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ABSTRACT 

 

Prescribed burning is a fire management technique used to reduce wildfire risks. The current 
scheme for prescribed burning in California is sub-optimal, with wildfires continuing to increase 
despite management efforts. This study examines the effectiveness of prescribed burning in 
reducing wildfire occurrences and scale in California. We collected gridded data on prescribed 
burning, wildfires, along with 15 other covariates that influence wildfire trends and constructed a 
generalized additive model of these factors on wildfire ignition probability and wildfire scale. The 
result showed a decrease in wildfire ignition probability with increasing levels of prescribed 
burning from 2016 to 2019, but the effect is only significant if more than 20% of the grid is burned. 
In relation to wildfire ignition, prescribed burning produced similar magnitudes of effects 
compared to other factors. For wildfire scales, prescribed burning produced mostly nonsignificant 
effects, except for 2018 and 2019, where an increase in prescribed burning is connected to a 
decrease in wildfire scale. Prescribed burning also showed a delayed effect, where regions burned 
a year prior are subject to less severe wildfires the following year. In general, the effect of 
prescribed burning on wildfire scale is minimal compared to that of other factors such as 
precipitation. This is concerning since under the current scheme of climate change, weather 
conditions are expected to become more extreme, and if fire managers do not adapt their methods 
to the drastically changing climate, the effect of natural factors on wildfires would completely 
dominate that of prescribed burning.  
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INTRODUCTION 

 

In the past decade, forest wildfires have become a prominent issue across the United States. 

Wildfire occurrences have increased in both overall frequency, severity, and area affected in all 

types of ecoregions at different rates (Dennison et al. 2014, Miller et al. 2020). The increase of fire 

activities is also disproportionately attributed to human activities versus natural phenomena, with 

human-caused fires accounting for 84% of all wildfires on government record from 1992 to 2012 

(Balch et al. 2017). Wildfires have generated a $2 to $3 billion cost annually for governmental 

agencies, and the direct and indirect impact of wildfires are estimated at up to 30 times that cost 

(Schoennagel et al. 2016). More concerningly, human activities have expanded wildfire zones to 

regions that normally have low to moderate fire risks, introducing uncertainty to wildfire forecasts 

(Balch et al. 2017). And under this framework, wildfire prediction models now account for far 

more variability in residential wildfire risks than variations across climate scenarios that is 

originally considered the primary contributing factor to wildfires (Bryant and Westerling 2014). 

With these concerning components, agencies and managers are driven to develop fire management 

techniques to effectively and efficiently mitigate wildfires, with prescribed burning on one of the 

most important preemptive lines of defense (Forest Climate Action Team 2018). 

In forest regions with high risk of wildfires, controlled burning of hazardous fuel, also 

known as prescribed burning, is often used to reduce the occurrences of large-scale natural fires 

(Vaillant et al. 2009). With detailed planning, forest and land managers aim to control the duration, 

frequency, and intensity of burning. Prescribed burning is effective in reducing the occurrence of 

large-scale wildfires, in both controlled experiments and computational simulations (Vaillant et al. 

2009, Cassagne et al. 2011). Although controlled experiments are able to randomize treatment 

assignments and account for the stochastic nature of real forest ecosystems, their small scales 

relative to all forest regions limit the generalization of their results to larger scales (Fisher 1974, 

Vaillant et al. 2009). Simulations, on the other hand, are able to compute outcomes for a variety 

of natural system settings at a low cost, but are sometimes wanting in incorporating the complex 

interactions among natural components (Johnson et al. 2011, Moustakas and Davlias 2021). 

Moreover, both controlled experiments and simulations execute prescribed burning under 

idealized conditions and procedures that aim to optimize the outcome of the burning, which is 
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difficult to achieve in industrial practices (Fernandes and Botelho 2003, Vaillant et al. 2009, 

Cassagne et al. 2011).  

The assumptions of how prescribed burning is conducted and the results of how prescribed 

burning affects the fire regime in both controlled experiments and simulations are difficult to 

achieve in large-scale practice. First, the researchers have control over the techniques used to 

conduct prescribed burning, as well as the approximate amount of fuel reduced (Vaillant et al. 

2009, Cassagne et al. 2011), thus optimizing the decrease in fire severity. However, in reality, such 

optimum is rarely achieved. In California, the current regulation and permitting system regarding 

prescribed burning is largely inconsistent and suboptimal (Fernandes and Botelho 2003, Miller et 

al. 2020). As a result, despite fire management efforts, wildfire occurrences continue to increase 

in California (Dennison et al. 2014, Miller et al. 2020). Second, the results of controlled 

experiments and simulations cannot be easily generalized due to the spatial nonstationarity nature 

of wildfire trends. Wildfire trends of forest regions exhibit a non-uniform distribution across space 

(Li and Banerjee 2021), so the result from a controlled experiment that prescribed burning is 

effective in reducing wildfire in one area does not necessarily transfer to another area that has not 

been examined. Moreover, numerous factors contribute to wildfire trends, including climatic (e.g. 

temperature, precipitation), anthropic (e.g. distance of forests to roads or urban areas), 

geographical (e.g. elevation, slope), and fire management (e.g. frequency, intensity, and duration 

of prescribed burning) factors (North et al. 2012, D’Este et al. 2020, Moustakas and Davlias 2021). 

Particularly, climatic factors are undergoing drastic changes as a result of climate change, and such 

changes have significantly altered the fire regime in California (Williams et al. 2019). Thus 

understanding the effect of prescribed burning, confounded by time-dependent factors, requires 

analysis over an extended period of time, which controlled experiments, conducted over a short 

timeframe, cannot satisfy. A data-driven modeling approach, however, could mitigate the 

disadvantages of controlled experiment and simulations: It uses historic data of a large area (e.g. 

California) so that the result applies to all regions of the area; it can also incorporate the 

aforementioned factors and account for both spatial and temporal non-stationarity of wildfire 

trends.  

 This study models the importance of prescribed burning presence and scale as predictors 

of wildfire IDF under the current fire management approaches in California. I will identify 

covariates that contribute to wildfire trends and study the effect of 1) the presence of prescribed 
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burning on wildfire ignition probability and 2) the scale of prescribed burning on subsequent 

wildfire scales using a generalized additive model (GAM). I source data that serve as covariates 

from a collection of governmental and academic databases and combined into a comprehensive 

gridded geographic database. Observational studies on prescribed burning are relatively rare 

compared to other study designs, but drawing from existing studies (Balch et al. 2017, Moustakas 

and Davlias 2021), I hypothesize that out of the variety of climatic, geographic, and anthropic 

factors, the presence of prescribed burning will significantly reduce the chance that wildfires will 

occur, but the scale of prescribed burning will have little effect on wildfire scales, if a wildfire 

does occur. 

 

METHODS 

 

Study site 

 

The study site is the State of California, where 33 million acres of forest area resides 

(California Department of Forestry and Fire Protection 2018). The California’s Forests and 

Rangelands 2017 Assessment revealed that natural areas of California host over 7500 plant and 

animal species, with over 14 types of tree habitats (California Department of Forestry and Fire 

Protection 2018). There are over 15,000 protected areas owned and managed by federal, state, 

county, city, and private organizations (GreenInfo Network 2021). California also has a large 

population base of 39.5 million residents that are constantly reshaping the landscape of natural 

ecosystems. About 80 percent of the productive forest lands in California is for timber production, 

whose regulation varies from different types of ownership and management.  

 

Data and metrics 

 

 To maximally capture wildfire trends, I included as many features as possible into my 

model and removed collinear features using the model selection process. Factors associated with 

change wildfire activities (Table 1) include temperature, precipitation, elevation, slope, population 

density, road distance, land cover type (D’Este et al. 2020), wind speed (Moustakas and Davlias 

2021), land ownership (Miller et al. 2020), vapor pressure deficit (Zhuang et al.  
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Table 1. Description of Data and Sources. Data is downloaded from a variety of sources. For time-independent 
variables, the data from the most recent survey was acquired. 
 

Feature Name Description Unit Source Citation 

Prescribed burning 
data 

Includes the start and end 
date, and intensity of fuel 

treatment 
Varies Department of Forestry and 

Fire Protection (CAL FIRE) 
(CAL FIRE 

2021a) 

Wildfire data Includes the ignition date 
and intensity of wildfire 

Varies USDA Forest Service (Key and Benson 
2005) 

Temperature Average annual 
temperature 

℃ 

PRISM Climate Group (PRISM Climate 
Group 2021) 

Precipitation Average annual 
precipitation 

mm 

Vapor pressure deficit Average annual vapor 
pressure deficit 

haPa 

Population density Number of residents in 
unit area 

Persons per cell US Census 
(United States 
Census Bureau 

2010) 

Distance to closest 
road 

Euclidean distance to the 
nearest road 

km 

US Geological Survey 

(U.S. Geological 
Survey 2004) 

Distance to hiking trail Euclidean distance to the 
nearest hiking trail km 

(U.S. Geological 
Survey, National 

Geospatial 
Technical 

Operations Center 
2021) 

Elevation Elevation above sea level m 

(U.S. Geological 
Survey 2021) Slope Slope Degree 

Aspect Sun-facing aspect Degree 

Land coverage type Proportion of type of 
vegetation coverage 

Decimal proportion Multi-Resolution Land 
Characteristics Consortium (Dewitz 2021) 

Wind speed Average annual wind 
speed m/s National Renewable Energy 

Laboratory 
(King et al. 2014, 

Draxl et al. 
2015a, 2015b) 

Cloud shading Average annual cloud 
coverage 

Decimal proportion EarthEnv (Torregrosa 2017) 

Land ownership Proportion of cell owned 
by each type of agency 

Decimal Proportion CAL FIRE (CAL FIRE 
2021b) 

Distance to power line Euclidean distance to 
electric transmission line km California Energy 

Commission 

(California 
Energy 

Commission 
2017) 
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2021), cloud shading (Williams et al. 2018), and fog frequency (Emery et al. 2018). For my data 

processing, I primarily used R with various packages (Gräler et al. 2016, Wood 2017, Fasiolo et 

al. 2018, Wickham et al. 2019, Arnold 2021, R Core Team 2021), and ArcGIS (Redlands 2011).  

After obtaining these data, I constructed a geo-database that aggregates features into 4km 

by 4km grid cells. Data in each grid cell is calculated as an yearly average and averaged across the 

years of 2010 to 2019, as some data of 2020 has yet to be published. To reflect a general 

characteristic of each grid cell, I also averaged the yearly averages to obtain a single statistic (e.g. 

For temperature, each grid cell stores a yearly average from 2010 to 2019, and also an average 

temperature across all years). Lastly, to model the temporal differences in wildfire trends, I 

reshaped the data to a long format such that each data point represents a grid cell in a given year 

from 2010 to 2019. 

To confirm these features’ association with wildfire trends and motivate the use of a non-

linear model, I computed the correlation coefficient (𝑅𝑅2) of each feature with the proportion of a 

grid cell that is burned in a year and generated pairplots of the features with wildfire proportion 

with a linear best-fit line.  

 

The generalized additive model (GAM) 

 

Model description 

 

To assess the effect of prescribed burning and other factors on fire ignition probability and 

scale, I fitted a generalized additive model (GAM) over wildfire metrics on covariates. The general 

version of GAM can be described as 

 

𝐿𝐿(𝑌𝑌𝑐𝑐) = 𝛼𝛼 + ∑𝑝𝑝
𝑖𝑖=1 𝑓𝑓𝑖𝑖(𝑋𝑋𝑐𝑐,𝑖𝑖) + 𝜖𝜖𝑐𝑐 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜖𝜖𝑐𝑐 ∼ 𝑁𝑁(0,𝜎𝜎2), 

 

where Y is the fire metrics, X the design matrix, L is the link function, p is the number of features 

used, c indexes each grid cell, and 𝜖𝜖 is the normally distributed error term with unknown variance 

(Hastie and Tibshirani 1999). Compared to a linear regression model, GAM does not assume linear 

relationship between the features and the response, so GAM does not fit a coefficient for each 

feature, rather, it fits a (not necessarily linear) smoothing function 𝑓𝑓(∙) for each feature.  
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Furthermore, because some of the covariates are time-dependent, I used an extension of 

the GAM model, the generalized additive mixed-effects model (GAMM) so that data in each given 

year can be modeled separately (Pedersen et al. 2019). Generally, GAMM can be described as 

𝐿𝐿(𝑌𝑌𝑐𝑐,𝑦𝑦) = 𝛼𝛼 + �
𝑝𝑝

𝑖𝑖=1

𝑓𝑓𝑖𝑖,𝑦𝑦(𝑋𝑋𝑐𝑐,𝑖𝑖) + 𝜖𝜖𝑐𝑐 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜖𝜖𝑐𝑐 ∼ 𝑁𝑁(0,𝜎𝜎2) 

Notice the additional index y that accounts for data in different years. Some covariates are time-

independent so the same values are included when fitting 𝑌𝑌𝑐𝑐,𝑦𝑦 for a fixed 𝑐𝑐 for all 𝑦𝑦; other time-

dependent covariates would vary as 𝑦𝑦 varies. 

 

Model selection 

 

 GAM includes a family of models, so to fit a proper GAM over the data, I performed a 

systematic model selection process with the Akaike information criterion (AIC) as the criterion. 

First, a potential risk of GAM is overfitting, as the model fits very specific smoothing terms 

tailored to detailed trends in data (Zuur et al. 2009). To account for this, GAM allows manual 

selections of the dimension of the basis (the k parameter) for the smoothing term, as well as the 

amount of penalty applied for more complex smooths (the m parameter), both of which are 

reflected in the “wiggliness” of the fitted smoothing curve (Wood 2017).  I used cross-validation 

to search for the best penalty term that minimizes AIC. 

In addition, for the time-dependent variables, there are several choices to model their 

association with time. As Pedersen et al. (2019) outlined, I fitted 4 variants of the GAMM over the 

time-dependent variables: a global smoother for all observations (the G model), a global smoother 

with individual effects that have a shared penalty (the GS model), a global smoother with 

individual effects that have individual penalties (the GI model), and group-specific smoothers with 

a shared penalty and without a global smoother (the S model). I then compared the AIC computed 

for each model, selecting the one with the lowest AIC. 

 

Model validation 

 

 After the optimal model was selected, I validated the model and checked for potential 

model misspecification. The main assumptions of the model include lack of concurvity, 
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appropriate conditional distribution of the covariates, and homoscedasticity. Concurvity is the 

nonlinear analogue to collinearity, and the presence of concurvity could affect the interpretability 

of model outcomes (Roy 2016). I computed the concurvity of each covariate and removed features 

that have a concurvity larger than 0.9. The distribution assumption of GAM is that given a vector 

of features, the outcomes are normally distributed (Zar 2010). This assumption is difficult to assess 

because the features are all continuous, so the joint probability of features equaling a set of values 

is theoretically zero. To approximate the distribution, I pooled the residuals of a fitted GAM and 

used a normal quantile-quantile plot to assess normality (Zuur et al. 2009). Because the sample 

size is large, I relaxed the normality assumption by allowing non-severe deviations from normality 

in the data (Faraway 2002, Zuur et al. 2009, Zar 2010). Lastly, to assess homoscedasticity, I first 

fitted GAM and computed the residuals. I plotted the residuals against the fitted values to look for 

patterns in the plot, and then plotted residuals against individual features to identify the sources of 

heteroskedasticity. 

 

Modeling wildfire trends 

 

Although I modeled both wildfire ignition probability and scale using GAM, different 

response types in these two models (binary vs. continuous) presented different modeling processes 

that will be discussed in this section. 

 

Wildfire ignition probability 

 

I defined wildfire ignition as whether there is at least one wildfire event in a grid cell in a 

given year. The binary nature of the response variable motivated me to use a logit link function for 

𝐿𝐿, defined as  

𝐿𝐿(𝑌𝑌𝑐𝑐,𝑦𝑦)  = 𝑙𝑙𝑙𝑙𝑙𝑙( 
𝜋𝜋𝑐𝑐,𝑦𝑦

1 − 𝜋𝜋𝑐𝑐,𝑦𝑦
) 

where 𝜋𝜋𝑐𝑐,𝑦𝑦  =  𝑃𝑃(𝑌𝑌𝑐𝑐,𝑦𝑦 = 1) (Zuur et al. 2009). This particular link function requires care in the 

model validation and interpretation process. To test the homoscedastic assumption, I used an index 

plot instead of the usual fitted values vs. residuals plots, since the latter contains little information 

in the logistic setting (Pregibon 1981, Zuur et al. 2009). To interpret individual effects of the 
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smooths of each feature, I plotted the values of the feature against the inverse log-odds, which 

essentially demonstrated how much wildfire ignition probability that feature contributes to the 

overall probability. 

 

Wildfire scale 

 

The scale of wildfire is defined as the proportion of a grid cell that is burned in a year. 

Because the response is a proportion, I used the beta regression model. This mean that the link 

function is still the logit function, but now 𝜋𝜋𝑐𝑐,𝑦𝑦 is the expectation of 𝑌𝑌𝑐𝑐,𝑦𝑦, which is assumed to 

follow a beta distribution (Ferrari and Cribari-Neto 2004). From there, I selected the model that 

minimizes AIC and tested the assumptions of the model as outlined in the model validation section. 

The interpretation of the smoothing terms in the Gaussian model was more straightforward than 

the logistic case, where the raw effect of each feature was plotted as how much it contributed to 

the overall response variable. 

 

Feature importance 

 

 The feature importance of PB metrics relative to covariates illustrates how much prescribed 

burning contributes to wildfire metrics. Feature importance for nonlinear models (e.g. GAM) is 

more difficult to compare because with smoothing functions, there are no explicit coefficients to 

compare (Molnar 2021). Traditionally, the range of fitted values of the smoothing terms, as well 

as the p-value for each smoothing function could offer insights for how much each feature 

contributes to the outcome. A larger range and a smaller p-value would provide evidence that the 

feature contributes more to the outcome (Zuur et al. 2009). A more intuitive approach to nonlinear 

feature importance is the permutation feature importance (Molnar 2021). To obtain this metric, I 

shuffled the feature of interest and computed the root mean square error of the model. If a feature 

is more important, then shuffling that feature will produce a significantly larger error, and vice 

versa (Molnar 2021). I computed the three feature importance metrics described above and 

qualitatively compared the importance of each feature. 
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RESULTS 

 

Model selection and validation 

 

 Among all models fitted, the GS model (global smoother and individual smoothers with 

shared penalty terms) obtained the least AIC. After the feature selection process, I removed 

nonsignificant features with p-values larger than 0.05. Both models on ignition probability and 

wildfire scale satisfied the normality assumption upon visual inspection. All features have 

concurvity less than 0.95 in both models. The residuals in both models did not appear to show 

significant patterns considering the fact that the range of values for both models are restricted 

(binary model {0,1} and continuous model [0,1]). I also conducted a validation search for the 

appropriate penalty term to prevent overfitting. The specifications and of the models were included 

in Appendix A and B.  

 

Effect of factors on wildfire ignition 

 

Using an absence-presence model on GAM, I studied the effect of different factors on fire 

ignition probability (Figure 1). Factors such as percentage of cell owned by a federal agency, 

distance to energy transmission line, and precipitation had a rather linear effect on fire ignition. 

For example, an increase from 50% to 60% in percentage of a cell owned by federal agency 

resulted in a increase of 0.15 in fitted log-odds (Figure 1c), whereas a unit increase in distance to 

energy transmission line (Figure 1d) resulted in a 8 percent decrease in ignition probability. 

Additionally, some factors exhibited more particular behavior. For instance, a relatively low (<5) 

or high (>20) temperature contributed significantly to a lower ignition probability, but at the 

intermediate range ([5,20]), temperature contributed little to ignition probability (Figure 1f). 

Similar trends were also observed in wind speed, slope, maximum vapor pressure deficit, deviation 

from mean temperature and precipitation, where ignition probability of regions with various factor 

values did not follow a linear relationship (Figure A2). 
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Figure 1. Fitted smooths of factors on wildfire ignition probability. Line plots of fitted log-odds of variables on 
wildfire ignition, with an additional auxiliary bar plot: (a) percentage of a cell treated by prescribed burning, (b) 
number of prescribed burning treatments with over 20% of grid cell area in each given year, (c) percentage of a grid 
cell owned by a federal agency, (d) distance of a cell to an energy transmission line, (e) mean annual precipitation, 
and (f) mean annual temperature. For year-dependent data, the lines are color-coded. For time-independent data, the 
solid line represents the mean estimate of the fitted smooth, and the dashed lines represent the boundaries of a 95% 
confidence interval for the fitted smooth. 

 

Percentage of cell prescribed burns had a significant effect on wildfire ignition (p < 2e-16). 

Particularly, after 2016, the effect of prescribed burning was increasing from 0 to 0.2, then 

prescribed burning contributed decreasingly when the percentage increased from 0.2 (Figure 1a). 

During these years, a total of 6 large-scale prescribed burning (more than 20% grid burned) 

occurred (Figure 1b). The pattern was reversed in years before 2016 (Figure 1a), where a total of 

39 large-scale prescribed burning was conducted (Figure 1b). In addition, the percentage 

prescribed burned several years prior to the year of interest also showed significant effects (p = 
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0.05 for 2 years prior; p = 0.002 for 3 years prior). Factors such as precipitation and temperature 

produced larger effects than prescribed burning (Figure 1e, f), while other factors such as federal 

land ownership and distance to energy transmission lines produced smaller effects (Figure 1c, d). 

 

Effect of Factors on Wildfire Scale 

  

 Using the percentage burned in a grid cell as the dependent variable, I assessed the 

contribution of the prescribed burning percentage and other factors via GAM (Figure B2). Factors 

that showed linear relationships with wildfire scale, such as slope (Figure 2c) and deviation of 

mean annual precipitation (Figure 2e), overlap with those that showed linear relationships with 

fire ignition.  Factors such as annual precipitation showed a nonlinear trend in relation to fire scale 

(Figure 2d). The effect of precipitation on the wildfire scale depended on the year of interest. In 

2015 and 2017, increased precipitation is associated with larger wildfires, whereas in 2014 and 

2018, wildfire scale decreased as more rainfall occurred (Figure 2d). Particularly, precipitation 

fluctuated with higher magnitude in 2018 than in 2015 (Figure 2f). 

 Prescribed burning score had a mostly nonsignificant relationship with fire score (p=0.99), 

except for 2016 and 2019 (Figure 2a). In 2016 and 2019 the relationship was non-linear, with fire 

scale increasing as prescribed burning percentage increased from 0 to 0.2; as prescribed burning 

percentage ranged from 0.2 and on, fire score decreased. However, in other years, the contribution 

of prescribed burning was practically zero. The effect of prescribed burning a year prior to the year 

when the wildfire occurred had similar magnitude as PB percentage during the current year, but 

with 4 years (2013-2014, 2018-2019) having more prominent effects than others (Figure 2b). 
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Figure 2. Fitted smooths of factors on wildfire scale.  Line plots of fitted log-odds of variables on wildfire scale, 
with an additional auxiliary line plot: (a) percentage of a cell treated by prescribed burning during the year of interest, 
(b) percentage of a cell treated by prescribed burning during the year prior to the year of interest, (c) slope, (d) mean 
annual precipitation, (e) deviation of mean annual precipitation from the mean precipitation across all years studied, 
and (f) mean monthly precipitation in 2015 and 2018. For time-independent data, the solid line represents the mean 
estimate of the fitted smooth, and the dashed lines represent the boundaries of a 95% confidence interval for the fitted 
smooth. 
 

DISCUSSION 

 

Overall, prescribed burning is associated with decreased wildfire ignition probability, 

although the effect depends on various conditions in a given year. The effectiveness of prescribed 

burning and wildfire occurrences are significantly associated with weather conditions, such as 

temperature and precipitation, as well as human-related factors such as land ownership, and 

distance to energy transmission lines. Prescribed burning did not show a significant effect on 

wildfire scale; rather, other natural factors dominated the effect. With respect to wildfire scale, 
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mostly natural factors have the strongest influence, although extreme weathers on both ends of the 

spectrum produced varying effects depending on the time of the year these extreme conditions 

occurred.  

 

Wildfire ignition probability 

 

The fitted smooth for PB area demonstrates that in order for PB to effectively reduce 

wildfire occurrences, a sufficient level of burning is required. For recent years (2016-2019), a 

decrease in effect on wildfire ignition requires PB on approximately 20% of the area (Figure 1a). 

This is a significant area because each grid has an area of 25km2, which is equivalent to 4600 

standard football fields. With only 39 grids reaching this goal in 2018 and 2019 (Figure 1b), the 

current fire management plan in California proves to be suboptimal (Fernandes and Botelho 2003). 

In grids with prescribed burning percentage less than 20%, the positive fitted values can be a result 

of non-overlapping regions where PB and wildfires occurred separately. This phenomenon further 

enforces the argument that if a significant area within a grid is not treated, wildfires will emerge.  

Furthermore, if only a small area is treated, the fire treatment will facilitate the regeneration 

process of local plantations (Simpson et al. 2019), and if the area occurs to be undergoing a dry 

season, the increased fuel load and reduced moisture content can further increase the chance a 

wildfire will occur (Kreye et al. 2013). In earlier years (2013-2015), the fitted smooth showed an 

increase with burned area. However, this estimate has a large uncertainty because there are only 6 

large-scale (>20%) PB grids in these three years combined, and in 2014, no grid has received a PB 

percentage of greater than 50% (Figure 1b). Therefore, the positive effect shown on the smooth 

only reinforces the argument that the absence of large-scale PB events contribute to a slightly 

positive, although nonsignificant, wildfire ignition probability. 

Aside from PB percentage, other factors also exhibited significant impacts on ignition 

probability. One of the most significant factors is mean annual temperature, with both low (<5 

degrees Celsius) and high (>25 degrees Celsius) contributing a negative effect of magnitudes 

greater than 5 (Figure 1f). The effect of temperature on wildfires is a complex process dictated by 

how varying temperatures affect the accumulation of fuel that allows wildfires to occur. On the 

lower end, low temperature reduces vegetation growth, thus reducing the volume of potential fuels 

that facilitate wildfires (He et al. 2017). On the other hand, extremely high temperatures, in the 
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long run, can increase the rate of decomposition of debris from dead plants (Kennedy et al. 2021), 

thus reducing the amount of fuel available for wildfires to occur. Therefore, both low and high 

temperature can result in a decrease in wildfire activities, and as demonstrated by the effect size, 

variation in temperature has a larger effect than PB percentage, making temperature a more 

influential factor. Additionally, human-related factors also play a significant role in wildfire 

occurrences. The percentage of a grid owned by federal agencies had an increasingly positive 

effect on ignition probability (Figure 1c). This result largely corroborated with research that have 

attributed the increasing number of wildfires in California to mismanagement and long-term fire 

suppression from federal fire managers (Starrs et al. 2018). Therefore, the cautionary tale of 

increasing wildfire occurrences associated with federal land ownership calls for attention for 

federal agencies to take actions and improve their fire management efforts. 

 

Wildfire scale 

 

 In relation to the percentage of a cell burned by wildfires, PB percentage did not reveal a 

significant effect across years. Although overall, the effect of PB has an extremely large p-value 

(p=0.99), the fitted smooth of 2018 and 2019 still revealed valuable information. The largest 

effects of these two years are about -0.03 (Figure 2a), meaning that maximum PB effort can reduce 

the percentage of wildfire burned by 3%, equivalent to an area of 0.75km2 (138 standard football 

fields). In practical terms, this is still a very significant area, despite the overall effect being 

nonsignificant compared to the size of grid cells. In these two years, the fitted values of PB 

percentage showed a similar trend to that on ignition probability, where only burning an adequate 

amount can have a significant reduction effect on wildfire scale. Although PB conducted during 

the year when wildfires occur did not have a significant impact on wildfire scale, in several years 

(2013-2014, 2018-2019), PB conducted in the year prior to wildfire ignition showed a delayed 

effect that reduced wildfire scales in the following year (Figure 2b). PB alters the structures of 

forest ecosystems, reducing surface coverage and raising canopies, but this process requires time 

even after burning is conducted (Elliott et al. 2009), resulting in an nonsignificant effect of burning 

during the year of wildfires, as well as a delayed effect of PB.  

 In terms of contribution to the wildfire scale, natural factors seemed to dominate. The most 

significant factor is average annual precipitation, with a maximum effect of magnitude 0.2 (Figure 
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2d). However, several years showed contrasting results. In 2015 and 2016, increasing precipitation 

results in increased wildfire scales, whereas in 2014 and 2018, an increase in precipitation was 

associated with decreased wildfire scale. This phenomenon is related to the intra-year pattern of 

precipitation (Figure 2f). For example, in 2015, higher precipitation events happened in February, 

facilitating plant growth, thus increasing the amount of biomass for fires to consume (Nafus et al. 

2017). On the other hand, in 2018, although the precipitation was high early in the year, the high 

precipitation continued leading up to the fire season, increasing moisture content in the plant  and 

soil (Wang et al. 2019), decreasing wildfire risk (Krueger et al. 2015). In addition, extreme 

precipitation conditions, quantified by the deviation of rainfall from the overall average, showed a 

similar magnitude of effects on wildfire scale (Figure 2e). This further enforces the idea that the 

effect of natural factors on wildfire scale varies depending on specific conditions in specific years. 

Compared to PB percentage, this natural factor has a much larger influence on wildfire scales. 

 

Conclusion 

 

 Overall, prescribed burning produces a significant effect on reducing both the ignition 

probability and scale of wildfires. Compared to prescribed burning’s effect on the chance of 

wildfire ignitions, PB’s effect on wildfire scales is lower in magnitudes and dominated by the 

effect of natural factors. Both effects showed significant correlation to time, where the effect at 

reducing wildfires vary across the years studied. The main factor that dictates how effective 

prescribed burning is relies on an adequate area burned within each grid, where a burn less than 

~20% is essentially nonsignificant. Analysis on natural factors showed that the effect of PB on 

reducing wildfires is highly dependent on weather conditions and the specific environments of the 

area burned. Lastly, in both ignition probability and scale, PB revealed a delayed effect where 

several years’ of burning accumulated and produced a synergistic effect years later. 

 

Limitations 

 

Firstly, the temporal resolution of data is year, and as demonstrated by the data, within-

year variations of the factors can reveal significant insights. For example, factors such as 

precipitation tends to vary throughout a year, and the variation can have different effects on 
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vegetation during different seasons (Yan et al. 2015). This study did not include seasonal data 

mainly due to constraints on computing power, as the current model takes 30 minutes to one hour 

to run each cycle. Therefore, more computing power would allow the analysis to examine the 

effects on a finer scale, and thus produce a more insightful result. 

Secondly, this study only included data from 2013 to 2019, although data from 2010 to 

2012 were included implicitly to compute lagged variables on PB conducted in these years. As 

wildfires have been increasing in the recent decade, I decided to only include the last decade to 

examine the most severe wildfires. However, climate patterns seem to fluctuate across years 

(Vincze et al. 2017); with this high variability, including data on more years could incorporate a 

more diverse range of weather conditions into the model and allows examination of wildfire 

behavior under these conditions.  

 

Broader implications 

 

 The study demonstrates that natural and human-related factors often have a stronger effect 

on both wildfire ignition probability and wildfire scale, although the delta is higher for the latter. 

Under the current scheme of climate change, occurrences of extreme weather events are becoming 

more frequent (Williams et al. 2019). If natural factors take on more extreme values, their effect 

on wildfires could essentially dominate the effects of PB and make PB’s effect completely 

nonsignificant. Meanwhile, current fire management plans have been static and unresponsive to 

the drastically changing climate (Calkin et al. 2015, Kolden 2019). Therefore, it is imperative that 

fire managers examine the weather conditions and treat vegetation fuels and wildfires in a way 

that accounts for these weather conditions. This study has demonstrated that prescribed burning, 

when done adequately and appropriately, can be effective, so with proper management, it is 

possible that wildfires can be properly prevented and reduced.  
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APPENDIX A: Model specification and outputs for ignition probability 
 

Table A1. Model specification for the binary model. All terms are run with a smooth, with factors that do not have 
random effects using the default “tp” basis, and random effect factors using the “fs” basis. The model is run with a 
binomial family, with the parameter “select” set to true. D means that the variable is related to a distance, and D* 
refers to deviation from the overall mean across the years.  
 

Label Variable Random Effect 

(a) Precipitation year 

(b) D* precipitation year 

(c) Temperature year 

(d) D* temperature year 

(e) Max VPD year 

(f) D* Max VPD year 

(g) Cloud coverage none 

(h) Wind Speed none 

(i) Herb coverage none 

(j) Elevation none 

(k) Slope none 

(l) Federal ownership none 

(m) State ownership none 

(n) D hiking trail none 

(o) D power line none 

(p) percentage prescribed burned year 

(q) percentage prescribed burned (1 year prior) year 

(r) percentage prescribed burned (2 years prior) year 

(s) percentage prescribed burned (3 years prior) year 

 Coordinates (x and y) year 
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Figure A1. Model output for the binary model. For year-dependent data, the lines are color-coded. The letter labels 
correspond to the variables in Table A1.  



Michael Xiao                                               Prescribed Burning in California                                             Spring 2022 

25 

APPENDIX B: Model specification and outputs for wildfire scale 
 

Table B1. Model specification for the continuous model. All terms are run with a smooth, with factors that do not 
have random effects using the default “tp” basis, and random effect factors using the “fs” basis. The model is run with 
a betar family, with the parameter “select” set to true. D means that the variable is related to a distance, and D* refers 
to deviation from the overall mean across the years. 
 

Label Variable Random Effect 

(a) Precipitation year 

(b) D* precipitation year 

(c) Temperature year 

(d) D* temperature year 

(e) Max VPD year 

(f) D* Max VPD year 

(g) Cloud coverage none 

(h) Herb coverage none 

(i) Elevation none 

(j) Slope none 

(k) Population density none 

(l) Federal ownership none 

(m) State ownership none 

(n) percentage prescribed burned year 

(o) percentage prescribed burned (1 year prior) year 

(p) percentage prescribed burned (2 years prior) year 

(q) percentage prescribed burned (3 years prior) year 

 Coordinates (x and y) year 



Michael Xiao                                               Prescribed Burning in California                                             Spring 2022 

26 

 

 
Figure B1. Model output for the continuous model. For year-dependent data, the lines are color-coded. The letter 
labels correspond to the variables in Table B1. 


