
Miku Nakamura GRACE TWSA and floods Spring 2022 

1 

 

 

Using GRACE mascon to Analyse the Behaviour of  

Terrestrial Water Storage Anomaly in 11 months Lead Time of Floods 

 
Miku Nakamura 

 
 
 

ABSTRACT 
 
 
Extreme weather events are increasing in both frequency and intensity due to climate change. 
Among those impactful events, floods are often the deadliest natural disaster that kills people and 
damages economies. River runoff is commonly used as proxy for flood study; however, it is hard 
to apply when a flood does not occur in river basin. Here, I investigate the use of remote sensing 
technique to study hydro-metrological approach to flood. The Gravity Recovery and Climate 
Experiment (GRACE) mission collects gravity data and converted into GRACE mascon by 
Goddard Space Flight Center (GSFC). I used this data to analyse the behaviour of Terrestrial Water 
storage Anomaly (TWSA) in 11 months before the 15 deadliest flash flood events around the globe 
from 2004 to 2021. I grouped flood events by origin, magnitude, and duration of flood. I took the 
correlation coefficient (R-value) of TWSA for every pair of 15 events and averaged them to 
estimate correlation as a group. R-value for all 15 events was 0.0304, showing no correlation 
within groups. I repeated the same process for all subgroups and found one subgroup with positive 
correlation. While most of the subgroups showed no correlation, monsoonal rain showed 0.5880. 
This is significantly different from R-value of all 15 events (p<0.01). Thus, TWSA of monsoonal 
rain triggered flood events had the statistically significant pattern of TWSA behaviour in 11 
months lead time of event occurrence. Although there might be a seasonal factor affecting the 
result, this study showed the possibility of generalizing TWSA behaviour for flood events. 
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INTRODUCTION 
 
 

Over the last decades, extreme weather events are increasing both in frequency and severity, 

making it an urgent topic to be studied and discussed (Lubchenco and Karl 2012). Communities 

around the globe have been influenced and damaged by extreme temperatures, wildfires, droughts, 

and floods, which are in many cases suspected to be attributed to climate change (Dole et al. 2011, 

Samaniego et al. 2018, Zscheischler et al. 2018). Extreme events can have devastating effects, 

societally, economically, and ecologically (Min et al. 2011). For example, Hurricane Harvey in 

United States in 2017, accompanied by unexpected, and widespread floods, caused $125 billion 

damage and at least 88 fatalities (Houston Health Department 2017). Extreme events can affect 

mortality rates of a human population, as well as create insecurity and anxiety about the future 

(Deschênes and Moretti 2009, Konisky et al. 2016). Thus, understanding the characteristics of 

such events is critical to mitigating, predicting, and reducing the effects of events in the future. 

Specifically, floods cause tremendous damage on ecosystems and human society (Bouwer 

2019). Floods is the one of the most common natural disasters worldwide, and one of the disasters 

causing the most fatality (Driessen et al. 2016, 2018, FitzGerald et al. n.d., Tariq and van de 

Giesen n.d.). The floods can happen anywhere, including rural and urban settings. Despite there 

are hazardous areas shown by governments and other organisations, the unexpectedly huge 

floods occurred and caused damages to the society. Governments often produce flood hazard 

maps that attempt to predict areas that are at risk for flooding. However, most of these hazard 

maps are created according to predicted precipitation and elevation of the area instead of 

hydrometeorological aspects of the flood events. Hydrometeorological aspects such as Terrestrial 

Water Storage Anomaly (TWSA), deviation of all forms of water stored on and under the surface 

of Earth from its standard, may add another factor to those assessments. More research could be 

done, and it may provide deeper understanding of the mechanism of floods and help society to 

prepare for and respond to increasing flood events. 

Many studies of floods are done from perspectives of precipitation and runoffs. (Min et al. 

2011, Pall et al. 2011, Rogger et al. 2012, Davenport et al. 2021). However, Types of flood events 

can be determined by both precipitation and runoffs, and hydrometeorology (Nied et al. 2014). 

TWSA is also a critical factor in causing floods. Remote sensing of hydrological variables is 
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emerging as a viable source of the terrestrial water cycle (Tang et al. 2009). Satellite remote 

sensing allows us to observe all aspects of the land surface, and these data inherently include the 

effects of human disturbances (Gao et al. 2010). Among the space borne sensors that provide data 

for water storage, data from the Gravity Recovery and Climate Experiment (GRACE) mission and 

its successor GRACE follow on, hereafter referred as GRACE, are unique in that the changes in 

TWS can be directly measured (Molodtsova et al. 2016); therefore, GRACE is suitable for 

studying global trend in TWSA. While river runoff data are limited to local use, GRACE data can 

be applied to any part of the globe. To differentiate GRACE and utilise its strong point, I focus on 

flash flood events, which are hard to predict by runoffs and often away from river basin. 

My main research question is to investigate whether there is a statistically significant 

pattern of TWSA behaviour of TWSA in 11 months lead time of global flash flood events. To 

answer this question, I ask if 1) types of precipitation event triggered floods affect the behaviour 

of TWSA; 2) magnitude of floods affect behaviour of TWSA; 3) duration of floods affect TWSA. 

My hypothesis is to have linear increase before flood events in general. Also, I suppose that the 

rate of increase and time the increase start would be different for each factors influencing TWSA. 

 
 

METHODS 
 
 
GRACE Data Processing 

 
 
 

The Gravity Recovery and Climate Experiment (GRACE) mission and its follow-on 

mission are programs by NASA. It was first launched in March of 2002 (Greicius 2013a). GRACE 

and its successor GRACE follow-on are here after referred to as GRACE. GRACE accurately 

maps variations in Earth's gravity field. According to NASA’s article, GRACE consists of two 

identical spacecraft that fly about 220 kilometers apart in a polar orbit 500 kilometers above Earth. 

GRACE maps Earth's gravity field by making accurate measurements of the distance between the 

two satellites, using GPS and a microwave ranging system (Greicius 2013b). Among many 

products from GRACE, I will use data called “NASA GSFC global mascon solution” in this study, 

and I refer to this as GRACE mason. This product is provided by Goddard Space Flight Center 
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(GSFC), NASA's center critical for carrying out NASA's missions of space exploration and 

scientific discovery. The data processing is already done by GSFC to remove any data disruption 

done by earthquakes and other geological events (Loomis et al. 2019). However, there might be 

some small gaps of data due to events such as new satellite launch. A study showed an approach 

that could be effective for future forecasting and data gap correction (Long et al. 2014). However, 

I did not employ it in this study because I was not looking for long duration data. The special and 

temporal resolution of GRACE is 1 arc and monthly, and the size of each mascon is about 12000 

square kilometers with monthly resolution (Loomis et al. 2019). Despite of its coarse resolution, 

GRACE data is effective for this study since it allows us to study Terrestrial Water Storage 

Anomaly (TWSA) of the whole globe. 

 
 
EM-DAT Data Processing 

 
 
 

The Emergency Events Database (EM-DAT) is the international disaster database 

maintained by the Centre for Research on the Epidemiology of Disasters, CRED, at the School of 

Public Health of the Université catholique de Louvain located in Brussels, Belgium (CRED. 2021). 

EM-DAT has data about natural disasters since 1900. It includes natural, technological, and 

complex disasters. For my study, I will use Natural disaster data since 2004 and I will filter through 

this database to identify major flood events worldwide. It is useful for this study because the data 

is global scale. Also, each major flood event includes data on location, start date, end date, area, 

casualties, economical impact, and so forth. 

 
 
Flood Events of Interest 

 
 
 

There were 3158 flood events recorded in EM-DAT from 2004 to 2021. I selected 15 events 

of interest for my study. Some flood events have incomplete data. Among all the available events, 

I only used flood events that are flash floods and have data in total death, disaster magnitude, 
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latitude, longitude, start/end year, month, and day. I selected top 15 events that caused the most 

death to analyse for general behaviour of TWSA in 11 months lead time of flood events occurrence. 

 
 

Table 1. Summary of selected flood events. Data was downloaded form EM-DAT and only required data are 
extracted. 

 

 
# 

 
Events 

 
Origin 

Dis Mag 
Value 

Dis Mag 
Scale 

 
start 

 
stop 

 
Duration 

1 India, June 2008 Monsoonal rain 350600 Km2 11-Jun 21-Jul 40 

2 Ethiopia, May 2006 Heavy Rain 4225 Km2 5-Aug 8-Aug 3 

3 Afghanistan, Apr 2014 Torrential rain 83722 Km2 24-Apr 2-May 8 

4 North Korea, July 2006 Monsoonal rain 55620 Km2 12-Jul 20-Jul 8 

5 Indonesia, June 2006 Heavy rains 3100 Km2 19-Jun 23-Jun 4 

6 India, Aug. 2010 Heavy rains 145000 Km2 6-Aug 8-Aug 2 
 

7 

Chile, Mar. 

2015 

 

N/A 

 

154773 

 

Km2 

 

25-Mar 

 

8-Apr 

 

14 

8 Afghanistan, Nov. 2006 Heavy rains 5000 Km2 16-Nov 20-Nov 4 
 
 
 

9 

 
 
 

India, June 2007 

Monsoonal rain 

and tropical 

cyclone 

 
 
 

449300 

 
 
 

Km2 

 
 
 

22-Jun 

 
 
 

4-Jul 

 
 
 

12 

10 Thailand, May 2006 Monsoonal rain 78280 Km2 22-May 11-Jun 20 
 
 
 

11 

 
The Philippines, Dec. 

2010 

Continuous rains 

due to tail-end of a 

cold front 

 
 
 

10773 

 
 
 

Km2 

 
 
 

24-Dec 

 
 
 

25-Jan 

 
 
 

32 

12 Burundi, Feb. 2014 Heavy rains 3237 Km2 19-Feb 10-Mar 19 

13 Algeria, Oct. 2008 Heavy rains 34760 Km2 1-Oct 17-Oct 16 

14 Pakistan, Apr. 2016 Heavy rains 111748 Km2 2-Apr 8-Apr 6 
 

15 

 

Yemen, Oct. 2008 

Tropical storm 

(level 3) 

 

133200 

 

Km2 

 

23-Oct 

 

24-Oct 

 

1 

 
 
Analysis 

 
 
 

I used MATLAB for all my analysis (MATLAB R2021b Update1 (9.11.0.1811744). 2021). 

First, I removed monthly seasonality to create seasonally stationary data. Removing the seasonal 

components from the time series would remove the reoccurring pattern from dataset and give 



Miku Nakamura GRACE TWSA and floods Spring 2022 

6 

 

 

cleaner signals of change. Each data processing was done for each GRACE mascon. Then, I 

extracted appropriate mascon for each flood events according to their latitude, longitude, and day 

of event occurrence, and plotted them from 11 months lead time of the events to 2 months after 

events. To find the general behaviour of TWSA shared by all 15 events, I conducted correlation 

coefficient analysis for every possible pair of floods. R-value only showed correlation of a pair of 

floods; hence I took mean of them to estimate the correlation as a group. Furthermore, I grouped 

15 events by origin, magnitude, and duration to see if there are stronger correlation within smaller 

subgroups. 

 
 
Grouping flood events of interest by their origin 

 
 
 

Origin is the rainfall event that triggered each flood and was provided in EM-DAT data. 

According to the frequency within 15 events of interest, I made three subgroups: monsoonal rain, 

heavy rain, and others. Others included tropical storm, for example. 

 
 
Grouping flood events of interest by their disaster magnitude 

 
 
 

Disaster magnitude is the area that are affected by flood events and was provided in EM- 

DAT data in unit of square kilometers. I made three subgroups according to spatial resolution of 

GRACE and GRACE mascon. First subgroup was x =<6000 km2. 6000 km2 is about a half of one 

mascon size. I supposed that it might be too small for GRACE to detect change in TWSA if an 

event was smaller than 50% of mascon size. Second subgroup was 6000km2 < x =< 132000km2. 

132000km2 is about a half of spatial resolution of GRACE since 22 mascons (264000km2) 

approximately defines the spatial resolution according to Loomis et. al. in 2019. Third subgroup 

was x > 132000km2 which is larger than 50% of GRACE resolution. 

 
 
Grouping flood events of interest by their duration 
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Duration is the time that the area affected was under inundation. I calculated it using start 

day and end day provided in EM-DAT data. For duration, I made three subgroups according to 

temporal resolution of GRACE and frequency of events. First subgroup was x =< 1 week. One 

week is 25% of GRACE temporal resolution, however, since the frequency of less than two weeks 

were high, I decided to separate events less than two weeks in to two subgroups. Second subgroup 

is 1 week < x =< 2 weeks. Two weeks was 50% of GRACE resolution. Second subgroup is 

separated from the first subgroup because of its frequency. Third subgroup is 2 weeks < x. I 

expected that events more than 50% should be enough for TWSA to be recorded. 

 
 

For every subgroup, I repeated correlation coefficient analysis to see if there were stronger 

correlation within smaller groups, and I plotted them in boxplot. To show the difference from all 

15 events, I conducted t-test between the mean R-value of all 15 events and each subgroup to show 

significancy in difference. 

 
 

RESULTS 
 
 
Analysis 

 
 

I found that there is one subgroup that has a statistically significant pattern of TWSA 

behaviour, although I did not find any general behaviour in 15 events of interest. Of 15 events, the 

R-value varied from 0.8695 to -0.8534, and its mean was 0.0304 (Figure 1). 
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Figure 1. TWSA of the top 15 deadliest flash flood events from 2004 to 2021 are shown in one figure. Each colour 
represents each 15 flood events. The x-axis shows time series of 11 months lead time of the event occurrence to 2 
months after the occurrence, and the y-axis shows TWSA in cm water equivalent. Time of event occurrence is 
indicated with black vertical line, and 0 TWSA is indicated with black horizontal line. 

 
 
Grouping flood events of interest by their origin 

 
 

I grouped 15 flood events by their origin rainfall events: monsoonal rain, heavy rain, and 

others (Figure 2,3,4). For monsoonal rain, R-value varied from 0.8695 to 0.1087 and its mean was 

0.5880. For heavy rain, the R-value varied from 0.7092 to -0.8534 and its mean was -0.0626. For 

others, R-value varied from 0.6215 to -0.7142 and its mean was -0.0503. All the R-value in 

monsoonal rain group showed positive correlation, and its mean is large, while heavy rain and 

others varied from negatives to positives, and the means were small. The p-value for each subgroup 

compared to the average of group of all events was 0.0089, 0.4398, 0.4944, respectively (Figure 

5). Hence, only monsoonal rain subgroup showed the statistical significance (p<0.05). 
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Figure 2. TWSA in 11 months lead time of events triggered by monsoonal rain. the x-axis shows time series of 
11 months lead time of the event occurrence to 2 months after the occurrence, and the y-axis shows TWSA in cm 
water equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is indicated with black 
horizontal line. 
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Figure 3. TWSA in 11 months lead time of events triggered by heavy rain. The x-axis shows time series of 11 
months lead time of the event occurrence to 2 months after the occurrence, and the y-axis shows TWSA in cm water 
equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is indicated with black 
horizontal line. 
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Figure 4. TWSA in 11 months lead time of events triggered by other rainfalls. The x-axis shows time series of 11 
months lead time of the event occurrence to 2 months after the occurrence, and the y-axis shows TWSA in cm water 
equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is indicated with black 
horizontal line. 
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Figure 5. Distribution of R-value for all 15 events and origin subgroups. Correlation coefficient of all 15 flash 
flood events group and other subgroups are plotted as boxplot. Median, 25 percentile, 75 percentile, minimum, and 
maximum are indicated by red line, bottom blue line, top blue line, bottom black line, and top black line, 
respectively. 

 
 
Grouping flood events of interest by their disaster magnitude 

 
 

I grouped 15 flood events by their disaster magnitude in square kilometres: x =<6000 km2, 

6000km2 < x =< 132000km2, and x > 132000km2 (Figure 6,7,8). For x =<6000 km2, the R-value 

varied from 0.3548 to -0.7855 and its mean was -0.1262. For 6000km2 < x =< 132000km2, the R- 

value varied from 0.8358 to -0.7897 and its mean was -0.0033. For x > 132000km2, the R-value 

varied from 0.6684 to -0.8420 and its mean was -0.0229. All the R-value of all subgroups varied 

from negatives to positives, and the means were small. None of subgroups showed high 

correlations (Figure 9). The p-value for each subgroup compared to the average of group of all 

events was 0.4623, 0.8107, 0.7544, respectively. Hence, there were not statistically significance 

pattern of TWSA behaviour in flood events grouped by disaster magnitude. 
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Figure 6. TWSA in 11 months lead time of events smaller than 6000 km2. The x-axis shows time series of 11 
months lead time of the event occurrence to 2 months after the occurrence, and the y-axis shows TWSA in cm water 
equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is indicated with black 
horizontal line. 

 
 
 

 
Figure 7. TWSA in 11 months lead time of events larger than 6000 km2 and smaller than 132000 km2. The x- 
axis shows time series of 11 months lead time of the event occurrence to 2 months after the occurrence, and the y-axis 
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shows TWSA in cm water equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is 
indicated with black horizontal line. 

 

 
Figure 8. TWSA in 11 months lead time of events larger than 132000 km2. The x-axis shows time series of 11 
months lead time of the event occurrence to 2 months after the occurrence, and the y-axis shows TWSA in cm water 
equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is indicated with black 
horizontal line. 
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Figure 9. Correlation coefficient of 15 flood events group and other subgroups are plotted as boxplot. Median, 25 
percentile, 75 percentile, minimum, and maximum are indicated by red line, bottom blue line, top blue line, bottom 
black line, and top black line, respectively. 

 
 
Grouping flood events of interest by their duration 

 
 

I grouped 15 flood events by their duration: x =< 1 week, 1 week < x =< 2 weeks, 2 weeks 

< x (Figure 10,11,12). For x =< 1 week, the R-value varied from 0.7092 to -0.8534 and its mean 

was -0.1425. For 1 week < x =< 2 weeks, the R-value varied from 0.6802 to -0.2028 and its mean 

was 0.3021. For 2 weeks < x, the R-value varied from 0.8099 to -0.7369 and its mean was -0.0741. 

All the R-value of all subgroups varied from negatives to positives, and the means were small. 

None of subgroups showed high correlations (Figure 13). The p-value for each subgroup compared 

to the average of group of all events was 0.2155, 0.1994, 0.5377, respectively. Hence, there were 

not any statistically significant patten of TWSA behaviour in flood events grouped by duration. 
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Figure 9. TWSA in 11 months lead time of events shorter than one week. The x-axis shows time series of 11 
months lead time of the event occurrence to 2 months after the occurrence, and the y-axis shows TWSA in cm water 
equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is indicated with black 
horizontal line. 
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Figure 10. TWSA in 11 months lead time of events shorter than two weeks. The x-axis shows time series of 11 
months lead time of the event occurrence to 2 months after the occurrence, and the y-axis shows TWSA in cm water 
equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is indicated with black 
horizontal line. 

 
 
 

 
 

Figure 11. TWSA in 11 months lead time of events larger than 6000 km2 and smaller than 132000 km2. The x- 
axis shows time series of 11 months lead time of the event occurrence to 2 months after the occurrence, and the y-axis 
shows TWSA in cm water equivalent. Time of event occurrence is indicated with black vertical line, and 0 TWSA is 
indicated with black horizontal line. 
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Figure 12. Correlation coefficient of 15 flood events group and other subgroups are plotted as boxplot. Median, 25 
percentile, 75 percentile, minimum, and maximum are indicated by red line, bottom blue line, top blue line, bottom 
black line, and top black line. 

 
 

DISCUSSION 
 
 

I found that TWSA behaviour of 11 months lead time cannot be defined as simple trend 

such as linear increase. TWSA behaved like waves, with multiple increase and decrease. I expected 

that flood events would share TWSA behaviour in their lead time, but I did not find a statistically 

significant pattern of TWSA behaviour among all 15 flood events as there were no correlation 

among them. This implicated that TWSA cannot be used for general proxy of flooding like river 

runoffs. However, I found that there was a correlation within the monsoonal rain subgroup. While 

there was no correlation among all 15 events, monsoonal rain subgroup showed the significantly 

higher correlation than all 15 events with 99% confidence. I expected that I would be able to 

generalise subgroups of flash floods by this statistically significant pattern of TWSA behaviour, 

although I could not generalise flash floods. 
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Analysis 

 
A significant pattern of TWSA behaviour found in a subgroup of origin 

 
 

I found the statistically significant pattern of TWSA behaviour within monsoonal rain 

subgroup. It showed significantly higher correlation compared to all 15 flood events. However, I 

cannot conclude that the behaviour is solely because of monsoonal rain. This might be because of 

characteristics of monsoonal rain and factors causing monsoonal rain. Monsoon is seasonal shift 

in atmospheric circulation which results in change in precipitation pattern (NOAA 2022). 

Monsoon is caused by the temperature difference between land and ocean and can result in either 

dry or wet weather. Monsoonal rain occurs when ocean is colder than land, which is usually spring 

or summer. The four flood events that were grouped in monsoonal rain happened in India twice, 

North Korea, and Thailand, and from May to July. Since they are all in north hemisphere, May, 

June, and July were around summer. Thus, the statistically significant pattern of TWSA behaviour 

I found could be due to seasonal changes, despite it is true that they were triggered by monsoonal 

rain. 

 
 
A significant pattern of TWSA behaviour found in a subgroup of disaster magnitude 

 
 

I did not find any statistically significant pattern of TWSA behaviour within subgroups of 

disaster magnitude. My hypothesis was that flood events larger than a half of the spatial resolution 

of GRACE would have correlation, and smaller subgroups would not. Hence, I expected x > 

132000km2 subgroup to have high correlation supporting a statistically significant pattern of 

TWSA behaviour that implicates the possibility of direct use of TWSA data for flood analysis. 

However, since I could not find any correlation within it, disaster magnitude is not likely affecting 

the relationship between TWSA and flood events. Despite the result I got, some studies have stated 

that GRACE is effective for analysing large scale flood (Chen et al. 2010, Reager et al. 2014, 

Molodtsova et al. 2016). The possible reason that disaster magnitude did not affect the TWSA in 

this study was the number of mascons I use per flood events. To keep it consistent and to avoid 

using mascons that are not affected by flood events, I used one mascon per flood event according 
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to the latitude and longitude provided. Although the flood size satisfied the spatial resolution of 

GRACE, which is about 22 mascons, I only took data from one mascon from the centre of flood 

events (Loomis et al. 2019). I might get different results if I change number of mascons I use, 

respect to the magnitude of flood events. 

 
 
A significant pattern of TWSA behaviour found in a subgroup of duration 

 
 

I did not find any statistically significant pattern of TWSA behaviour within subgroups of 

duration. My hypothesis was that flood events longer than 2 weeks, which is a half of GRACE 

temporal resolution, would have high correlation. If flood events were shorter than the spatial 

resolution of GRACE, it is possible that TWSA due to flood would not be recorded. Hence, I 

expected x > 2 subgroup to have high correlation supporting a statistically significant pattern of 

TWSA behaviour that implicates low accuracy of TWSA data for flood analysis. However, since 

I could not find any correlation within it, duration is not likely affecting the relationship between 

TWSA and flood events. Despite the result I got, a study have stated that TWSA is effective for 

long-term flood analysis (Molodtsova et al. 2016). However, Molodtsova et al. used Brazil’s long- 

term flood for their case study. Since it is very long-term flooding, it is possible that flood events 

of interest in this study was not long enough. 

 
 
A statistically significant pattern of TWSA behaviour? 

 
 
 

I did not find the statistically significant pattern of TWSA behaviour that allows me to 

generalise flash floods globally. However, I found the one in a subgroup of monsoonal rain. It 

implicates that TWSA behaviour of floods triggered by monsoonal rain could be generalised, or it 

could be generalised over seasons. Disaster magnitude and duration of flood events did not show 

statistically significant effect on TWSA behaviour, contrast to my hypothesis. The result 

implicates that special and temporal resolution did not matter to flood analysis by TWSA, but there 

was still a space for improvement in subgroup setting. 
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Limitation 

 
 
 

My study sample was the deadliest 15 flood events while there were about 600 events 

available that satisfies the requirements, so I cannot claim that the behaviour I found in this study 

can be apply to any other monsoonal rain triggered flood events. Also, my study intended to find 

the general behaviour of TWSA that could be applied to certain group of floods events while other 

studies are often focus on one specific flood or one specific region to study floods (Chen et al. 

2010, Rogger et al. 2012, Deep and Vimal 2020). Because of generalization I tried to make, the 

results I got small sample size remains as small implication rather than conclusion. Another 

limitation is GRACE spatial and temporal resolution. Since GRACE TWSA data has large 

resolution both in spatial and temporal, change of TWSA in short term, for example, a week before 

flood events, would not be recorded by GRACE mission, allowing river runoffs to be a better 

proxy. 

 
 
Future direction 

 
 
 

First of all, I would suggest using larger sample size. This study was about generalization 

TWSA behaviour in 11 months lead time of flood events. Thus, I suppose using larger sample size 

would support conclusion stronger. Next, I would suggest having subgroups of combinations. I 

only grouped them by trigger, spatial, or temporal factor, however, it would be better to have them 

combined. For example, a new suggested subgroup would be, large-scale and long-duration flood 

events. Also, this study showed that there was a statistically significant pattern of TWSA behaviour 

within monsoonal rain subgroup, and it would be due to rainfall pattern or season. Therefore, 

grouping by season would be another possible factor for subgroups. Lastly, this study only used 

one mascon for each flood events of interest regardless of their disaster magnitude. However, it 

would be better to change the number of mascons I use for each flood events, considering the area 

affected. 
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Conclusion 

 
 
 

My results implicates that there might be a statistically significant pattern of TWSA 

behaviour that can be generalized over a big group of flood events. This is a great possibility in 

use of TWSA data regarding to floods. Since GRACE mission covers the whole globe, 

implementation issue by local government would not be a problem. While river runoffs and 

precipitation data are in situ data, GRACE TWSA data is the one set of data that can be used 

without complicated calibration due to instrument differences. Floods is the natural disaster that 

gives damage to society the most; it kills people and it damages economy (Driessen et al. 2018). 

As flood events are increasing due to urbanization and higher frequency and intensity of extreme 

precipitation, this is the field needing urgent attention (Zhang et al. 2018). Although this study is 

not enough to conclude existence of general behaviour of TWSA before floods, it still supports 

making metrological approach to flood events (Nied et al. 2014). The relationship between TWSA 

and floods remains an open research field and should be investigated more. 
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