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ABSTRACT 
 
 

California has been experiencing more historically large, high severity wildfires, prompting 
managers to investigate the potential long-term impacts of this disturbance on biodiversity. There 
has been an emphasis on management within forested ecosystems, with less attention turned to 
historically infrequent, high severity fire regime ecosystems such as Southern California chaparral. 
To study the effects of a contemporary large-scale, high severity wildfire on chaparral, I 
investigated the effects of the 2017 Thomas Fire on vegetation type conversion within Santa 
Barbara and Ventura counties, extending into the adjacent Los Padres National Forest. This was 
accomplished through a combination of Random Forest supervised classification, burn severity 
analysis using dNBR, and a comparative analysis between burn severity classes and type 
conversion. I found that the classification schema I developed was 68% accurate. Overall, there 
was a similar proportion of vegetation change across the study area, but the areas burned that were 
classified as forested (Conifer, Hardwood) pre-fire had a greater occurrence of being type 
converted to Shrubland. The Shrubland class within the study region experienced a succession of 
varying vegetation types. The Thomas Fire was categorized as mostly low to moderate severity, 
and there was some correlation between higher burn severity classes and certain types of vegetation 
change. This validates other research that assesses the dynamics of post-fire vegetation succession 
and reaffirms the need for future study on the effects of changing spatial and severity patterns on 
chaparral. 
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INTRODUCTION 
 
 

In recent decades, California has seen an increase in the size, frequency, and severity of 

wildfires, raising questions about best practices for ecological management in the future that 

addresses both human safety and ecosystem health (Buechi et al. 2021, Williams et al. 2019, 

Dennison et al. 2014). One of the most impactful drivers of this fire regime change has stemmed 

from over a century of policies implemented to prevent wildfires from occurring at all costs and 

suppress fire as soon as it begins (Grabinski et al. 2017). As a result of this, many ecosystems 

have shifted to having larger accumulations of fuels, changes in stand structure for many forests, 

and an increase in forest ladder fuels that causes more crown fires and greater plant mortality 

(Cortenbach et al. 2019). These larger, more severe wildfires have caused widespread changes in 

many of California’s ecosystems, some of which may be permanent due to stand replacing fires or 

compounding effects of disturbance such as drought followed by wildfire (Davis et al. 2019). In 

addition, a changing fire regime characterized by more frequent fires can potentially endanger 

some of California’s most unique ecosystems, including the chaparral shrubland. 

Chaparral ecosystems are characterized by a closed canopy, sclerophyllous shrub cover as 

the dominant vegetation type, and a fire regime that is infrequent yet produces severe wildfires 

(Davis and Michaelsen 1995). However, the severe fires that are characteristic of this ecosystem 

do not cause plant mortality; instead, they act as the catalyst for base resprouting shrubs and seed 

banks that require heat for germination (Tyler 1995). Most of the plant species in chaparral 

reestablish within 10 years following a fire, but if the return interval between fires is too short, 

these species cannot reestablish before the next fire (Zedler et al. 1983). This could lead to 

vegetation mortality and the potential for type conversion (Hope and Clark 2007). Factors such as 

habitat fragmentation, drought and a changing fire regime have compromised chaparral, allowing 

vegetative type conversion (VTC) to take place (Syphard et al. 2022). 

VTC is a process by which the dominant category of vegetation within a given ecosystem 

changes, potentially affecting other ecological components of the area in question (Syphard et al. 

2019). Historically, the closed canopy structure has made chaparral resilient to type conversion, 

because it blocks light so invasive grasses cannot establish (Park and Jenerette 2019). Type 

conversion can be caused by drought in chaparral, and the resulting shrub mortality causes 

openings that allow invasive grasses to establish (Jacobsen and Pratt 2018, Okin et al. 2018, Keeley 
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et al. 2022). Once chaparral has type converted to grassland, it is difficult to restore the previously 

closed canopy structure. There is a growing body of research assessing the dynamics between fire 

exclusion, drought, and wildfire in forested ecosystems, but less is known about the effects of these 

dynamics on chaparral and the implications for future management strategies. 

Additionally, it is worth noting the impact of land management by Indigenous communities 

in shaping the community dynamics of chaparral. Much of our current understanding of ecological 

plant communities lies in the definition of the “historical” fire regime, or the idealized landscape 

in which ecosystem management often strives to return to (Conard and Weise 1998). However, 

empirical evidence has shown that prior to colonization by European settlers in the late 18th 

century, chaparral, as many other ecosystems within California, was managed with cultural 

burning by Indigenous people (Anderson and Rosenthal 2015, Anderson and Keeley 2018). 

Among other management objectives, burning was used by these communities to generate 

landscape mosaics, cultivate fire adapted plant species of interest, and provide easier access to 

resources such as game animals that were otherwise blocked by the dense canopy of chaparral 

shrubs (Kimmerer and Lake 2001). For these reasons, discussions of land management in chaparral 

should consider the historical context of human interactions with the landscape when determining 

our own modern objectives, while still consulting with the communities that discovered the 

multiple facets of chaparral through the use of Traditional Ecological Knowledge. 

In this study, I assessed the ways in which severe wildfire impacts vegetation recovery and 

possible conversion in chaparral ecosystems. To accomplish this, I investigated three sub- 

questions, studying the 2017 Thomas Fire: (1) How did vegetation types change from 2015 to 

2022? (2) What is the distribution of burn severity in the Thomas Fire burn scar? (3) Is there a 

correlation between burn severity and type conversion? I hypothesized that vegetation type will 

change following the large disturbance, favoring a greater succession of herbaceous vegetation 

compared to shrubs in the burned areas, and conversion from forest to shrubland in more wooded 

areas. The Thomas Fire has been characterized as a predominantly intense, high severity fire, so I 

predicted that I would find similar spectral signatures in my NBR calculations. Finally, I predicted 

that the extent and varieties of type conversion found would vary with burn severity. To investigate 

these questions, I developed a supervised classification schema using data from CALFIRE’s 

FVEG land cover data in 2015, assessed the extent of burn severity using data sourced from MTBS, 

and calculated dNBR across the entire study area. Finally, I performed a spatial comparative 
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analysis between the extent of vegetation change within the burned and unburned areas and 

compared the types of change I found within the different burn severity classes. 

 
METHODS 

 
 

Study system 
 
 

The study system of interest is located in Santa Barbara and Ventura counties, CA. It is 

characterized by a Mediterranean climate, with warm, dry summers, cool winters, and most 

precipitation occurring between the months of October and April (Oakley et. al 2019). However, 

the precedence of years-long drought between 2012 and 2016 may have impacted this typical 

seasonality (Okin et al. 2018). Most of the vegetation in the study area is chaparral shrubland, 

although some areas are classified as coastal sage scrub, mixed conifer, and hardwood as well 

(CALFIRE 2015). For this study, the particular area of interest is located within the burn 

boundaries of the 2017 Thomas Fire, as well as a portion of area located to the north of the burn 

scar area within Los Padres National Forest. Despite being a somewhat different land cover 

distribution (more hardwood and mixed conifer forests than below, yet still including some 

shrubland), it is still a useful control as the topography of the region is similar to that of the burn 

scar area to the South (Figure 1). 
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Figure 1. Map of the study area. This map displays the outline of the AOI and the burn area of the Thomas Fire. 
 

The Thomas Fire ignited on December 4th, 2017, and rapidly spread due to historic Santa 

Ana katabatic wind events through the first few weeks of the fire (Kolden and Henson 2019). It 

burned nearly 282,000 acres and was declared fully contained on January 12th, 2018, after heavy 

rainfall helped aid suppression efforts (Kuyper 2018). The fire significantly burned areas of the 

Los Padres Forest, the surrounding watershed, and the Santa Ynez mountains. At the time of full 

containment, it was briefly the largest wildfire in California recorded history (Fovell and Gallagher 

2018). 

 
Vegetation change 

 
 

dNDVI 
 
 

NDVI is calculated by taking the normalized difference of the Red and NIR bands in a 

multispectral image, with values closer to 1 indicating higher reflectance and greener vegetation 
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(USGS 2022). However, chaparral has on average lower NDVI values due to the prevalence of 

shrubs and grass and notable absence of forested canopy; as such, it can be challenging at times to 

determine land cover classes from NDVI values alone (Hernández-Clemente et al. 2009). In this 

study site, I calculated the change in NDVI (dNDVI or ΔNDVI) between the months of May and 

September, as herbaceous vegetation tends to have similar spectral reflectance to shrubs in the 

spring, but has a sharp decrease come fall when the vegetation desiccates (Paruelo and Lauenroth 

1998, Rundel 2018). This assisted in creating a more distinct image to delineate shrubs from 

grasses, as well as provide an additional input to the supervised classification schema I created. 

 
NDVI = (NIR – Red) / (NIR + Red) 

ΔNDVI = NDVIpre – NDVIpost 

 
 

Supervised classification 
 
 

To classify vegetation type from remotely sensed data, I used existing vegetation maps 

sourced from CALFIRE in 2015 as part of a Random Forest supervised classification system to 

separate different vegetation types before the effects of the Thomas Fire (Saini 2023). I 

downloaded the FVEG land cover data from CALFIRE’s Fire and Resource Assessment Program 

(FRAP) as well as two Landsat 8 images sourced from USGS EarthExplorer (one taken on May 

3rd, and the other on September 24th, 2015). I first preprocessed the images by removing cloud 

cover and trimming them to my area of interest. Then, I adjusted the band combination of the 

images to a composite of bands 4, 5, and 7. This included the Red, NIR, and SWIR2 bands of 

Landsat 8 imagery and provided a greater contrast in the spectral reflectance of different vegetation 

types. For example, compared to a true color image, the spectral reflectance of forested areas was 

contrasted more strongly with lower reflectance vegetation such as grass. 

The vegetation classes that I used were modeled after the “Life Form” classes from the 

FVEG land cover map, and included 8 different classes: Shrubland, Herbaceous, Conifer, 

Hardwood, Agriculture, Barren/ Other, Urban, and Water (Figure 2). The first six classes were 

used in the subsequent vegetation type analysis, while the “Urban” and “Water” classes were 

included for accurate classification, yet I did not include them in my later change detection process. 

I followed a standard Random Forest supervised classification workflow from the Classification 
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Wizard, which is part of the “Image Analyst” package in ArcGIS Pro (Esri 2023). The first step 

included segmenting the images of interest to group pixels into clusters with similar spectral 

characteristics to one another. Then, I created training polygons by cross-referencing the FVEG 

land cover data with my composite reflectance images and formed a total of 460 training polygons 

as inputs to the classifier— 60 for each class excluding Shrubland (80) and Water (20). Next, I ran 

the classifier on the original composite band image, using the training polygons from my 

segmented images and the dNDVI calculated between May and September of 2015 as inputs to 

the classification schema. The output was a classified image by life form of the original composite. 

This was repeated for May and September 2015. 
 
 

 
Figure 2. FVEG 2015 land cover map. This map represents the ground truth used to determine the accuracy of my 
classification schema. 
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Analyzing vegetation change 
 
 

To determine the accuracy of my supervised classification method, I performed a confusion 

matrix on both classified images for 2015, using the original FVEG land cover map as my “ground 

truth” data. I generated 126 random points across the entirety of the AOI from the “Create 

Accuracy Assessment Points” tool. I had originally specified 100 random points, which were 

adjusted by ArcGIS Pro’s stratified random sampling to have an equal number of training points 

proportional to the area of each class. I then compared the values of the classified raster at each 

training point to the FVEG land cover map and used those points to generate a confusion matrix 

using the “Compute Confusion Matrix” tool. This compared the data generated using dNDVI and 

the vegetation composite as inputs to see if they could accurately distinguish the different 

vegetation classes at a 30-meter pixel resolution. This was also performed in ArcGIS Pro and 

required the Image Analyst license and toolbox (Esri 2023). 

 
Applying the classifier to 2022 data 

 
 

Once the confusion matrix was generated, I used the most accurate classification schema 

on the respective month in 2022, which was from September 2015. The same steps were repeated 

as with the 2015 classification workflow, but I replaced the dNDVI and segmented images with 

the corresponding raster data from 2022. The two rasters I used for analysis were from Landsat 9 

multispectral images, captured May 16th and September 3rd, 2022, and processed in the same way 

as before. I did not edit my training polygons if it seemed that the spectral characteristics were 

similar to the previous training polygons, although I did change the schema slightly, including 

adding an additional 20 training polygons to the “Barren/ Other” class for more accurate training 

(480 total). There was a notable lack of both classified land cover maps and satellite imagery 

available at a spatial resolution fine enough to distinguish different vegetation types, and as such, 

I omitted the confusion matrix analysis from the post-fire classification. 
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Burn severity analysis 
 
 

dNBR 
 
 

To determine the average burn severity in each vegetation class, I calculated dNBR across 

the entirety of the burned area, using the same Landsat 8 multispectral data from USGS for pre- 

fire (2017) and post-fire (2018) years using the available tools for band index calculations in 

ArcGIS Pro. NBR is used as a metric to quantify vegetation stress and is the normalized difference 

between the NIR and SWIR bands of a multispectral image. In comparison, dNBR (ΔNBR) shows 

the overall burn severity by subtracting the post-fire NBR from the pre-fire NBR in each pixel, on 

a scale from -1 to 1, with higher values indicating more severely burned areas. NBR is typically 

scaled by a factor of 103 to give an integer value in each pixel, and USGS has provided a standard 

scale to assess severity based on the dNBR of a site (Table 1). 

 
NBR = (NIR – SWIR) / (NIR + SWIR) 

ΔNBR = NBRpre-fire – NBRpost-fire 

 
Table 1. Burn severity classes from calculated dNBR values. Proposed by the U.S. Geological Survey. 

 

 
However, severity is relative due to the nature of chaparral, with a primary characteristic 

of a typical chaparral fire regime being high severity crown fires (Tyler 1999). Additionally, dNBR 

can sometimes indicate vegetation stress and mortality from drought (Sun et al. 2006). For this 

reason, I selected available imagery with minimal cloud cover that was closest to the start and end 

dates of the Thomas Fire (October 22nd, 2017, and February 11th, 2018), aiming to minimize the 

spectral influence of effects on vegetation from the 2012 to 2016 drought. This fire took place at 

the end of the multiyear drought, and as such caused highly flammable desiccated vegetation to 
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burn, which typically has a lower spectral signature than wildfires in other vegetation types 

(Keeley et al. 2022). 

 
Burn severity comparison 

 
 

To validate my remotely sensed burn severity data, I compared my calculated dNBR map 

to the geospatial data on burn severity for the Thomas Fire from Monitoring Trends in Burn 

Severity. This raster dataset was downloaded from MTBS for fires that occurred in California in 

2017, then trimmed to only include the perimeter of the Thomas fire. MTBS data accounts for both 

burn severity indices such as dNBR, as well as other factors including vegetation mortality to 

calculate their severity classes. For the Thomas Fire, the raster dataset was organized into five 

severity classes, from no change (1) to high severity (5). After converting the MTBS severity 

classes to polygons to create 5 different “Zones”, I exported the zonal statistics of the dNBR map 

to a table in ArcGIS Pro. This allowed me to calculate statistics for the dNBR values, including 

the mean, standard deviation, and range for each burn severity class. 

 
Extent of vegetation change 

 
 

To determine if there was a significant difference in type conversion between the burned 

and unburned areas within my AOI, I used the “Change Detection” workflow in ArcGIS Pro to 

first generate an output map that displayed each pixel that had converted from one vegetation type 

to another between 2015 and 2022. This led to 30 classes, with the six vegetation classes as both 

possible “From” and “To” classes. I then separated these classes into two areas: Inside and Outside 

of the burn perimeter and converted each dataset into isolated polygons grouped by type 

conversion class. This allowed me to compare the proportions of the vegetation change, grouped 

by 2015 and 2022 vegetation type. I then exported the area data to Microsoft Excel to graph the 

vegetation change grouped by pre-fire vegetation type. 

These steps were repeated for the unburned areas, using the September 2022 classified 

raster and the “Extract by Mask” tool to remove the pixels that had been type converted between 

2015 and 2022. This allowed me to have a comparative baseline, and appropriately scale the extent 

of the vegetation change in comparison to the areas that remained the same. I then converted this 
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raster into a polygon shapefile and exported the area data from the attribute table to Excel to add 

a control (“No Change”) class to my graphs. 

 
Comparing burn severity to type conversion 

 
 

To determine the impacts of burn severity on type conversion, I clipped the MTBS data to 

the different polygons created from the change detection raster using the “Extract by Mask” tool. 

This allowed me to isolate the different areas that had been both type converted and burned, and 

see if there were any trends in the classes of change within the burn perimeter. I then exported the 

attribute table that included both burn severity class and type conversion class by area to Excel to 

graph the relative changes in vegetation type by burn severity. 

 
RESULTS 

 
 

Vegetation change 
 
 

Comparison of Seasonal NDVI 
 
 

I found that between the two study years, the change in NDVI within a given year (May - 

September) was within approximately the same range, with the majority of values falling between 

-0.4 and 0.4 (Figure 3a-b). In 2022, the distribution of NDVI has changed somewhat, with a higher 

proportion of NDVI decline in the southern regions, indicating a potential sign of type conversion. 

Additionally, I observed that regions that experienced little to no variation in NDVI in the North 

in 2015 showed a more positive distribution in 2022. The average dNDVI value had decreased 

overall in 2022 (-0.06) compared to 2015 (0.02), which can also indicate a shift in vegetation type 

due to differences in seasonal NDVI fluctuations between cover classes (Figure 4). 
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(a) 

 

(b) 
 

Figure 3a and 3b. Maps of dNDVI for 2015 and 2022. This shows the seasonal variability of NDVI in the study 
area between May and September of 2022. The burn scar of the Thomas Fire is faintly visible in the 2022 map. 
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Figure 4. Change in seasonal NDVI. The distribution of seasonal variation of NDVI from 2015 to 2022. 
 

2015 Classification 
 
 

There was slight variation in the land cover distribution found in the seasonal maps. In 

May, there was a higher proportion of all vegetation cover types except for the Herbaceous class 

(Figure 5a-b). More areas were classified as Herbaceous in September of 2015, but I also 

determined that the accuracy assessment was higher in September than May (Figure 6). 
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(a) 

 

(b) 
 

Figure 5a and 5b. Land cover classification maps for (a) May and (b) September 2015. 
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Classification Accuracy 
 

Figure 6. Randomly generated points for accuracy assessment. These were the points generated from a stratified 
random sampling method and used as the input for the confusion matrix. The background map is the ground truth data 
from FVEG 2015 (California Department of Forestry and Fire Protection). 

 

May. I found that the overall accuracy of the Random Forest classification schema was 61% in 

May. The classes with the highest user accuracy included Agriculture (70%), Water (80%), and 

Shrubland (83%). In comparison, the classes with the highest producer accuracy included Urban 

(71%), Water (80%) and Agriculture (88%). 

From the confusion matrix that I calculated, errors of omission were highest in the 

Shrubland (42%), Hardwood (50%), and Barren (60%) classes. Additionally, errors of commission 

were highest in the Hardwood/ Conifer (64%), Herbaceous (70%), and Barren (80%) classes. The 

Kappa coefficient was 0.46, indicating a 46% overall agreement between classified and ground 

truth data (Table 2). 
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Table 2. Confusion matrix for vegetation classification accuracy of May 2015. 
 

Class ID 10 20 30 40 50 60 70 80 Total U Accuracy Kappa 

Water 10 8 1 0 0 1 0 0 0 10 0.8  

Urban 20 0 5 1 1 1 2 0 0 10 0.5  

Barren 30 0 0 2 0 8 0 0 0 10 0.2  

Conifer 40 0 0 0 4 6 1 0 0 11 0.36  

Shrubland 50 1 1 2 1 45 2 2 0 54 0.83  

Hardwood 60 0 0 0 0 9 5 0 0 14 0.36  

Herbaceous 70 1 0 0 0 5 0 3 1 10 0.3  

Agriculture 80 0 0 0 0 3 0 0 7 10 0.7  

Total  10 7 7 6 78 10 5 8 129   

P Accuracy  0.8 0.71 0.4 0.67 0.58 0.5 0.6 0.88  0.61  

Kappa            0.46 

 

September. I found that for September 2015, the overall classification accuracy was 68%. The 

highest user accuracy was found for Agriculture (80%), Shrubland (87%), and Conifer (90%), 

while the highest producer accuracy was in Water, Urban, and Herbaceous, all with a producer 

accuracy of 100%. 

Errors of omission were highest in Conifer (40%), Hardwood (47%), and Barren (60%) 

classes. Errors of commission were highest in Hardwood/ Herbaceous (50%), Urban (70%) and 

Barren (80%) classes. The high error rate with the Barren class can potentially be attributed to 

FVEG classifying the land cover type as Barren/ Other, while the primary input polygons I trained 

emphasized only the barren land cover surface reflectance values. In September 2015, the Kappa 

coefficient for the confusion matrix was 0.57, indicating a 57% agreement between the classified 

raster and ground truth data (Table 3). 
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Table 3. Confusion matrix for vegetation classification accuracy of September 2015. 
 

Class ID 10 20 30 40 50 60 70 80 Total U Accuracy Kappa 

Water 10 7 0 0 0 2 1 0 0 10 0.7  

Urban 20 0 3 1 0 4 1 0 1 10 0.3  

Barren 30 0 0 2 4 3 1 0 0 10 0.2  

Conifer 40 0 0 0 9 1 0 0 0 10 0.9  

Shrubland 50 0 0 2 2 45 3 0 0 52 0.87  

Hardwood 60 0 0 0 0 7 7 0 0 14 0.5  

Herbaceous 70 0 0 0 0 5 0 5 0 10 0.5  

Agriculture 80 0 0 0 0 2 0 0 8 10 0.8  

Total  7 3 5 15 69 13 5 9 126   

P Accuracy  1 1 0.4 0.6 0.65 0.53 1 0.89  0.68  

Kappa            0.57 

 

2022 Classification 
 
 

The results of the 2022 classification had a similar distribution of classes to the September 

2015 classification output (Figure 7). Of the 2,202 square kilometers of the study area, 989 sq km, 

or 45% of the total study area was classified differently in 2022 compared to its 2015 vegetation 

class. The greatest negative change in total land cover was in the Herbaceous class, with a relative 

81% decrease in area. The classes with the greatest relative increases were Shrubland (8%), 

Conifer (60%), and Barren (282%). The class with the greatest change overall was also Herbaceous 

cover, which decreased by 185 km between 2015 and 2022, while the greatest overall increase was 

in the Agriculture class (Table 4). 
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Figure 7. Land cover classification output for September 2022. 

 
 

Of the five vegetation classes, the most common type conversions were Herbaceous to 

Agriculture, Agriculture to Conifer, and Agriculture to Shrubland (Figure 8a). I determined that 

the areas with the most vegetation change did not occur within the burn perimeter of the Thomas 

Fire (Figure 8b). 
 

Table 4. Change in proportional land cover area of the six vegetation classes. 
 

Vegetation 
Type 

Total Decrease 
(-km2) 

Total Increase 
(km2) 

Net Change Total Area 
(2015) 

% Change 

Agriculture 274.44 165.04 -109.40 153.84 -71.12 

Barren 16.036 112.17 96.14 34.15 281.52 

Conifer 66.43 203.77 137.34 227.51 60.37 

Hardwood 186.23 158.40 -27.83 303.91 -9.16 

Herbaceous 297.22 112.52 -184.69 227.03 -81.35 

Shrubland 148.92 237.37 88.44 1135.15 7.79 
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(a) 

 

(b) 

Figure 8a and 8b. Total area of vegetation change grouped by pre-fire vegetation type. These were the 
observed type conversions (a) inside and (b) outside of the burn perimeter. 



Delaney Siegmund Type Conversion in Chaparral Spring 2023 

20 

 

 

Burn severity analysis 
 
 

dNBR 
 
 

I analyzed the entire extent of the Thomas Fire footprint, which burned approximately 

1,140 square kilometers. MTBS primarily classified this fire as being moderate severity, with most 

of the area burned within the 1st, 2nd, and 3rd severity classes (Figure 9). The average dNBR over 

the entire area was 98 (±127), or predominantly low severity/ mild disturbance but with high 

variation within the area (Figure 10). When isolating just the fire perimeter, I found that the average 

dNBR was 185 (± 119), indicating that it was generally a moderate severity fire, with some pockets 

of high severity within the burn perimeter. 
 
 

 
Figure 9. Burn severity classes. From Monitoring Trends in Burn Severity geospatial data. 
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Figure 10. Map of burn severity distribution (dNBR) across the entire study area. Higher values indicate more 
severely burned areas. 

 

Burn Severity Comparison 
 
 

When assessing the relationship between dNBR and the MTBS severity classes, I observed 

that severity classes 1-4 generally fell into their respective designations for the severity classes 

provided by USGS (Table 5). However, severity class 5 had a much lower average dNBR 

compared to its respective high severity designation (+660 to +1300). As such, I concluded that 

areas that were designated a “5” by MTBS had compounding impacts that affected the burn 

severity in addition to their dNBR value. 
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Table 5. Comparison of calculated dNBR to MTBS classes. 
 

Class Minimum Maximum Mean Std. Dev. 90th Percentile 

1 -341 525 85.55 78.95 188 

2 -315 566 163.10 84.63 274 

3 -200 682 271.39 94.82 392 

4 -78 647 344.28 105.61 474 

5 -308 397 86.29 84.20 183 

 
Comparing burn severity to type conversion 

 
 

Within the areas that experienced vegetation change, I observed that the majority of low 

severity fire (1-2) occurred across a relatively even proportional area of all classes (Table 6). 

Moderate severity (3) primarily occurred in Hardwood, Herbaceous and Agriculture classes while 

high severity (4-5) fire occurred primarily in the Herbaceous class. 

 
Table 6. Burn severity in type converted areas by pre-fire vegetation type. 

 
Severity Class Agriculture 

(km2) 
Conifer 
(km2) 

Hardwood 
(km2) 

Herbaceous 
(km2) 

Shrubland 
(km2) 

1 77.67 5.58 30.01 84.62 29.18 

2 76.70 4.83 38.40 74.53 19.05 

3 69.44 7.86 70.40 78.49 22.14 

4 3.07 1.70 5.76 4.57 2.01 

5 3.37 0.12 0.78 3.68 0.53 

 
Comparatively, I observed that Shrubland had the greatest total area across all severity 

classes when assessing post-fire vegetation succession (Table 7). The areas classified as being low 

severity also had a high proportion of Hardwood and Conifer succession, while moderate and high 

severity classes had a large successional portion of the Conifer class. This could be classification 

error or a potential restoration of mixed conifer forests in the Northern regions from fire opening 

previous shrubland that had encroached into the neighboring forest. 
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Table 7. Burn severity in type converted areas by post-fire vegetation type. 

 
Severity Class Agriculture 

(km2) 
Conifer 
(km2) 

Hardwood 
(km2) 

Herbaceous 
(km2) 

Shrubland 
(km2) 

1 33.99 41.03 43.50 22.05 63.43 

2 34.30 38.75 35.66 22.45 58.16 

3 38.84 45.35 35.34 26.40 73.89 

4 2.76 4.26 1.98 1.61 4.67 

5 1.09 1.52 1.31 0.77 2.97 

 

I determined that most of the area fell within burn severity classes 1 through 3, which also 

had the greatest amount of conversion by area of the five severity classes (Figure 11). Due to their 

comparatively small size, I grouped severity classes 4 and 5 together for further analysis. 

Total Area by Burn Severity Class 
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Figure 11. Total area by burn severity class. This is the distribution of severity across the entire fire perimeter. 
 

The largest type conversions by area within the burn severity classes were Herbaceous to 

Shrubland (31.88 km2), Herbaceous to Agriculture (24.88 km2), and Hardwood to Shrubland 

(37.75 km2) for classes 1, 2, and 3 respectively (Figure 12a-c). I observed that the higher severity 

classes typically had a more even distribution of conversion across all classes than the lower 

severity ones, with Herbaceous to Shrubland (2.6 km2) and Hardwood to Shrubland (2.38 km2) 

being the largest conversions by area for classes 4 and 5 (Figure 12d). 
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Figure 12a, 12b, and 12c. Type conversions in each burn severity class. The first three classes had the greatest 
total area burned, and the distribution of the respective class conversions was contingent upon the severity class. 

 

(d) 
 

Figure 12d. Type conversions by area for severity classes 4 and 5. The two highest severity classes had a much 
smaller total area burned than classes 1-3. 
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DISCUSSION 
 

I found that there was a shift in both the overall distribution and mean dNDVI between the 

study years, from 0.0 in 2015 to -0.05 in 2022, suggesting a potential change in both the extent 

and types of vegetation within the study area. The classification schema I used to compare 

vegetation in 2015 and 2022 was 68% accurate with an overall agreement between producer and 

user accuracy of 57%. To identify burn severity, I looked at the entire extent of the Thomas Fire 

and found that most of the area burned was within the first three severity classes, which was 

validated by a mean dNBR of 185 (± 119), corresponding to a low to moderate severity fire overall. 

Across the entire study area, I did not find a higher proportion of type conversion within the burn 

perimeter, indicating that there might have been other factors (drought, land use change, climatic 

shifts) that were driving the change in vegetation type instead. When comparing type conversion 

classes to area burned, there was not a proportionally larger amount of change in the higher burn 

severity classes, further supporting the idea that more severe fire was not the key factor in causing 

type conversion. 
 

Vegetation change 
 

In the early successional stages of chaparral shrubland after a disturbance, it can be difficult 

to accurately distinguish different vegetation types from one another. Accurate classification can 

be crucial to determine how and to what extent vegetation community composition might be 

changing (Guo et al. 2001, Tiribelli et al. 2018, Keeley et al. 2022). The supervised classification 

schema used to determine the land cover types for the 2015 data returned an overall accuracy of 

68%, suggesting that it was somewhat accurate in determining the extent of land cover change due 

to the Thomas Fire. The utilization of broader life form categories allowed me to gain some insight 

into the larger regionwide vegetation dynamics without requiring high spectral resolution. The 

extent and explicit spatial location of vegetation change is important for management decisions 

regarding the balance between biodiversity and community safety. For example, chaparral to 

herbaceous type conversion does not post a large fire hazard in more remote areas, but a lot of 

chaparral shrubland is close to the WUI and as such, may pose a greater risk to communities if 

type conversion takes place (Syphard et al. 2011). Conversion to herbaceous annual cover is 
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problematic in these areas as the annual resprouting habit and seasonal desiccation in the warmer 

dry months poses a greater likelihood of reburns, which can increase community smoke exposure 

in populated areas. 

Regardless of the extent of vegetation change, determining the effect of more frequent and 

high severity fires on vegetation succession in shrubland is important for future management 

decisions (North et al. 2012). Some vegetation change was detected, supporting empirical evidence 

that suggests fire severity can lead to type conversion (Conard and Weise 1998, Syphard et al. 

2021). However, there was not a significantly higher proportion of type conversion from shrubland 

to grassland within the burn perimeter compared to outside. This provides inconclusive evidence 

as to the extent of this specific fire’s impact on chaparral type conversion, especially considering 

most of the area classified as shrubland in 2015 remained unchanged in 2022. Even though 

chaparral ecosystems are characteristically resilient to infrequent, high severity fire, we are now 

seeing an increase in the frequency as well as severity of uncontrolled wildfires. This is 

compounded by drought conditions that continued after the fire, leading to more typically resilient 

species to be compromised (Dong et al. 2019, Field et al. 2020, Keeley et al. 2022). Current 

management practices still err on the side of suppression in chaparral shrubland, as historical fire 

regimes that were supported by Indigenous burning are difficult to replicate. Additionally, metrics 

that indicate “healthy chaparral” might fail to meet other management goals (North et al. 2012). 
 

Burn severity 
 

I found that most of the area burned in the Thomas Fire was classified as low to moderate 

severity, although this is relative given the ecology of the study site. dNBR is one standard metric 

used for remotely calculating burn severity, although lower reflectance vegetation cover such as 

shrubland typically exhibits less of a spectral signal, and as such is a less robust application of the 

metric (Szpakowski and Jensen 2019, Storey et al. 2020). More delineated spectral signals tend to 

show up in forested ecosystems in comparison to more homogenous landscapes such as chaparral 

shrubland, so using a standardized metric such as the categorical burn severity data allowed me to 

compare the Thomas Fire on a standardized scale to other wildfires. The categorical data from 

MTBS considers dNBR (differenced Normalized Burn Ratio) and other factors such as impacts on 

soil moisture and vegetation mortality after a fire (MTBS 2022). This supported the dNBR data 

that suggested low to moderate severity overall, despite the large spatial extent and community 



Delaney Siegmund Type Conversion in Chaparral Spring 2023 

28 

 

 

disruption that accompanied this disturbance (Syphard et al. 2021). Additionally, the vegetation 

classes with higher spectral reflectance (Conifer and Hardwood) were more likely to be 

categorized as moderate severity as opposed to low, which could have reflected higher mortality 

and conversion within the burn perimeter of those classes, or simply a measurement of flame 

intensity due to higher fuel loads in more forested regions. 
 

Comparison of burn severity to type conversion 
 

The burned and unburned areas of the study site had a very similar proportion of vegetation 

change among the five classes. The Shrubland class remained the largest by area and experienced 

very little type conversion proportional to the total area. The Hardwood class experienced a similar 

amount of change in all classes outside of the burn perimeter, but a much higher proportion of 

Shrubland and Herbaceous type conversion within the perimeter. This supports other literature that 

suggests that high severity wildfire can cause type conversion in ecosystems with historically low 

severity, more frequent fire regimes, or those less adapted to high severity fire (Steel et al. 2015). 

The fact that chaparral had very little type conversion supports other studies that have asserted that 

fire return interval, not overall severity, drives shrub mortality and type conversion (Hope and 

Clark 2007, Meng et al. 2014, Conard and Weise 2015). 

The higher burn severity class (4-5) experienced a proportionally greater incidence of type 

conversion to Shrubland in almost all classes, but especially for the Hardwood and Herbaceous 

classes (Figure 11d). This suggests that for those classes, high burn severity did have a significant 

impact on the type conversion that took place, even if it was overall a very small amount by area. 

Drought coupled with high severity wildfire drives extensive tree mortality, so this finding 

supports other studies conducted in different forested ecosystems (Steel et al. 2015, Field et al. 

2020). In comparison, the lower severity classes (1-3) had a much more even distribution of 

vegetation change across all classes. This suggests that other factors (including inconsistencies in 

my classification schema) were causing type conversion, and not necessarily the burn severity in 

those instances. 
 

Limitations 
 

The spatial (30m) and temporal scales of available geospatial data limited the number of 

inferences I could draw about community- level type conversion dynamics. Using a smaller spatial 
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resolution sensor would likely yield more accurate classification results as well as provide a more 

in-depth view of how vegetation changed over time, potentially identifying vegetation to more 

specific communities (such as coastal sage scrub versus just shrubland). This could also eradicate 

errors such as misclassifying herbaceous cover to agriculture, which likely caused inconsistencies 

in the results (e.g., the high conversion to the Agriculture class). I did not investigate what 

management and agricultural practices have taken place in the years following the Thomas Fire, 

which would have likely informed more accurate analysis of the data that I collected. 

A considerable limitation of this study is that it only follows the changes 5 years after the 

Thomas Fire, and as such still falls under the earliest phases of full shrub succession following a 

disturbance. As it is, life-form level vegetation type conversion is not completely indicative of 

significant change, especially considering that primary succession of shrubs immediately 

following fire can mimic the spectral signature of herbaceous or grass cover (Guo 2001). 
 

Future directions 
 

In the future, longer temporal analyses of the effects of fire on community level vegetation 

succession dynamics should continue to be monitored in chaparral. Since the historical fire regime 

is typically infrequent and high severity, this wildfire event may not have fallen outside of the 

typical regime that this chaparral ecosystem is accustomed to, thereby having relatively small 

impacts on the overall successional processes that are activated by disturbance. Ongoing 

monitoring should take place within the burn perimeter to see if this vegetation conversion 

establishes long term. Regardless, it is of utmost importance that we continue to assess the impacts 

of large scale, high severity wildfires to both ensure community safety as well as preserve 

biodiversity in the face of future disturbance. 
 

Broader implications 
 

It is worth noting that treating fire as an unmanageable environmental inevitability is a 

rather recent cultural belief, brought about by the timber industry in the early 20th century. Prior 

to that, Indigenous land management practices such as cultural burning were used to generate 

specific land cover types to support species of interest. Therefore, when discussing active 

ecological management to reduce fire severity, the management goals that we approach chaparral 

shrubland with in the modern era need to be adapted appropriately. This can be accomplished by 
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balancing the needs of ecosystems to support biodiversity and adequate habitat cover, modern 

recreation, and agricultural practices. Additionally, consulting Indigenous communities in our 

management decisions (especially when pertaining to fire) should be integral to the study of 

ecology and land management. 

The results found in this study add to the broader understanding of ecoregion level 

vegetation dynamics, and support other studies that consider more frequent fire and compounding 

natural disturbances as the driving forces behind type conversion in chaparral. Management 

decisions surrounding ecosystems with infrequent, high severity fire regimes face unique 

challenges as fire suppression becomes the necessary management strategy to replicate historical 

fire regime conditions. Other areas, such as frequent fire adapted conifer forests, will benefit from 

fuel treatments such as thinning and a reintroduction of prescribed fire, but the same cannot be 

said for Southern California chaparral. Fuel loads are not necessarily out of historical levels for 

chaparral shrubland, but the proximity to the Wildland Urban Interface does necessitate discussion 

about the prevention of wildfire to protect communities. As such, new management strategies 

(such as creating fuel breaks and leaving large continuous stands intact) must be implemented to 

preserve this natural biodiversity as well as prevent further large-scale disasters from occurring. 
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