary number of fires and acres burned in different counties of California on weekly basis 

(CAL FIRE 2021). I have downloaded the specific data for San Joaquin County from 2000 to 2015 

at the preparation stage.  

 

Calculating melt durations 

 

         To explore the extent of influences of wildfires on snow cover, I calculated the melt 

durations change from 2000 to 2015. I expected that the melt durations did change from 2000 to 

2016, and the melt duration would be shorter annually since there was a higher frequency of 

wildfires from 2010 to 2016. I prepared the data of SWE in the San Joaquin watershed, the 

frequency of wildfires in the selected research area, and the date of each wildfire. I had already cut 

the SWE dataset into the research area using the MATLAB models that I designed.  

The frequency and date of the wildfires in San Joaquin watershed have been extracted 

through the files and records from CAL FIRE. For the melting duration calculations, the specific 

goal was to find the date with the maximum SWE numeric value and the first date with the 

minimum SWE numeric value in a water year. The reasoning behind this process is that when all 

the possible snow cover has melted into water, the water amount should be the maximum of the 

year at this time, and it means that the SWE will also be the maximum at this time. This period 

should be around July or August, which is hot summer (Margulis 2016). When all the possible 

water has frozen into snow and ice, the water amount should be a minimum of the year at this time, 

so is the SWE. This period should be around December or next year’s January to February, which 
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is cold winter (Margulis 2016). I conducted the analysis on MATLAB to find the dates with 

maximum SWE values and minimum SWE values in each water year recursively, and I recoded 

the specific dates into numeric days in a year (For example, January 13th is day 13 in a year). I 

then calculated the melt durations simply minus the date of maximum SWE value with the date of 

minimum SWE value. Finally, I checked the trend of the snowmelt durations from 2000 to 2015 

and compared it with the frequency trend of local wildfires to look periods with decreasing trends. 

The melt durations would be in a decreasing trend and with major drops in the year with long 

periods of wildfires. 

 

The relationship between fire severity and SWE 

 

         To determine the relationships between fire severity and changes of SWE, I randomly 

selected 150 points in the research area and compared the corresponding SWE values and fire 

severity index. My hypothesis is that the severity of megafires relates to the changes of SWE in 

the San Joaquin watershed, and when the fire is more severe, the snow cover area will be smaller 

and shallower (smaller SWE values).  

I collected the data for the fire severity map and the SWE dataset in the research area for 

this part of the analysis. The fire severity data is prepared and stored by the CA Government CAL 

FIRE website (CAL FIRE 2021). This data is mainly stored in the forms of maps, and it is 

categorical as “None”, “Moderate”, “High”, and “Very High”. I selected the data from 2000 to 

2010 because the data is only available for this period, and I added layers of fire severity over the 

research area in ArcGIS. After clipping the SWE data into the range of the San Joaquin watershed, 

I randomly selected 50 points for three groups (150 points in total) on this area and calculated and 

recorded their average SWE values. For the random selection, I used a website named 

“GeoMidpoint-Random Point Generator” and defined the region inside the San Joaquin watershed. 

This platform directly helps me choose ten exact spots on a certain region with their latitudes and 

longitudes. The random selection ensured the whole research process was objective. Then, I 

recorded the fire severity category of each spot.  

Finally, to find the relationships between fire severity and SWE values, I drew the 

regression map for these two sets of values. Specifically, I first stored random spots into the three 

fire severity categories and then calculated the average SWE values in each category. Then, I 



Jieyuan Kan                                            Wildfires in Sierra Nevada Snow Cover                                       Spring 2022 

 7 

applied the same analysis process to each spot group. Last, I plotted line graphs for these three 

groups for visualization. I expected the fire severity to relate to the landscapes of the SWE, and 

when the fire is more severe, the average SWE value will be higher. 

 

RESULTS 

 

Data summaries 

 

I used clipped SWE tiff files (Figure 1) for every day in each water year as key inputs for 

the melt duration analysis and a full dataset of wildfires frequency, level, and date (Table 1) around 

San Joaquin watershed in Sierra Nevada. I found that for mountains in the San Joaquin watershed, 

mountaintops had the highest values of SWE, and plain areas have zero SWE values because there 

was no snow cover on this area for this time. I also found that during summer (May to September), 

the average SWE values were higher than other areas. I also saw that wildfires are very common 

during summers in Sierra Nevada regions and typically with very high levels of severity. Moreover, 

the frequency of wildfires showed an increasing trend annually, and in 2015 to 2020, the wildfire 

frequencies are much higher compared to other years of record.  
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Figure 1. A sample clipped SWE graphs on Day 170, 2005, in San Joaquin watershed. In summer, there were 

large areas of high SWE values (in white colors), which distributed through the mountain tops. In plain areas, the 

SWE values were nearly zero (black) because there was no snow cover on this area. 

 

Table 1. Dataset of Wildfires in Sierra Nevada. Parameters include Level of Severity, Date of the Wildfires, and 

Frequency of the Wildfires in This Period. 

 

 
 

Melting durations calculation results 

 

I found that snow melt durations in a water year were decreased on annual basis (Figure 2), 

and it was also noticeable that compared to the SWE values from 2000 to 2004, the SWE values 

from 2012 to 2016 were overall lower (Figure 3). Starting from water year 2000, the melt duration 

was 203 days. When it came to water year 2003, the melt duration decreased to 145 days, but in 

water year 2004, the SWE values increased to 216 days. From water year 2012 to water year 2016, 

the melt durations decreased more significantly. The difference of melt durations between water 

year 2012 and water year 2016 was 69 days. Although the melt durations increased to 235 days in 

water year 2016, it was still lower than the melt durations in water year 2012.  

 Furthermore, the overall SWE values from water year 2012 to 2016 were lower than the 

values from water year 2000 to 2004. The maximum regional average SWE values from water 

year 2000 to 2004 was 228 mm. However, the counterpart from 2012 to 2016 was 182 mm. By 

averaging the max SWE values in each water year, the water year group from 2012 to 2016 also 
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had much lower SWE values (107 mm) than the water year group from 2000 to 2004 (188 mm). I 

also found that in water year group from 2012 to 2016, the max SWE values in each year were 

also in a decreasing pattern annually.  

 Finally, I have also conducted a T-test to illustrate the significance of the differences of 

SWE values between these two groups of water years. My null hypothesis is that there are no 

differences of the average melt durations between these two groups, and my alternative hypothesis 

is that there are differences in the average values of these two groups. My p-value is 0.05, and my 

t-table value is 2.228. Upon calculations, I found that my t-value is -2.74, which is numerically 

bigger than the t-table value. Therefore, I would reject my null hypothesis, and there are differences 

between these two groups of water years.  

 
Figure 2. Water year group from 2000 to 2004. Different colors represent different water years, and the dashed line 

contained in each curve represents the period after peak in SWE values. 
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Figure 3. Water year group from 2012 to 2016. Different colors represent different water years, and the dashed line 

contained in each curve represents the period after peak in SWE values. 

 

Correlation between fire severity and SWE 

 

         I found there were strong correlations between the fire severity and the values of SWE 

(Table 2). For the areas with “Moderate’ fire severity, the fire severity index and SWE values have 

relatively weak positve relationship (correlation coefficient was 0.31) (Figure 4). For areas with 

“High” fire severity, the fire severity index and SWE values have strong postive relationship 

(correlation coefficient was 0.82) (Figure 5). For areas with “Very High” fire severity, the fire 

severity index and SWE values have nearly perfect positive relationship (correlation coefficient 

was 0.96) (Figure 6).  

 Furthermore, I found that with higher level of fire severity, the relationships between fire 

severity index and SWE values were stronger, and the average SWE values were also higher in 

that category.  
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Table 2. Results of Correlation Between Fire Severity Index and SWE values, and Average SWE Values for 

Each Category. Points in Each Category were randomly generated by “GeoMidpoint-Random Point Generator”, and 

Average Values Were Calculated through Them.  

 

 
 

 
(a) (b)                                                     (c) 

Figure 4. Scatter diagram between SWE values and fire severity index. a. Correlation Scatter Diagram and Its 

Linear Correlation Graph in “Moderate” Fire Severity Category; b. Correlation Scatter Diagram and Its Linear 

Correlation Graph in “High” Fire Severity Category; c. Correlation Scatter Diagram and Its Linear Correlation Graph 

in “Very High” Fire Severity Category. 

 

DISCUSSION 

 

I found that the amount of snow and the resulting melt durations in San Joaquin watershed 

correlate closely with local wildfire severity. With higher fire severity, melt durations decreased 

sharply, and compared to past trends from 2000 to 2004, the current melt durations of snow cover 
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in San Joaquin watershed are lower due to the higher frequencies and severity of wildfires in recent 

years. Wildfires also seem to be related in changes in snow melt timing. If this timing can be 

monitored and predicted, it would provide benefits and convenience to the local farmers for the 

irrigation. My findings suggest that with frequent wildfires, the begin date of the melting process 

moves to earlier dates each year. This could have critical implications on agriculture and ranching 

in the San Joaquin valley that relies on this water.  

 

Shortened Melting Durations 

 

 The decreased melt durations from 2000 to 2016 suggest the negative impacts of the 

wildfires on snow cover in San Joaquin watershed. As we can see from the Figure 3, the decrease 

in melt durations in each water year was straightforward for both 2000-2004 period and 2012-2016 

period. However, the gap of melt durations between each water year in 2012-2016 period was 

larger than that of 2000-2004 period, suggesting a more drastic and frequent wildfire occurrences 

during the 2012-2016 period. This coincides with a study in the San Joaquin watershed from 2015, 

which found that wildfires in California are much more frequently now than 20 years ago (Mathieu 

2014). Other than wildfires, there are also other factors which will cause shortened melting 

durations of snow. For example, global warming temperature is also a catalyst in the faster snow 

melt, which are directly caused by climate changes (Musselman 2020). Moreover, positive 

feedback loop is also a factor shortening the melt durations. Positive feedback loop enhances 

changes. Therefore, with more snow melted, the average albedo of earth surface decreases, causing 

more and more snow to melt faster than before (Jakobs 2021). 

 

Unexpected Impacts on Local Agriculture and More 

 

When melt durations decrease, more water enters the water cycle faster and earlier in the 

season. This can increase short-term local water resources, at the expense of long-term snowpack 

resources. Other studies have also found that shorter melt durations are associated with higher 

snowmelt discharge in the San Joaquin watershed. This increased maximum discharge has been 

found to provide more water resources for local farmers (Pausas 2019), but since farmers often do 

not have the infrastructure to store this water, there are water shortages later in the year. This is 
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one major consequence of climate change and wildfire on snow: earlier melt durations mean that 

during the summer drought, the vast reservoir of snow that slowly releases water over time is 

depleted long before it becomes necessary. Additionally, studies have shown that the randomness 

of water supply will make the local environment too harsh for species to live there (Archibald 

2018).  

 

Correlation Between Fire Severity and Snow Cover Landscapes 

 

 I found a strong positive correlation between the wildfire severity and snow cover 

landscapes, which are the geographical structures of the snow land, suggesting that the wildfires 

can change the landscapes of snow cover. This happens because when the wildfires are more severe, 

SWE values will be higher, meaning there is more water contained in the snow, then the snow 

cover is denser, heavier, and more compact (Painter 2016). However, if the SWE values are low, 

then the landscape structures will be light and sparse because there is more snow (Painter 2016). 

Since SWE values are closely related to the geographical structures of snow land (Zhong 2021), I 

can determine the change of structures by the trend of SWE values.  

 

Rethinking the Impacts of Wildfires on Snow Cover 

 

 I found that wildfire had a direct impact on local SWE values in the San Joaquin watershed. 

As fire severity increased, SWE also increased. This relationship also disturbs the ecology of the 

San Joaquin watershed. First, the wildfires have shortened the snow melting durations, which 

brought uncertainty to the local agricultures and other biological activities (Archibald 2018). What 

is more, the wildfires increase SWE values, changing the landscapes of the snow cover. As a result, 

this change makes the local environment fragmented, and possibly disrupts processes and habitats 

that harbor native species (Archibald 2018). As the climate changes, droughts become more 

persistent, and megafire becomes more common in California, the relationships between fire and 

snow will become more critical to understand (Goss 2020). My study highlights how fire is 

connected to melt timing and duration, and to SWE, but it is also critical to think about the broader 

ecological consequences of changing mountain environments.  
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Limitations 

 

 Since my data sources are limited to the region of San Joaquin watershed, I cannot apply 

my conclusions to other regions. We need to research on other regions if we want to apply the 

trends and relationships between wildfire severity and SWE values. Moreover, the methodology 

of my research focuses on analyzing wildfires, without considerations on other factors like climate 

changes and global warming. There has been plenty of evidence on the impacts of climate change 

on mountain environments (Bormann 2018). Although the impacts of climate changes on melt 

durations and SWE values are small, they still exist and may influence my explanations on the 

results (Margulis 2016). 

 

Future Directions 

 

 This study could be improved by incorporating other factors, such as climate changes, 

human activities, and ecological change, and analyze how these factors influence melt durations 

and SWE values. More importantly, we should design a set of practical tools to predict the melt 

durations and early and final dates of the melt process through this analysis. Converting this 

knowledge into specific tools will help local farmers and ranchers benefit from this research and 

be able to predict the effect of the fire on snow and its subsequent impacts on water availability.  

 

Broader Implications 

 

 This study brings important insights for local farmers, environmental agencies, and other 

researchers about major natural disturbances, such as wildfires, which make environmental 

changes less predictable. However, with the aid of remote sensing and MATLAB, we can quickly 

plot and measure these changes with high accuracy and efficiency. These results can form a pattern 

that can assist the local farmers to understand timeframe of water supply, and they can adjust their 

irrigation plans according to this analysis. Moreover, my visualization process of the wildfires can 

also act as a sample for other environmental researchers to explore the impacts from other major 

environmental disturbances. As climate change and wildfire continue to increase in California and 
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across the world, understanding the impacts of fire on snow are critical for fully understanding and 

mitigating the consequences of climate change.  
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