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ABSTRACT 

 

Carbon Footprint (CF) calculation and reporting allows companies and organizations to quantify 
their emissions of greenhouse gases (GHGs). Higher education institutions (HEIs) play an 
important role in promoting sustainable development and mitigating climate change, and are 
increasingly reporting their CFs. A major challenge in HEI CF reporting is that there is no 
international standard for GHG accounting in the higher education sector, which has resulted in 
notable gaps and inconsistencies in in reported CFs among HEIs. In order to address sub-scope 
level gaps in HEI CFs, this study compares average emissions intensity (EIs) and linear regression 
modeling as approaches to predict missing emissions. Data on GHG emissions and institutional 
characteristics was downloaded from the Sustainability Tracking, Assessment & Rating System 
(STARS), and used to train five models to predict missing data for a total of thirteen emissions 
categories. The study found that multiple regression models produced the most accurate 
predictions for most emissions categories; however, the simple linear regression models using 
gross square footage of building space (GSF) or full-time equivalent student and employees (FTE) 
as the predictor variables offered similar accuracy for most emissions categories, while requiring 
only one input feature. The highest prediction accuracy was achieved for gross emissions (training 
R2 = 0.798, testing R2 = 0.765). It was concluded that average EI is not a robust modeling approach. 
HEI CF reporting needs to be expanded, and an international standard for GHG accounting in the 
higher education sector must be developed and formally adopted. 
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INTRODUCTION 

 

Climate change is one of the most critical challenges facing the world in the 21st century, 

threatening to undermine sustainable development and exacerbate inequality on a global scale 

(Cevik and Jalles 2023). Key social entities, including companies, organizations, and institutions, 

are increasingly recognizing, measuring, and acting on their climate impact in an effort to combat 

the climate crisis (Abad-Segura et al. 2019, Yilmaz and Can 2020). An important step in this 

process involves quantifying emissions of greenhouse gases (GHGs) that are produced as a result 

of an organization’s activities. Seeing as GHGs trap heat in the atmosphere and are the main driver 

of anthropogenic climate change, quantifying GHG emissions allows emitters to track emissions 

performance over time, and assess which activities have the greatest impact. To this end, GHG 

emissions are commonly calculated and represented in a carbon footprint (CF) that is specific to 

the organization (Global Footprint Network 2022). In the corporate world, CF reporting has 

become best practice in the sphere of corporate social responsibility (Walenta 2021, Carbon 

Disclosure Project 2022). Calculating and reporting CFs is an important step in taking 

responsibility for an entity’s contribution to climate change. 

Universities and higher education institutions (HEIs) are increasingly following suit by 

calculating and reporting their own CFs, in order to signal accountability, transparency, and 

leadership on sustainability matters (Li et al. 2021, Valls-Val and Bovea 2021). HEIs are 

considerable emitters of GHG emissions; in 2005, U.S. HEIs contributed an estimated 121 million 

MtCO2e, or around 2% of U.S. GHG emissions – comparable to one-quarter of California’s total 

emissions that year (Sinha et al. 2010). Trends in HEI sustainability action and reporting vary 

across the globe, and HEIs in North America and Europe are currently leading initiatives on these 

fronts (Alonso-Almeida et al. 2015, Amaral et al. 2020, Perchinunno and Cazzolle 2020, De Iorio 

et al. 2022). In the U.S., the American College & University Presidents’ Climate Commitment 

(ACUPCC) has encouraged hundreds of universities to create climate action plans, compile GHG 

emissions inventories, and publish regular progress reports with the goal of reaching climate 

neutrality. The program has been successful in spurring action and reducing emissions amongst 

participating HEIs (Foust 2016, Dyer and Dyer 2017). As institutions on the frontier of research 

and innovation, HEIs are expected to take charge and help guide societies towards sustainable 

development (Peer and Stoeglehner 2013, Lozano et al. 2013, Sedlacek 2013, McCowan 2020); 
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HEIs play a central role in educating future leaders, and have significant influence on governance 

at the regional and national level, which places these institutions in a position of power when it 

comes to promoting sustainable decision-making (Sedlacek 2013, Cordero et al. 2020). Creating 

and diffusing knowledge on climate change and sustainability challenges, expanding efforts to 

measure the climate impact of the higher education sector, and developing accurate and 

comprehensive CF reporting are central aspects to HEIs fulfilling their social responsibility of 

researching, addressing, and mitigating climate change. 

Key challenges that remain are that CF reporting is not practiced among all HEIs, and that 

there is no international GHG accounting framework that is specifically designed for the university 

context (Robinson et al. 2018, Valls-Val and Bovea 2022). As of 2016, only around 32% of U.S. 

HEIs had formally committed to GHG accounting and reduction (Foust 2016). Moreover, HEI 

sustainability reporting has been found to be in an early stage across the board (Ceulemans et al. 

2015, Alonso-Almeida et al. 2015). While there have been some efforts in the literature to create 

universal GHG accounting frameworks for HEIs, no tool or method has successfully been adopted 

as the international standard (Robinson et al. 2018, Valls-Val and Bovea 2021, 2022). 

Consequently, HEIs have mostly relied on various GHG emissions calculation frameworks, such 

as the GHG Protocol, which were designed predominantly for profit-making enterprises; adapting 

and interpreting these corporate standards comes with a broad range of assumptions and caveats 

that limits methodological consistency and accuracy of the resulting CFs across different 

institutions (Robinson et al. 2018). These developments have led to notable inconsistencies and 

gaps in reported HEI CFs, which makes comparability of emissions and climate impact between 

HEIs a challenge (Robinson et al. 2018, Clabeaux et al. 2020, Helmers et al. 2021, Second Nature 

2022a, Sprenk 2022). In order to, nonetheless, leverage available data and analyze the climate 

impact of HEIs, gaps in HEI-reported GHG emissions data need to be bridged. 

In this study, I am addressing the central research question: How can HEI GHG emissions 

be most accurately predicted for specific scopes and sub-scope categories of emissions? The sub-

questions guiding this research include (1) Can median emissions intensities for different scopes 

and sub-scope categories be used to accurately predict missing emissions data? (2) Can linear 

regression models for different scopes and sub-scope categories produce more accurate 

predictions? (3) Overall, how accurate and generalizable are these prediction models for emissions 

from different scopes and sub-scope categories? The research objectives for this study include 
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accessing data from the Sustainability Tracking, Assessment & Rating System (STARS) and 

analyzing it in a Python Jupyter Notebook. HEI emissions data will be used to train prediction 

models for scope 1, 2, and 3 emissions, and their respective sub-scope categories of emissions, 

using median emissions intensities (SQ1), as well as simple and multiple regression models (SQ2). 

The resulting models will be used to generate emissions predictions from training data to test the 

internal validity of the models ; test data will be reserved to assess the external validity of the 

models. Model performance will be compared using RMSE and the R2 coefficient of 

determination. My working hypotheses are that median emissions intensities can be used to create 

relatively reliable models for overarching emissions scopes, especially scopes 1 and 2; however, I 

predict that regression models can create more reliable predictions across the board, and are 

especially important for predicting emissions in sub-scope categories. I also expect that model 

performance will be inconsistent between emissions categories, and be largely affected by data 

availability. 

 

BACKGROUND 

 

Climate impact assessments and GHG accounting for HEIs 

 

right° based on science 

 

For this thesis project, I am collaborating with the research outreach team right. open at 

right° based on science (hereafter, right°). Right° is a company based in Frankfurt, Germany, that 

has created a climate impact assessment tool, the X-Degree Compatibility (XDC) Model, which 

quantifies and contextualizes the contribution to climate change of a certain company, building, or 

financial portfolio (right° based on science 2023). One challenge with traditional CFs is that 

climate impact is only gaged through emissions reported in metric tons of carbon dioxide 

equivalent (MtCO2e). Although CFs reported in MtCO2e make it possible to compare the relative 

magnitudes of emissions arising from different sources or entities, the MtCO2e unit does not 

effectively communicate how much these emissions are contributing to climate change (Helmke 

et al. 2020, right° based on science 2022). If we compare entity A and B, which produce 10 
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MtCO2e and 1,000 MtCO2e respectively, we can see that entity B is a larger emitter than entity 

A; however, it is not obvious how much these emissions contribute to climate change. 

In response to this inherent weakness of CF reporting, right° developed the XDC Model, 

which translates CFs in MtCO2e to a climate impact metric in °C of global warming. The XDC 

model addresses the question: “How much global warming would occur if the entire world had the 

same climate performance as the entity in question?” (right° based on science 2023). Data on an 

entity’s GHG emissions and economic contribution are used as inputs to the XDC model, which 

then scales up the entity’s impact to the global scale to output predicted global temperature increase 

in °C that would arise from the resulting emissions. A direct comparison between the °C warming 

output of the model and the 1.5°C or 2.0°C warming goals defined by the Paris Agreement allows 

the entity to assess how well their operations are aligned with international climate change 

mitigation goals. This analysis presents the activities of an individual entity in the context of a 

global, concerted effort to combat the climate crisis, making it a much more powerful and 

comprehensible climate impact metric than MtCO2e alone.  

Currently, right° has applied its model to industrial companies, financial portfolios, and the 

real estate sector. Now, they are in the process of adapting their methodology and software model 

to the higher education sector. My research contributes to these efforts, by analyzing how gaps in 

HEI GHG emissions data can be overcome. 

 

GHG Protocol, emissions scopes, and sub-scope categories 

 

The World Resources Institute (WRI) and the World Business Council for Sustainable 

Development (WBCSD) together created the GHG Protocol Corporate Standard, which is the most 

commonly used GHG emissions accounting standard (Greenhouse Gas Protocol 2022). The GHG 

Protocol outlines three scopes of emissions, and provides guidelines on how to calculate and report 

these emissions. Within each scope, the GHG Protocol defines several sub-scope categories that 

describe specific sources or activities from which emissions arise (Figure 1); taken in sum, the 

emissions from the sub-scope categories make up the total emissions in a scope (Table 1). The 

scopes and sub-scope categories defined in the GHG Protocol, or a variation of them, are used by 

most HEIs to calculate and report their emissions (Valls-Val and Bovea 2021); therefore, 
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understanding this framework is central to this thesis, and more broadly to studying GHG 

emissions from HEIs. 

 

 
Figure 1. Overview of GHG Protocol scopes and emissions sources across an entity’s value chain. Image from 
Greenhouse Gas Protocol’s “Corporate Value Chain (Scope 3) Accounting and Reporting Standard” 2011 report. 

 

Scope 1 (“direct emissions”). Scope 1 emissions are GHG emissions that arise from sources 

directly owned or controlled by a company or entity (Greenhouse Gas Protocol 2004). This 

typically includes emissions from on-site machinery such as generators, furnaces, boilers, or 

vehicles. The GHG Protocol defines the following sub-scope emissions categories for scope 1: (1) 

stationary combustion (e.g. boilers and furnaces), (2) mobile combustion (e.g. vehicle fleet), (3) 

fugitive emissions (e.g. GHG leaks from refrigeration or air-conditioning units), and (4) process 

emissions (e.g. emissions resulting from industrial processes like cement manufacturing). 

 

Scope 2 (“indirect emissions”). Scope 2 emissions are emissions associated with the production 

purchased energy – primarily, purchased electricity (Greenhouse Gas Protocol 2004). The GHG 

Protocol scope 2 framework also applies to purchased steam, heating, and cooling; however, not 

all entities or companies purchase steam, heating, or cooling (Greenhouse Gas Protocol 2015). 
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While the generation of these resources produces GHG emissions, the emissions do not occur at 

sites or sources controlled by the reporting entity – therefore, these emissions are the indirect result 

of an entity’s activities. The following sub-scope categories for scope 2 are defined by the GHG 

Protocol: (1) purchased electricity, (2) purchased steam, (3) purchased heating, and (4) purchased 

cooling. 

There exist two common accounting methods for purchased electricity: market-based 

accounting, and location-based accounting (Greenhouse Gas Protocol 2015). Both methods 

calculate emissions by multiplying consumption data (kWh consumed) by an emissions factor that 

gives the amount of GHG produced by consuming a single unit of energy (MtCO2e/kWh). The 

market-based accounting approach calculates emissions based on the electricity that entities 

choose to purchase from their supplier. This approach considers the relative impact, or emissions 

factors, of the energy sources included in the mix that is supplied to the entity. Notably, in this 

approach, renewable energy sources have an emissions factor of 0, meaning that if an entity uses 

only electricity from renewable sources, their reported emissions for purchased electricity amount 

to zero. The location-based accounting approach, on the other hand, uses the emissions factors that 

are based on the average emissions intensity of the local grid area. This approach does not discount 

emissions based on the specific electricity mix purchased by an entity or the use of on-site 

renewables. The distinction between these approaches is important when discussing scope 2 

emissions from purchased electricity.  

 

Scope 3 (“other indirect and value chain emissions”). Scope 3 emissions are emissions that are 

produced as the consequence of an entity’s activities, but are not emitted from sources controlled 

or owned by the company. These emissions are not included in scope 2, and are associated with 

the value chain of the entity, i.e. any upstream or downstream activities related to the entity’s 

operations (Greenhouse Gas Protocol 2011). This may include the commuting of employees, or 

any emissions associated with the goods and services purchased by the entity, for example. Scope 

3 therefore comprises many different sources of emissions, and this scope often accounts for the 

majority an entity’s total emissions (Clabeaux et al. 2020, Valls-Val and Bovea 2021, García-

Alaminos et al. 2022). At the same time, these emissions are often the most difficult to quantify, 

and therefore the calculation and reporting of scope 3 emissions is typically more limited (Larsen 

et al. 2013, Robinson et al. 2018, Valls-Val and Bovea 2021). Additionally, not all sub-scope 
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categories apply to every entity, and some entities do not have the means or capacity to collect all 

the necessary data to calculate these emissions (Robinson et al. 2018). 

 The GHG Protocol defines the following 15 sub-scope categories of scope 3 emissions: 

(1) purchased goods and services, (2) capital goods, (3) fuel- and energy-related activities (not 

included in scope 1 or scope 2), (4) upstream transportation and distribution, (5) waste generated 

in operations, (6) business travel, (7) employee commuting, (8) upstream leased assets, (9) 

downstream transportation and distribution, (10) processing of sold products, (11) use of sold 

products, (12) end-of-life treatment of sold products, (13) downstream leased assets, (14) 

franchises and (15) investments. 

The American College & University Presidents’ Climate Commitment (ACUPCC) 

requires HEIs to report their scope 1 and scope 2 emissions, but only requires reporting for two 

sub-scope categories of scope 3 emissions: employee commuting and air travel paid for by or 

through the university (i.e. business travel). The ACUPCC “strongly encourages” signatory HEIs, 

“to investigate and report on additional Scope 3 emissions, especially those from sources that are 

large and can be meaningfully influenced by the institution” (Second Nature 2022b). The 

ACUPCC also leaves it up to the individual HEI’s discretion to develop their own guide for 

completing GHG inventories, and allows a choice of GHG inventory calculators, as long as they 

are consistent with the standard of the GHG Protocol (Second Nature 2022b). This goes to show 

that guidance on GHG emissions accounting and reporting for HEIs is mostly aligned with the 

GHG Protocol, but is very limited, especially for scope 3. The diversity of reported emissions 

categories, GHG inventory collection guides, and GHG inventory calculators makes it so that the 

approaches and scopes of reported CFs are different between ACUPCC signatories. 
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Table 1. Summary of scopes and sub-scope categories of emissions. Scope 1 emissions are classified as direct 
emissions resulting from on-site sources and activities. Scope 2 emissions are energy-related indirect emissions, while 
scope 3 emissions are indirect emissions arising from upstream and downstream sources and activities along the 
entity’s value chain. 
 

Direct Emissions Indirect Emissions 
Scope 1 Scope 2 Scope 3 

 
 

1. Stationary 
combustion 

2. Mobile 
combustion 

3. Fugitive 
emissions 

4. Process 
emissions 

 
 

1. Purchased 
electricity 

2. Purchased 
steam 

3. Purchased 
heating 

4. Purchased 
cooling 

Upstream emissions 
 

1. Purchased goods 
and services 

2. Capital goods 
3. Fuel- and energy-

related activities 
(not included in 
scope 1 or scope 2) 

4. Upstream 
transportation and 
distribution 

5. Waste generated in 
operations 

6. Business travel 
7. Employee 

commuting 
8. Upstream leased 

assets 
 

Downstream emissions 
 

1. Downstream 
transportation and 
distribution 

2. Processing of sold 
products 

3. Use of sold 
products 

4. End-of-life 
treatment of sold 
products 

5. Downstream leased 
assets 

6. Franchises 
7. Investments 

 

Normalizing, modeling, and predicting HEI GHG emissions 

 

HEI emissions intensities 

 

Emissions intensity (EI) is a commonly used metric that is used to normalize GHG 

emissions between actors within a certain sector. Fundamentally, an EI is simply the amount of 

GHG emissions produced per one standard unit, given as a fraction with emissions as the 

numerator and one standard unit as the denominator: 

 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	(𝐸𝐼) = 	
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑢𝑛𝑖𝑡
 

 

EIs can be adapted and modified by changing the standard units in the denominator. For 

example, the denominator could be GDP (gross-domestic product) when discussing emissions on 

the national level, GVA (gross-value added) on the industrial or corporate level, or kilocalorie 

produced on the cropland level. Manufacturers in the agricultural sector may calculate their EI in 
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MtCO2e/kcal produced, which helps make GHG emissions from farms of different sizes 

comparable (Carlson et al. 2017). Similarly, the EI of nations can be calculated and compared in 

MtCO2e per unit GDP (Goldemberg 2020) or per capita (Desme and Smart 2018). Generally, EIs 

are useful as they help normalize emissions, typically by a metric related to size, which helps make 

emissions from entities of different sizes comparable. Furthermore, EIs from different entities in a 

sector can be averaged to calculate how much emissions are produced per standard unit, on 

average, by entities in that sector. Such a sector average EI could be used to approximate the 

amount of GHG emissions produced by an entity of a given size which has not collected or reported 

emissions data: 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 5
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑢𝑛𝑖𝑡	6	"#$%"&$
∙ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑢𝑛𝑖𝑡𝑠 

 

EIs specific to the higher education sector have been developed and explored in the 

literature, where full-time equivalent students or employees (FTE) and gross-square footage of 

occupied building space (GSF) are the most commonly used standard units (Zhaurova 2008, Sinha 

et al. 2010, Klein-Banai and Theis 2013, Larsen et al. 2013, Helmers et al. 2021). Other, less-

commonly used standard units include economic metrics, such as dollar expenditure (Larsen et al. 

2013, Helmers et al. 2021). Average emissions intensities, with emissions normalized by FTE and 

GSF, were compared between different levels of Carnegie classification (Doctorate-granting 

Universities, Master’s Colleges and Universities, Baccalaureate Colleges, Associate’s Colleges, 

Special Focus Institutions, and Tribal Colleges and Universities) by Sinha et al (2010). This study 

used average EI for each Carnegie classification level, with emissions normalized by FTE, and 

enrollment data from the U.S. Department of Education’s National Center for Education Statistics, 

to estimate total emissions from the higher education sector in 2005. 

Logically, EIs help reveal the emissions intensity of individual HEIs. For example, an HEI 

with a hypothetical GSF of 400,000 is likely to produce more emissions than an HEI with only 

100,000 GSF; however, by calculating their respective EI, we can see which HEI produces more 

emissions per square foot of building space. EIs can be a quick tool for predicting emissions for 

an HEI that does not report emissions – by multiplying the available standard unit data (e.g. FTE 

or GSF) and the average sector EI to give a predicted emissions value. For example, if HEIs 
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produce on average 2 MtCO2e per square foot of building space, an HEI with GSF of 200,000 is 

expected to emit around 400,000 MtCO2e. Using average sector EI as an estimation method is 

advantageous since it is straightforward, easily interpretable, and only requires one input data 

point. 

 

Prediction Modeling for HEI GHG Emissions 

 

Previous studies have identified institutional characteristics that affect an HEI’s GHG 

emissions, and can therefore be used as predictor variables in linear regression models to predict 

emissions. FTE and GSF are particularly important predictors for HEI GHG emissions, and have 

been studied repeatedly (Fetcher 2009, Sinha et al. 2010, Klein-Banai and Theis 2013). In the 

literature, FTE is typically used to describe full-time equivalent enrollment of students; however, 

FTE can be extended to include full-time equivalent employees (Nebe 2022, Sprenk 2022). Right° 

is using a combined student and employee FTE metric for their model development. Therefore, 

the FTE metric I will be using in my analysis, and referring to going forward, describes full-time 

equivalent students and employees. 

Other predictors observed in the literature include variables related to local climate, such 

as mean July temperature and mean January temperature (Fetcher 2009), or heating degree days, 

and cooling degree days (Klein-Banai and Theis 2013). Predictors related to building area and 

space usage include GSF (Zhaurova 2008, Fetcher 2009, Sinha et al. 2010, Klein-Banai and Theis 

2013), lab square footage, residential square footage, and health care square footage (Klein-Banai 

and Theis 2013, Gui et al. 2020). Select economic predictor variables that have been explored in 

the literature, including total income (Wadud et al. 2019) and total expenditure (Helmers et al. 

2021). Other predictors related to institutional characteristics, such as Carnegie classification 

(Zhaurova 2008, Fetcher 2009, Sinha et al. 2010, Klein-Banai and Theis 2013), medical school 

status (Klein-Banai and Theis 2013, Gui et al. 2020), and public versus private institution type 

(Zhaurova 2008) have also been studied. These studies have shown that FTE, GSF, medical school 

status, and Carnegie classification are especially important determinants of HEI CFs (Fetcher 

2009, Sinha et al. 2010, Klein-Banai and Theis 2013, Gui et al. 2020). 

In terms of regression modeling observed in the literature, Fetcher (2009) and Klein-Banai 

and Theis (2013) are the most notable examples. Both studies used ACUPCC signatories as their 
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HEI samples. Fetcher predicted only combined scope 1 and 2 emissions data as the outcome 

variable, and used a stepwise multiple regression modeling approach. Emissions, FTE and GSF 

data was transformed using log10 to stabilize variance. Klein-Banai and Theis (2013) trained 

multiple regression models for combined scope 1 and 2 emissions, as well as for gross emissions 

from all scopes combined. Similar to Fetcher (2009), Klein-Banai and Theis (2013) log-

transformed emissions and GSF data. This study used principal component analysis and stepwise 

multivariate regression to find important determinants and produce emissions predictions. What 

has not been observed in the literature is prediction modeling for sub-scope categories of 

emissions, which is necessary to fill specific gaps in CFs. 

 

Data sources and data availability 

 

Sustainability Indicator Management & Analysis Platform (SIMAP) 

 

Seeing as the goal of my study is to predict GHG emissions data for different scopes and 

sub-scope categories of GHG emissions from HEIs, I require data for GHG emissions from HEIs 

with sub-scope level granularity, as well as data on institutional characteristics that could be used 

as predictor variables. The most commonly used data source for HEI GHG emissions in the 

literature is data from ACUPCC signatories (Fetcher 2009, Sinha et al. 2010, Klein-Banai and 

Theis 2013). The ACUPCC was developed in 2006 as a collaboration between twelve college and 

university presidents, and three organizations, namely Second Nature, ecoAmerica, and the 

Association for the Advancement of Sustainability in Higher Education (AASHE). As of 2011, 

Second Nature was the only remaining supporting organization of the ACUPCC, and rebranded 

the ACUPCC as the Presidents’ Climate Leadership Commitments (PCLC) signature program in 

2015. The PCLC is an expansion of the ACUPCC, and comprises three separate commitments: a 

Climate Commitment, a Resilience Commitment, and a Carbon Commitment (Second Nature 

2023a). 

 In 2022, Second Nature partnered with the University of New Hampshire Sustainability 

Institute (UNHSI) to offer the Sustainability Indicator Management & Analysis Platform (SIMAP) 

as the public reporting platform for PCLC signatories (Second Nature 2023b). SIMAP is a “carbon 

and nitrogen-accounting platform that offers campuses a simple, comprehensive, and affordable 
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online tool to track, analyze, and improve campus-wide sustainability” (SIMAP 2023). SIMAP 

was launched in 2017, and is based on the GHG Protocol standard. Prior to 2022, Second Nature 

had its own reporting platform for ACUPCC/PCLC signatory emissions data; however, this 

reporting platform is no longer accessible, and data can now be accessed only through SIMAP. 

 I requested data from the SIMAP Public Reporting Module, and was able to access GHG 

emission data with a level of granularity even smaller than the sub-scope categories defined by the 

GHG Protocol; emissions were reported by specific activities and sources, some of which needed 

to be aggregated to match sub-scope categories defined by the GHG Protocol. In terms of 

institutional characteristics, SIMAP collects data for Carnegie classification, U.S. state, total 

enrollment, and total building square footage. This presented a significant limitation for my 

research purposes, since I was interested in including further institutional characteristics to make 

predictions in my multiple regression modeling. Moreover, I needed full-time equivalent employee 

data to get my desired FTE count. Although additional data could be collected manually or 

downloaded from other data sources such as the Integrated Postsecondary Education Data System 

(IPEDS), it was difficult to get data for the same sample of HEIs and the same reporting years 

represented in the SIMAP dataset; also, combining data collected from different sources makes it 

more difficult to ensure consistency and reliability of the data. A final limitation presented by 

SIMAP data was sample size; although the ACUPCC/PCLC has over 700 signatories, only 398 

HEIs were active signatories to the most recent version as of Noveember 2022, of which only 194 

HEIs had publicly reported data to SIMAP. Reports from these 194 HEIs also stemmed from 

different years, ranging from 2013 and 2022. Using a smaller timeframe further limited my sample 

size. Ultimately, I did not use SIMAP data given limitations in institutional characteristics data 

and sample size. 

 

Sustainability Tracking, Assessment & Rating System (STARS) 

 

 The Sustainability Tracking, Assessment & Rating System (STARS) is a “transparent, self-

reporting framework for colleges and universities to measure their sustainability performance” 

(STARS 2023a). STARS was developed in 2006 in response to a call from the Higher Education 

Associations Sustainability Consortium (HEASC) for the AASHE to develop a campus 

sustainability rating system. The AASHE was established in 2005, and supports “the advancement 
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of sustainability in higher education by empowering higher education faculty, administrators, staff 

and students to be effective change agents and drivers of sustainability innovation” (AASHE 

2023). In total, 1,147 HEIs have registered to use AASHE’s STARS reporting tool as of March 

2023 (STARS 2023b).  

 STARS has a Content Display webpage that provides exact responses to specific reporting 

fields in STARS reports, including GHG emissions categories and a wide range of institutional 

characteristics. Several versions of STARS have been developed, with the sixth and most recent 

version being STARS version 2.2. The reporting framework changes slightly between versions, 

and data can be downloaded separately for each version. As of February 2023, 310 HEIs had 

reported under STARS version 2.2, with reporting years ranging between 2019 and 2023. 

Compared to SIMAP, STARS has a coarser granularity in terms of emissions categories; sub-

scope categories were included for all three scopes of emissions, but some sub-scope categories 

represented aggregated sources or activities.  

Ultimately, STARS presents a slight tradeoff in sub-scope emissions category granularity, 

but offered advantages over SIMAP in terms of sample size, availability of institutional 

characteristics data, and geographic coverage; STARS has international HEI participation, while 

SIMAP only included HEIs from the United States. In the literature, STARS and SIMAP have 

been contrasted as follows: “The findings showed that the STARS were by far the most 

comprehensive assessment framework for university sustainability. ACUPCC, on the other hand, 

fulfilled a different purpose of being a target-oriented assessment framework, primarily focusing 

on GHG reduction” (Shi and Lai 2013). This underscores the notion that SIMAP is closely aligned 

with the GHG Protocol and provides access to very granular GHG emissions data, while STARS 

collects more comprehensive data on sustainability-related variables, including a wide range of 

relevant institutional characteristics.  

 

METHODS 

 

Mapping emissions categories between STARS, SIMAP, and GHG Protocol 

 

In order to produce generalizable analysis and results, I mapped emissions categories 

collected by STARS to the emissions categories included in SIMAP and the GHG Protocol 
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framework. I created this mapping in Excel, listing all GHG Protocol categories in one column, 

and matching emissions categories from SIMAP to the GHG Protocol categories in an adjacent 

column. Allison Leach, Program Manager at SIMAP, signed off on the mapping from SIMAP to 

GHG Protocol. Finally, I matched STARS categories to SIMAP categories in a third column using 

STARS’s ‘Guidance for STARS participants using SIMAP’ (see Appendix A). Monika Urbanski, 

Senior Manager for Data, Resources & Publications at AASHE,  helped me develop and verify my 

mapping framework in regards to STARS. I used this mapping to aggregate emissions categories 

from STARS for my analysis, to better align with the GHG Protocol’s sub-scope emissions 

categories.  

 

Data collection, exploration, and preparation 

 

In this study, I analyzed data on HEI GHG emissions and institutional characteristics from 

AASHE’s STARS database. I downloaded STARS version 2.2 data from the Content Display 

webpage (see Appendix A). I used different queries to access the desired institutional 

characteristics and GHG emissions data, which were then directly downloaded as Excel files. I 

recorded all queries in an Excel sheet (see Appendix B). Each query produced a separate Excel 

sheet with data for one variable using the same sample of HEIs; I manually combined data columns 

for all variables into one combined Excel sheet, which I then uploaded to DataHub in order to 

perform analysis in a Jupyter Notebook. 

From STARS, I retrieved GHG emissions data for all possible scope and sub-scope level 

emissions categories, including scope 1 (stationary combustion, other sources, total), scope 2 

(imported electricity, imported thermal energy, total), and scope 3 (business travel, commuting, 

purchased goods and services, capital goods, fuel- and energy-related activities, waste, other 

sources, total).  

The institutional characteristics data that I downloaded included institution type/Carnegie 

classification (qualitative categorical – Associate’s, Baccalaureate, Master’s, Doctorate/Research), 

institutional control (qualitative categorical – public, private non-profit), medical school (binary), 

hospital (binary), satellite campuses (binary), endowment size (quantitative continuous - USD), 

gross floor area of building space (quantitative continuous – square feet), floor area of laboratory 

space (quantitative continuous – square feet), floor area of healthcare space (quantitative 
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continuous – square feet), full-time equivalent student enrollment (quantitative discrete – 

individuals), and full-time equivalent employees (quantitative discrete – individuals). The FTE 

metric used in my analysis was calculated manually and added as a feature, by adding full-time 

equivalent student enrollment and full-time equivalent employees together. 

Monika Urbanski confirmed that “0” values in the data are an indication of performance 

rather than missing data, while missing values are signified by “—” or N/A (i.e. null). Ultimately, 

all null and zero values were removed from the emissions data, because for certain emissions 

categories, many institutions reported zero emissions, which prevented me from producing 

accurate, non-zero predictions. Although reported zeros are technically a measure of performance 

in STARS, it is not obvious whether zeros from all HEIs are indeed an indication of zero emissions, 

or whether emissions for that category were simply not measured. For most emission categories, 

it is unlikely that an HEI produced no emissions at all. For example, 31 HEIs in my sample reported 

zero emissions for scope 3 emissions from commuting, and 51 HEIs reported zero emissions for 

scope 3 emissions from waste; however, it is highly unlikely that an HEI has zero emissions 

associated with the commuting of its students and staff, or the treatment of its waste. Furthermore, 

the objective of my study was to produce non-zero emissions estimates. If an HEI knows a certain 

emissions category does not apply to them, it is easy to fill in zero emissions for that category. 

Although STARS uses the market-based approach for scope 2 emissions from electricity, I 

removed zeros for this category too. While these zeros have a different meaning, since they 

indicate that all electricity is derived from renewable sources, it is easy to fill in zero emissions 

knowing that an HEI uses only renewable electricity; it is more difficult, however, to get accurate 

non-zero emissions predictions, which I was only able to achieve by removing zeros. 

For my analysis, I created a test-train split in the data, with 85% of my data being used for 

training, and 15% of my data being reserved for testing. Before beginning model training, I plotted 

histograms and boxplots of my emissions categories and predictor variables to investigate the 

distributions of the data. Normally distributed data is best suited for linear regression modeling, 

therefore I used the Shapiro-Wilk test to assess normality. I repeated this process of testing for 

normality for distributions of emissions intensities that I calculated using FTE and GSF as standard 

units. All modeling was performed in a Python Jupyter Notebook.  

 

Average emissions intensities 
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In order to address SQ1, I used my training data to calculate average emissions intensities 

for all emissions categories using FTE and GSF as standard normalizing units. GSF here 

corresponds to gross floor area of building space from STARS, and FTE corresponds to the sum 

of full-time equivalent student enrollment and full-time equivalent employees data from STARS. 

The exploratory data analysis stage showed that emissions, FTE, and GSF data was 

approximately normally distributed after transforming the data using log10 and removing outliers 

from the log-transformed emissions data below the 25th percentile and above the 75th percentile. 

For all log-transformed emissions categories, outliers fell below the 25th percentile, ranging 

between -2 and 2 on the log10 scale (i.e. between 0.01 and 100 MtCO2e); except for scope 3 

emissions from purchased goods and services, where all outliers fell above the 75th percentile at 

10,000 MtCO2e. Most outliers that were removed were therefore associated with particularly small 

reported emissions, with the exception of emissions in the purchased goods and services category. 

The HEI most commonly identified as an outlier was the University of Hawai’i Maui College; this 

HEI has a combined FTE of 1,492, and reports only 15 MtCO2e as its gross emissions.  

To get a more normal distribution of emissions intensities, I log-transformed emissions 

data and removed outliers, and divided each resulting emissions observation by respective log-

transformed FTE or GSF data. EIs for each category of emissions for all HEIs were therefore 

calculated according to the following equation:  

 

𝑙𝑜𝑔 − 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦	(𝐸𝐼) = 	
𝑙𝑜𝑔'((𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠)

𝑙𝑜𝑔'((𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑢𝑛𝑖𝑡)
 

 
Next, I took EIs for each emissions category from all HEIs and selected the average value. 

Seeing as emissions were not initially normally distributed, I chose median as the average metric, 

since the median is less affected by outliers. Ultimately, I used the this median EI value to make 

emissions predictions within each emissions category, according to the following equation: 

 

𝑙𝑜𝑔!"(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠) = 	2
𝑙𝑜𝑔10(𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠)

𝑙𝑜𝑔10(𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑢𝑛𝑖𝑡)
3
𝑚𝑒𝑑𝑖𝑎𝑛

	 ∙ 𝑙𝑜𝑔!"(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑢𝑛𝑖𝑡𝑠) 
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Treating median EI as a slope parameter (θ1), the above equation can be rewritten as 

follows, where 𝑦" is predicted emissions, x is observed normalizing units, and θ1 is median EI value: 

 

𝑙𝑜𝑔!"(𝑦") = θ!	 ∙ 𝑙𝑜𝑔!"(𝑥) 

 

Finally, I visualized emissions predictions by plotting log-transformed emissions versus 

log-transformed standard units in a scatter plot, alongside median EI model predictions as a linear 

function, for each emissions category. I also calculated residuals, and visualized these in a scatter 

residual plot to further asses model fit. 

I repeated this entire process twice, first using FTE, and then GSF as the standard unit.  

 

Linear regression modeling 

 

Simple Linear Regression (SLR) 

 

As an alternative prediction method to median emissions intensity, I used linear regression 

models to predict emissions for each emissions category using my training data. The main 

difference between the SLR and EI approach is that an intercept parameter (θ0) is fitted to the data, 

along with a slope parameter (θ1). The EI analysis also contains a type of slope term, since median 

EI can be thought of as the slope as shown above; however, this value was calculated manually, 

and was not fit to the data to reduce sum of squared residuals, as it is for SLR. Seeing as log-

transformed emissions versus log-transformed FTE or GSF seemed to best support a linear model 

in the exploratory data analysis, I used log-transformed emissions as the outcome variable, and 

log-transformed FTE and GSF data as my predictor variables. The equation used to make 

emissions predictions is the following, where 𝑦" is predicted emissions, x is either observed FTE or 

GSF, and θ" and θ! are the fitted intercept and slope terms: 

 

𝑙𝑜𝑔!"(𝑦") = 	θ" +	θ! ∙ 𝑙𝑜𝑔!"(𝑥) 
 

I plotted scatterplots and residuals for all trained SLR models that show the model 

predictions alongside log-transformed emissions and standard units data. 
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I repeated this entire process twice, first using FTE, and then GSF as the input data. 

 

Multiple Linear Regression 

 

For MLR, I included the following institutional characteristics as possible predictor 

variables: institution type/Carnegie classification, institutional control, medical school, hospital, 

satellite campuses, endowment size, FTE, GSF, floor area of laboratory space, and floor area of 

healthcare space. I manually checked null-values, and was able to correct one null value for the 

satellite campuses feature, where SUNY Oswego reported null despite having a satellite campus. 

The remaining null values came from three binary variables (medical school, hospital, satellite 

campuses) and one numerical feature (health care area), and were filled with zeros.  

In order to prepare my data for MRL modeling, I converted categorical variables into 

binary features using One-Hot encoding. I also added log-transformed features of all my 

quantitative, continuous features (GSF, FTE, endowment size, floor area of laboratory space, and 

floor area health care space). Next, I standardized quantitative, continuous variables, by 

subtracting the mean and dividing by the standard deviation of each continuous feature variable. 

In order to mitigate collinearity between my variables, I explored correlations between features 

visually, and used variance inflation factor (VIF) to iteratively filter out highly correlated variables.  

I used two subsequent feature selection approaches to find significant features and train 

model coefficients for each outcome emissions category. First, I selected significant features for 

each outcome emissions variable using p-values, and fed these into a forward selection algorithm 

to select features, and train ordinary least squares models. For this step, I split my training data 

into a training and validation set, and used the R2 calculated for the validation set to select features. 

Next, I compared the results with models trained using LASSO regularization, which included 10-

fold cross-validation for tuning the penalty-term hyperparameter. I compared the trained LASSO 

regression models with the forward selected models based on visual fit and R2 calculated on 

training data. Lastly, I plotted actual versus predicted emissions data in scatterplots, where a 

hypothetical perfect model follows the line 𝑦 = 𝑥, i.e. predicted emissions = actual emissions. For 

each emissions category, I was left with two MLR models with between 1 and n features included 

as predictor variables and an intercept term: 
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𝑙𝑜𝑔!"(𝑦") = 	θ" +	θ! ∙ 𝑥! 	+ ⋯	+	θ$ ∙ 𝑥$	 

 

Model evaluation 

 

To assess the internal validity of my models, I calculated emissions predictions and R2 for 

my training data set. Next, I calculated emissions predictions and R2 for the test data to assess 

external validity. I also calculated RMSE for all models first using my training data, and next using 

my test data. I used summary tables showing RMSE and R2 as model performance metrics both 

for my training and test data to make final recommendations for the best prediction method for 

each emissions category. 

 

RESULTS 

 

Mapping emissions categories between STARS, SIMAP, and GHG Protocol 

 

By mapping emissions categories between GHG Protocol, SIMAP, and STARS, I found 

that most emissions categories from the GHG Protocol framework are covered by the STARS data 

(Table 2). STARS documentation shows that multiple categories from SIMAP and the GHG 

Protocol were aggregated in the STARS framework, and cannot be represented individually. For 

example, scope 1 emissions from three separate categories, namely mobile combustion, process 

emissions, and fugitive emissions, according to the GHG Protocol, were combined into “Gross 

scope 1 GHG emissions from other sources (i.e. mobile combustion, process emissions, fugitive 

emissions)” in STARS. SIMAP has a higher granularity of emissions sources compared to both 

GHG Protocol and STARS, but highlights only very specific emissions sources within each GHG 

Protocol category. Meanwhile, the granularity of STARS is generally consistent with GHG 

Protocol categories, asides from mobile combustion, fugitive emissions, process emissions, 

purchased heating, purchased cooling, purchased steam, and employee commuting. In order to 

better align STARS with GHG Protocol, I combined “Scope 3 emissions from commuting” and 

“Scope 3 emissions from other sources not included in scope 1 or scope 2” into one category to 

align with GHG Protocol’s employee commuting category. This aggregation was informed by the 
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by ‘Guidance for STARS participants using SIMAP’ document provided by STARS (see 

Appendix A). I added a gross emissions category by summing total gross scope 1 emissions, total 

gross scope 2 emissions, and total gross scope 3 emissions from STARS. Overall, this left me with 

fourteen individual emissions categories. 

GHG Protocol categories for emissions from upstream leased assets, downstream 

transportation and distribution, processing of goods sold, use of sold products, end of life treatment 

of sold products, downstream leased assets, franchises, upstream waste and distribution, and 

investments were not accounted for in STARS or SIMAP. Process emissions and capital goods 

were covered by STARS but not SIMAP, although process emissions are not entirely relevant to 

HEIs. Overall, of the 28 emissions categories from the GHG Protocol, seventeen are represented 

in SIMAP via 24 categories, while eighteen are represented in STARS via fourteen total categories.  

 
Table 2. Mapping GHG emissions categories between GHG Protocol, SIMAP and STARS. SIMAP to STARS 
mapping informed by ‘Guidance for STARS participants using SIMAP’ document provided by STARS, SIMAP to 
GHG Protocol mapped manually. (a) Scope totals and gross emissions were mapped across frameworks; STARS has 
no explicit total/gross emissions category. (b) Four sub-scope categories from GHG Protocol for scope 1 covered in 
two categories by STARS. SIMAP does not cover process emissions. (c) Scope 2 purchased electricity covered by 
SIMAP and STARS, while purchased heating, cooling, and steam is aggregated. (d) Fifteen scope 3 sub-scope 
categories mapped, only five of which are covered by SIMAP and six by STARS. 
 
(a) 

GHG Protocol SIMAP STARS 
Totals 

Total emissions Gross Emissions - 

Scope 1 Total Scope 1 Emissions Total gross Scope 1 GHG 
emissions 

Scope 2 total Scope 2 Emissions Total gross Scope 2 GHG 
emissions 

Scope 3 Total Scope 3 Emissions Total gross Scope 3 emissions 
 

(b) 

GHG Protocol SIMAP STARS 
Scope 1 

Stationary Combustion 
Co-gen Electricity Gross Scope 1 GHG emissions 

from stationary combustion Co-gen Stem 
Other on-campus Stationary 

Mobile Combustion Direct Transportation Gross Scope 1 GHG emissions 
from other sources (i.e. mobile 
combustion, process emissions, 

fugitive emissions) 

Fugitive Emissions Refrigerants & Chemicals 
Fertilizer & Animals 

Process Emissions - 
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(c) 

GHG Protocol SIMAP STARS 
Scope 2 

Purchased Electricity Purchased Electricity Gross Scope 2 GHG emissions 
from purchased electricity 

Purchased Heating 
Purchased Steam/Chilled Water Gross Scope 2 GHG emissions 

from purchased heating and cooling Purchased Cooling 
Purchased Steam 

 

(d) 

GHG Protocol SIMAP STARS 
Scope 3 

Purchased Goods and Services Food Scope 3 GHG emissions from 
purchased goods and services Paper Purchasing 

Waste Solid Waste Scope 3 GHG emissions from 
waste generated in operations Wastewater 

Business Travel 
Study Abroad Air Travel Scope 3 GHG emissions from 

business travel Directly Financed Air Travel 
Other Directly Financed Travel 

Employee Commuting 

Faculty Commuting Scope 3 GHG emissions from 
commuting Staff Commuting 

Student Commuting 

Student Travel to/from Home 
Scope 3 GHG emissions from other 
sources not included in Scope 1 or 

Scope 2 

Fuel and Energy Related Activities Trasnmission & Distribution Losses 
Scope 3 GHG emissions from fuel- 

and energy-related activities not 
included in Scope 1 or Scope 2 

Capital Goods - Scope 3 GHG Emissions from 
capital goods 

Upstream Leased Assets - - 
Downstream Transportation and 

Distribution - - 

Processing of Goods Sold - - 
Use of Sold Products - - 

End of Life Treatment of Sold 
Products - - 

Downstream Leased Assets - - 
Franchises - - 

Upstream Waste and Distribution - - 
Investments - - 

 

Data collection, exploration, and preparation 

 

The complete STARS version 2.2 data had a total of 356 rows, each row corresponding to 

an individual STARS report submitted by an HEI. Since the launch of STARS version 2.2 in 2019, 

certain HEIs have submitted up to three reports, resulting in multiple rows corresponding to the 

same HEI. I filtered the data to get only the most recent report per institution, leaving 310 rows, 
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one for each unique HEI included in the sample. Reporting years range from 2019 to 2023. The 

data represented HEIs from fourteen countries spread across six continents (Figure 2). There were 

70 medical schools in the sample. 

 

 

 
Figure 2. Analyzing HEIs included in STARS version 2.2 data sample. (a) Almost half (~ 47%) of all HEIs were 
Doctorate-granting/Research institutions, and close to a quarter were both Baccalaureate institutions (~ 24%) and 
Master’s colleges (~ 22%). (b) Almost all HEIs (~ 95%) of HEIs in the sample were from North America, with the 
second largest group representing Asia, accounting for only around 2% of sample HEIs. (c) Out of 310 HEIs total, 
260 are located in the United States and 31 are located in Canada, together comprising around 94% of the total sample. 
 

 The histograms and boxplots for the original emissions data, with zeros and nulls removed, 

showed that emissions distributions were mostly unimodal, but skewed significantly to the right. 
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The Shapiro-Wilk test for normality showed that emissions from no emissions category were 

normally distributed. After applying a log10 transformation, emissions distributions looked 

significantly more unimodal and symmetric, although for most categories, distributions were still 

somewhat skewed, this time mostly to the left. Only scope 2 emissions from imported thermal 

energy were normally distributed at this stage, according to the Shapiro-Wilk test (p-value > 0.05), 

despite the visual distribution being bimodal; with a sample size of only 39, normality according 

to the Shapiro-Wilk test does not seem reliable for this category. After removing outliers, all 

emissions categories were normally distributed according to the Shapiro-Wilk test, except scope 2 

electricity, scope 2 total, scope 3 business travel, and scope 3 purchased goods and services.  

 Roughly the same trends were observed for emissions intensity distributions, with 

emissions normalized by FTE and GSF, where no emissions category had normally distributed 

data originally or after log-transforming, except scope 2 thermal. The skew and modality of the 

distributions again went from significantly skewed right, to being more symmetric with a slight 

left-skew. After removing outliers, skew was reduced, however not many emissions categories 

achieved normally distributed EI data. For EIs calculated using FTE, only scope 2 thermal and 

scope 3 fuel- and energy-related emissions were normally distributed according to the Shapiro-

Wilk test; for EIs calculated with GSF, scope 1 emissions from other sources, scope 2 thermal, and 

scope 3 fuel- and energy-related emissions were normally distributed according to the Shapiro-

Wilk test.  

Seeing as log-transformed emissions data with outliers removed below the 25% percentile 

and above the 75% percentile were mostly normally distributed, emissions data for each category 

was transformed in this way and used in the remaining analysis. Although EI distributions were 

mostly not normal, the above set of transformations made the distributions appear the closest to 

normal visually. Therefore EIs were ultimately calculated by dividing log-transformed emissions 

with outliers removed, by log-transformed FTE or GSF data. 

After removing zeros, nulls, and outliers, sample sizes varied across emissions categories 

(Table 3). The scope 3 category for capital goods only had eleven valid, non-zero observations and 

was therefore eliminated. Overall, thirteen emissions categories had training sample sizes 

sufficiently large (n > 30), and were included in modeling and subsequent analysis. Categories in 

scope 1 had the most observations, followed by scope 2, and finally scope 3. Aggregated categories 



Anna C. Smith Predicting University GHG Emissions Spring 2023 

 25 

(scope 1 total, scope 2 total, scope 3 total, and gross emissions) had among the most observations, 

and consistently had the greatest sample size within their respective scope. 

 
Table 3. Final sample sizes. Out of an original sample size of 310, the following number of observations remained 
after removing zeros, nulls, and outliers. Valid data resulted from removing nulls and zeros; after additionally 
removing outliers, the remaining data was split into training and test sets for each emissions category. S3 Capital 
Goods was eliminated from analysis (n < 30). Note small sample sizes for S2 Thermal and S3 Goods and Services. 
 

Emissions Categories Valid Data Outliers removed Training Data Test Data 

S1 Stationary 278 8 229 41 

S1 Other Sources 253 7 209 37 

S1 Total 282 9 232 41 

S2 Electricity 255 10 208 37 

S2 Thermal 39 0 33 6 

S2 Total 256 6 212 38 

S3 Business Travel 183 1 154 28 

S3 Commuting 135 2 113 20 

S3 Goods and Services 85 6 67 12 

S3 Capital Goods 11 - - - 

S3 Fuel and Energy 107 2 89 16 

S3 Waste 147 5 120 22 

S3 Total 232 4 193 35 

Gross Emissions 275 1 232 42 

 

Average emissions intensities 

 

 Scatterplots of log-transformed emissions versus log-transformed FTE and GSF showed a 

positive association between the variables; while the relationship appeared linear, the spread of 

data points was relatively wide for certain categories. Median EI calculated using log-FTE 

seemed to predict log10(emissions) relatively well, with the predicted emissions line following 

general trend present in the data (Figure 3). R2 was lowest for scope 2 categories, and highest 

among certain scope 3 categories; R2 values ranged from 0.068 for scope 2 thermal emissions to 

0.684 for scope 3 commuting emissions. The residual plots showed a relatively even scatter of 

points for all categories, although there seemed to be a slightly wider spread among negative 

residuals compared to positive residuals (Figure 4).  

 Median EI calculated by log-GSF predictions saw higher R2 values for most emissions 

categories compared to median EI predictions using log-FTE. R2 ranged between 0.105 for scope 
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3 goods and services, and 0.637 for gross emissions. Visually, the predicted values did not 

follow the general trend in the data (Figure 5). The residual plots clearly show that median EI by 

log-GSF tended to overpredict emissions for lower values of GSF, and underpredict emissions 

for higher values of GSF. This trend can be observed for almost every emissions category 

(Figure 6).  

 Generally, EIs were higher for FTE than for GSF, i.e. there were more emissions per full-

time equivalent student or employee than per square foot of building space. This can logically be 

explained as FTE values ranged between 330 and 114,870 individuals, while GSF ranged between 

106,223 and 49,663,410 square feet. Given the larger denominator for GSF, EIs were smaller 

compared to EIs for FTE. Median log-emissions per log-FTE or log-GSF units are summarized 

for all thirteen emissions categories in Table 4. 

 
Table 4. Median emissions intensities. A log-transformed emissions intensity, with log10(emissions) divided by 
log10(FTE) or log10(GSF), was calculated for HEIs in the sample. The median values are captured below. Median 
intensities are denoted by θ!, since they can be thought of as a slope term in a model of the form y = θ! ∙ 𝑥. 
 

Emissions Category FTE 𝛉𝟏 GSF 𝛉𝟏 
S1 Stationary 1.004 0.606 

S1 Other Sources 0.685 0.413 
S1 Total 0.996 0.606 

S2 Electricity 0.984 0.606 
S2 Thermal 0.81 0.529 

S2 Total 0.987 0.607 
S3 Business Travel 0.827 0.512 
S3 All Commuting 0.931 0.578 

S3 Goods and Services 0.489 0.309 
S3 Fuel and Energy  0.749 0.462 

S3 Waste 0.635 0.395 
S3 Total 0.986 0.604 

Gross Emissions 1.116 0.684 
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Figure 3. Scatterplots of log10(FTE) vs. log10(emissions) data alongside predictions made using median 
log-emissions per log-FTE unit. Good fit between predicted and actual emissions data. Positive linear trend 
seems to intensify with greater sample size. 
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Figure 4. Residuals for predictions made using median log-emissions per log-FTE unit. Relatively even 
scatter of residuals for all categories, with no distinct, non-linear trends. Wider spread of negative residuals 
compared to positive residuals for most categories. 
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Figure 5. Scatterplots of log10(GSF) vs. log10(emissions) data alongside predictions made using median 
log-emissions per log-GSF. Poorer fit compared to median EI by log-FTE. Prediction line seems to cut 
through data cloud unevenly. Visually, we start to see tighter linear correlations between log10(GSF) and 
log10(emissions), than between log10(FTE) and log10(emissions). 
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Figure 6. Residuals for predictions made using median log-emissions per log-GSF unit. Poor residual 
plots, with systematic over- and underprediction depending on size of GSF.  
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Linear regression modeling 

 

Simple Linear Regression (SLR) 

 

 Simple linear regression (SLR) models for log-emissions predicted by log-FTE and log-

GSF showed generally good fit to the data. For models using log-FTE as the predictor variable, 

scope 2 categories saw the poorest fit, as was observed in the median EI analysis using log-FTE 

(Figure 7). R2 values ranged from 0.103 for scope 2 thermal, to 0.700 for scope 3 commuting. 

These were the same low and high categories as observed in the median EI analysis using log-

FTE; however, the R2 value for both showed improvement from the median EI approach. Other 

relatively high R2 values were observed for scope 3 fuel- and energy related emissions and gross 

emissions, at 0.652 and 0.590 respectively. The residual plots showed a good, even scatter of 

residuals (Figure 8). 

 Using log-GSF as the predictor in the SLR models resulted in a particularly good fit, much 

improved from median EI using log-GSF, and for most categories, also improved fit compared to 

log-FTE predictions (Figure 9). The only categories where the SRL model using log-FTE predicted 

log-emissions better than log-GSF was emissions for scope 3 commuting and scope 3 goods and 

services. R2 values ranged from 0.141 for scope 2 thermal, to 0.774 for gross emissions. Several 

other emissions categories saw relatively high R2 values, including scope 3 fuel- and energy-

related emissions at 0.716, scope 1 stationary at 0.610, scope 1 other sources at 0.600, scope 1 total 

at 0.590, scope 3 commuting at 0.551, and scope 3 total at 0.503. Residual plots for SLR models 

using log-GSF also saw a significant improvement from the median EI analysis using log-GSF. 

For the SLR models, residuals are scattered evenly and show no distinct pattern. (Figure 10). 

Intercept and slope terms for models fitted to the training data are summarized in Table 5. 
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Table 5. Intercept and slope terms for SLR models. The SLR models predict log10(emissions) data using log10(FTE) 
and log10(GSF) as the input data. All slopes were positive, showing that emissions increase with FTE or GSF. θ" is 
the intercept term, and θ! is the slope term in the equation 𝑦= = 	θ" +	θ! ∙ 𝑥. 
 

Emissions Category FTE 𝛉𝟎 FTE 𝛉𝟏 GSF 𝛉𝟎 GSF 𝛉𝟏 
S1 Stationary 0.457 0.867 -3.605 1.153 

S1 Other Sources -1.145 0.954 -5.244 1.21 
S1 Total 0.376 0.882 -3.353 1.115 

S2 Electricity 0.713 0.766 -3.264 1.081 
S2 Thermal 1.251 0.52 -0.021 0.521 

S2 Total 0.565 0.814 -3.031 1.052 
S3 Business Travel -0.907 1.018 -4.798 1.217 
S3 All Commuting -0.632 1.079 -3.394 1.086 

S3 Goods and Services -1.338 0.839 -3.307 0.825 
S3 Fuel and Energy  -1.324 1.085 -5.419 1.281 

S3 Waste -0.664 0.792 -3.481 0.917 
S3 Total -0.429 1.064 -3.72 1.159 

Gross Emissions 0.536 0.974 -3.254 1.179 
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Figure 7. Scatterplots of log10(FTE) vs. log10(emissions) data alongside SLR model predictions with log-
FTE input. Good fit between predicted and actual emissions data. Wider spread of data points compared to 
log10(GSF) vs. log10(emissions). 
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Figure 8. Residuals for predictions made using SLR model with log-FTE input. Relatively even scatter of 
residuals for all categories, with no distinct, non-linear trends. 
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Figure 9. Scatterplots of log10(GSF) vs. log10(emissions) data alongside SLR model predictions with log-
GSF input. Tighter fit of actual data around prediction line. Improved visual fit compared to median EI using 
log-GSF, and tighter fit compared to log-FTE predicted data. 
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Figure 10. Residuals for predictions made using SLR model with log-GSF input. Even scatter of residuals, 
with smaller spread compared to median EI and SLR using log-FTE residual plots.  
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Multiple Linear Regression 

 

 A total of eighteen features were considered for multiple linear regression (MLR) 

modeling, including eight one-hot encoded features: medical school, hospital, satellite campuses, 

Associate’s College, Baccalaureate college, Master’s university, Doctorate-granting/Research 

university, and public institution. Ten quantitative, continuous features were considered and 

standardized, including FTE, log10(FTE), GSF, log10(GSF), endowment size, log10(endowment 

size), laboratory area, log10(lab area), health care area, and log10(health care area). 

 The VIF analysis showed that FTE, GSF, log-FTE, and log-GSF are very highly correlated 

amongst each other, with correlation coefficients around 0.8 and 0.9. Therefore, it was not possible 

to keep both FTE and GSF features, or standard unit and log-transformed versions of those 

features, in the model at the same time without subjecting the model to high collinearity. Seeing 

as log-GSF had the best predictive power for most emissions categories in the SLR analysis, I 

prioritized keeping log-GSF as a feature. Iteratively filtering out highly collinear features resulted 

in the following features being eliminated: log-FTE, FTE, GSF, public institution, and lab area. 

Thirteen features remained and were used in feature selection and model training. 

 Overall, LASSO regression showed improved model fit compared to forward selection 

models across emissions categories. For simplicity’s sake, only the models resulting from LASSO 

regression will be presented and discussed (Table 10). The number of features selected varied 

across emissions categories, ranging between one and eleven features; scope 1 stationary had 

eleven features plus an intercept term, while scope 3 goods and services had one feature (log-GSF) 

plus an intercept term. The binary feature for hospital was never assigned a non-zero coefficient 

for any model, while log-GSF was included in every model as a non-zero coefficient feature. 

The LASSO regression models showed a very good fit between predicted and actual data 

(Figure 11). Scope 2 thermal (R2 = 0.230) and scope 3 goods and services (R2 = 0.169) saw the 

poorest model fit, likely due to the small sample sizes; these two emissions categories had the 

fewest observed data points, with training sample sizes of 33 for scope 2 thermal and 67 for scope 

3 goods and services. Gross emissions saw the highest R2 value at 0.798 – this was the best model 

performance observed in the entire analysis. Other categories also saw very high R2 values, 

including scope 3 commuting at 0.720, scope 3 fuel- and energy-related emissions at 0.738. 
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Figure 11. Actual vs. predicted log10(emissions) from LASSO regression. All emissions categories, except scope 
2 thermal and scope 3 goods and services see a good fit between the actual and predicted data.  
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Model evaluation 

 

Model performance for the training data showed the same trends across both R2 and RMSE 

performance metrics. For all emissions categories except scope 3 goods and services and scope 1 

other sources, MLR LASSO model predictions had the highest R2 and lowest RMSE scores (Table 

6, 7). The SLR model using GSF typically achieved the second highest performance score and 

demonstrated very similar model performance to the MLR LASSO model, especially for scope 2 

electricity (MLR: R2 = 0.410, SLR GSF: R2 = 0.407), scope 2 total (MLR: R2 = 0.394, SLR GSF: 

R2 = 0.390), and scope 3 waste (MLR: R2 = 0.309, SLR GSF: R2 = 0.297). The exception is scope 

3 goods and services, for which the SLR model using FTE achieved the best performance (R2 = 

0.231, RMSE = 0.721); however, with an R2 of only 0.231, this category seems difficult to 

accurately predict using linear models in general. For scope 1 other sources, SLR using GSF 

performed best (SLR GSF: R2 = 0.600), closely followed by MLR (MLR: R2 = 0.596). The 

categories with the highest training accuracy were gross emissions (MLR: R2 = 0.798), scope 3 

fuel and energy (MLR: R2 = 0.738), and scope 3 commuting (MLR: R2 = 0.720). The categories 

with the lowest training accuracy were scope 2 thermal (MLR: R2 = 0.230), scope 3 goods and 

services (MLR: R2 = 0.231), and scope 3 waste (MLR: R2 = 0.309).  

Overall, model performance using training data shows that the highest accuracy predictions 

can be achieved using the MLR LASSO model for almost all categories; however, using the SLR 

GSF model gives similar accuracy, while requiring only one data input. As was noted in the 

scatterplots previously, log10(GSF) versus log10(emissions) showed a tighter linear trend in the 

data compared to log10(FTE). This is reaffirmed by the R2 scores, where predictions made using 

GSF typically outperformed their FTE counterpart, except for scope 3 commuting and scope 3 

goods and services. 
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Table 6. Model performance measured by R2 for training data. R2 ranges between 0 and 1, and represents the 
proportion of variance in emissions explained by model. Desirable scores are as close to 1 as possible. Here, highest 
scores within each category are bolded and marked with an asterisk. Training sample size for each category is 
summarized in the n column. Note similarities between MLR LASSO and SLR GSF performance scores. 
 

Emissions Category n Median EI 
FTE 

Median EI 
GSF 

SLR FTE SLR GSF MLR LASSO 

S1 Stationary 229 0.364 0.472 0.396 0.610 0.667* 

S1 Other Sources 209 0.391 0.339 0.430 0.600* 0.596 

S1 Total 232 0.361 0.467 0.385 0.590 0.650* 

S2 Electricity 208 0.154 0.297 0.222 0.407 0.410* 

S2 Thermal 33 0.068 0.132 0.103 0.141 0.230* 

S2 Total 212 0.206 0.305 0.252 0.390 0.394* 

S3 Business Travel 154 0.304 0.251 0.336 0.404 0.460* 

S3 All Commuting 113 0.684 0.421 0.700 0.551 0.720* 

S3 Goods and Services 67 0.177 0.105 0.231* 0.186 0.169 

S3 Fuel and Energy 89 0.587 0.423 0.652 0.716 0.738* 

S3 Waste 120 0.262 0.197 0.274 0.297 0.309* 

S3 Total 193 0.466 0.378 0.492 0.503 0.559* 

Gross Emissions 232 0.572 0.637 0.590 0.774 0.798* 

 
Table 7. Model performance measured by RMSE for training data. RMSE scale is relative and is given in units 
of log10(emissions). Generally, lower RMSE means better model performance. Lowest scores per category are 
bolded and marked with and asterisk. Trends in model performance are consistent between RMSE and R2 for the 
training data. Note similar scores between SLR GSF and MLR LASSO. 
 

Emissions Category n Median EI 
FTE 

Median EI 
GSF 

SLR FTE SLR GSF MLR LASSO 

S1 Stationary 229 0.535 0.487 0.521 0.419 0.387* 

S1 Other Sources 209 0.556 0.579 0.538 0.451* 0.453 

S1 Total 232 0.535 0.489 0.525 0.429 0.396* 

S2 Electricity 208 0.734 0.669 0.704 0.615 0.613* 

S2 Thermal 33 0.776 0.748 0.761 0.745 0.705* 

S2 Total 212 0.699 0.654 0.679 0.613 0.611* 

S3 Business Travel 154 0.721 0.748 0.704 0.667 0.635* 

S3 All Commuting 113 0.381 0.515 0.371 0.454 0.359* 

S3 Goods and Services 67 0.745 0.777 0.721* 0.741 0.749 

S3 Fuel and Energy 89 0.463 0.548 0.425 0.385 0.369* 

S3 Waste 120 0.669 0.698 0.664 0.653 0.648* 

S3 Total 193 0.548 0.592 0.535 0.529 0.498* 

Gross Emissions 232 0.399 0.368 0.391 0.290 0.275* 
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The generalizability of the models is estimated by measuring model performance using test 

data. This way, we see how well the model performs on data it has not “seen” during training. I 

observed different trends in model performance using the test data compared to the training data. 

Overall, MLR LASSO performed best for four categories, SLF GSF for five categories, and SLR 

FTE for two categories, again including scope 3 goods and services (Table 8, 9). Therefore, in the 

test data, both SLR models competed more with MLR model performance than in the training data 

results. For several categories, MLR LASSO scores were very similar to SLR GSF scores, 

especially for scope 1 total (MLR: R2 = 0.670, SLR GSF: R2 = 0.667), scope 2 electricity (MLR: 

R2 = 0.564, SLR GSF: R2 = 0.562), scope 2 total (MLR: R2 = 0.510, SLR GSF: R2 = 0.515), scope 

3 commuting (MLR: R2 = 0.772, SLR GSF: R2 = 0.779), and gross emissions (MLR: R2 = 0.765, 

SLR GSF: R2 = 0.770). 

Scope 2 thermal and scope 3 business travel observed negative R2 values for some or all 

models. Although negative R2 is uncommon, it is in fact possible. A negative R2 score can occur 

when the model predictions fit the data worse than the null model, or the mean of the target 

variable. Therefore, I cannot be certain that my models are reliable for scope 2 thermal emissions 

or scope 3 business travel. While two non-negative R2 scores were observed for scope 3 business 

travel, the highest positive R2 was 0.118 from median EI using GSF; not only is this prediction 

accuracy very low, but predictions made using median EI using GSF fit the actual data very poorly, 

as was observed previously in the analysis of scatterplots and residuals. Seeing as median EI using 

FTE never showed the highest model performance scores, regression modeling is the more 

favorable modeling approach compared to median EIs.  

The categories with the highest testing accuracy were scope 3 commuting (SLR GSF: R2 

= 0.779), gross emissions (SLR GSF: R2 = 0.770), scope 1 stationary (MLR: R2 = 0.736). The 

categories with the lowest training accuracy were scope 3 business travel (median EI by GSF: R2 

= 0.118), scope 1 stationary (MLR: R2 = 0.222), and scope 3 waste (MLR: R2 = 0.398). 
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Table 8. Model performance measured by R2 for test data. Good model performance is evidenced by R2 close to 
1. Model performance using test data shows a greater variety of best performing models. R2 from best model was 
higher for test data than training data for scope 1 stationary, scope 1 total, scope 2 electricity, scope 2 total, scope 3 
commuting, scope 3 goods and services, scope 3 waste, and scope 3 total. Lower R2 was observed for scope 1 other 
sources, scope 2 thermal, scope 3 business travel, scope 3 fuel- and energy-related emissions, and gross emissions. 
 

Emissions Category n Median EI 
FTE 

Median EI 
GSF 

SLR FTE SLR GSF MLR LASSO 

S1 Stationary 41 0.218 0.467 0.306 0.612 0.736* 

S1 Other Sources 37 0.110 0.215 0.046 0.181 0.222* 

S1 Total 41 0.474 0.490 0.411 0.667 0.670* 

S2 Electricity 37 0.504 0.436 0.415 0.562 0.564* 

S2 Thermal 6 -0.173 -0.062 -0.118 -0.075 -0.056 

S2 Total 38 0.260 0.344 0.296 0.515* 0.510 

S3 Business Travel 28 0.042 0.118* -0.049 -0.006 -0.075 

S3 All Commuting 20 0.760 0.540 0.778 0.779* 0.772 

S3 Goods and Services 12 0.270 0.171 0.441* 0.427 0.322 

S3 Fuel and Energy 16 0.432 0.146 0.470* 0.320 0.340 

S3 Waste 22 0.337 0.246 0.343 0.398* 0.379 

S3 Total 35 0.557 0.460 0.558 0.651* 0.632 

Gross Emissions 42 0.457 0.580 0.482 0.770* 0.765 

 
Table 9. Model performance measured by RMSE for test data. Trends in best performing model are generally 
consistent with R2 trends. Median EI using GSF should be disregarded due to poor visual fit. 
 

Emissions Category n Median EI 
FTE 

Median EI 
GSF 

SLR FTE SLR GSF MLR LASSO 

S1 Stationary 41 0.578 0.478 0.545 0.407 0.336* 

S1 Other Sources 37 0.662 0.621 0.685 0.634 0.618* 

S1 Total 41 0.435 0.428 0.460 0.346 0.344* 

S2 Electricity 37 0.582 0.621 0.632 0.547 0.546* 

S2 Thermal 6 0.814 0.774 0.794 0.779 0.772* 

S2 Total 38 0.811 0.764 0.791 0.657* 0.660 

S3 Business Travel 28 0.746 0.716* 0.781 0.764 0.790 

S3 All Commuting 20 0.309 0.428 0.297* 0.297* 0.301 

S3 Goods and Services 12 0.869 0.927 0.761* 0.770 0.838 

S3 Fuel and Energy 16 0.519 0.636 0.501* 0.567 0.559 

S3 Waste 22 0.511 0.545 0.509 0.487* 0.494 

S3 Total 35 0.485 0.536 0.485 0.431* 0.442 

Gross Emissions 42 0.524 0.461 0.511 0.341* 0.344 
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Table 10. MLR model parameters. Model parameters trained using LASSO regularization, which drives coefficient sizes of less significant features to zero in 
order to minimize model complexity. Data was standardized, therefore coefficient sizes represent relative importance.  
 

 
Emissions 
Category 

 
Intercept 

 
Medical 
School 

 
Satellite 

Campuses 

 
Hospital 

 
Endowment 

Size 

 
Health Care 

Area 

 
log GSF 

log 
Endowment 

Size 

 
log Lab Area 

 
log Health 
Care Area 

Institution 
Type 

Associate 

Institution 
Type 

Baccalaureate 

Institution 
Type 

Doctorate 

Institution 
Type 

Master 

S1 
Stationary 3.982 -0.146 -0.067 0 0.019 0.043 0.429 0.136 0.074 0.049 0.197 -0.018 0 -0.107 

S1 Other 
Sources 2.671 0 0 0 0 0 0.51 0 0.015 0 0 0 0 0 

S1 Total 3.97 -0.087 -0.053 0 0.025 0.055 0.399 0.12 0.092 0.022 0.139 0 0 -0.11 

S2 Electricity 3.798 0 0 0 0 0 0.463 0 0 0.044 0 0 0 0 

S2 Thermal 3.41 0 0 0 -0.037 -0.101 0.198 0 0 0 0 0 0 0 

S2 Total 3.849 0 0 0 0 0.001 0.443 0 0 0.045 0 0 0 0 

S3 Business 
Travel 2.99 0 0 0 0.032 0.013 0.349 0.096 0.002 0 0 0 0.378 0 

S3 All 
Commuting 3.768 0 0.076 0 0.042 0.079 0.43 -0.093 0.041 -0.072 0.211 -0.424 0 -0.019 

S3 Goods 
and Services 2.088 0 0 0 0 0 0.271 0 0 0 0 0 0 0 

S3 Fuel and 
Energy 2.952 0 0 0 0.069 0 0.536 0 0 0 0 -0.014 0 0 

S3 Waste 2.517 0 0 0 0 0 0.343 0 0 0.091 0 0 0 0 

S3 Total 3.876 0 0.051 0 0.025 0.014 0.377 0 0 0.038 0 -0.322 0.101 0 

Gross 
Emissions 4.43 0 0 0 0.046 0.008 0.488 0.045 0.022 0.025 0.169 -0.029 0.016 0 
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DISCUSSION 

 

 This study presents a novel contribution to research on HEI GHG emissions by training 

and evaluating prediction models for sub-scope categories of emissions defined by the GHG 

Protocol; previous studies have focused only on scope totals or gross emissions. Furthermore, the 

mapping between the GHG Protocol, SIMAP, and STARS has not been seen or done before in the 

literature or by the respective organizations, and may offer novel insight on how these HEI-specific 

frameworks align with the GHG Protocol. The key findings of this study are that linear regression 

models produce more reliable emissions estimates compared to median emissions intensity. While 

multiple linear regression models can typically achieve the highest accuracy, simple linear 

regression models using GSF or FTE as data inputs can achieve similar accuracy while requiring 

only one input data point. The tradeoff between data input requirements, prediction accuracy, and 

model interpretability is central to my research. 

 

Average emissions intensities 

 

Right° suggested average emissions intensity as a prediction method, seeing as it is a highly 

interpretable approach that is straight-forward and requires little computing power. The model 

performance of median emissions intensities using FTE as the normalizing factor could not 

compete with other models analyzed in this study, although visually the predictions followed the 

general trend in the data. For some categories, using GSF as the normalizing factor produced better 

model performance compared to FTE in terms of R2 and RMSE; however, visually, the predictions 

made using the GSF median EI fit the general trend in the data relatively poorly. Therefore, neither 

median EI model can be recommended as a  

Thus far, average emissions intensity remains largely unexplored as a prediction method 

in the literature. Sinha et al. (2010) is a rare example where average EI was used for prediction 

purposes. Further metrics could be explored as normalizing factors for making predictions using 

average EIs, such as unit expenditure (Larsen et al. 2013, Helmers et al. 2021); other economic 

factors, like endowment size, have not yet been studied as normalizing factors for EIs at all. The 
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approach used in this study, of log-transforming the numerator and denominator for EIs has also 

not been observed previously, and could be further investigated. 

 

Linear regression modeling 

 

One important finding from this research is that SLR using GSF as the predictor variable 

produced very similar training accuracy to the MLR model. Previous studies have also used 

regression modeling approaches to predict GHG emissions from HEIs. Klein-Banai and Theis 

(2013) trained an SLR model to predict log10(gross emissions) using log-GSF data as the input, 

and achieved an R2 of 0.795; my SLR model for log-gross emissions using log-GSF as the 

predictor achieved a training and testing R2 of 0.774 and 0.770 respectively, which is comparable 

to the prediction accuracy achieved by Klein-Banai and Theis (2013). For all emissions categories, 

there was a positive slope for FTE and GSF SLR models, which underlines the positive association 

between emissions and institution size measured by GSF or FTE. Additionally, the log-

transformation of the variables that is necessary to achieve a linear relationship aligns with the 

findings from previous studies and underscores the power-law nature of these relationships 

(Fetcher 2009, Klein-Banai and Theis 2013, Wadud et al. 2019). Additional quantitative features 

could be analyzed as input features to SLR models, such as expenditure or endowment size. 

Like Klein-Banai and Theis (2013) and Fetcher (2009), I found GSF to be the better 

predictor of GHG emissions from HEIs compared to FTE. SLR GSF models predicted better than 

SLR FTE models for most emissions categories. Log-GSF was selected as a prediction feature for 

all MLR models, and log-GSF had the first or second greatest coefficient value in all MLR models 

– seeing as continuous features were standardized for MLR, the size of the coefficients indicate 

relative importance. Limiting the expansion of building spaces of HEIs will be important to 

mitigate future GHG emissions from HEIs. Alternatively, reducing the size of building space 

associated with an HEI, or condensing research and energy intensive spaces, might be beneficial 

to decrease the size of an HEI’s CF (Fetcher 2009, Gui et al. 2020). The VIF analysis showed a 

high collinearity between GSF and FTE, which must be taken into account when predicting HEI 

GHG emissions, since both features cannot be used simultaneously in regression models. 

 

Model evaluation 
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Overall, regression modeling produced more accurate predictions than median emissions 

intensity predictions, with MLR achieving the highest training accuracy for almost all emissions 

categories. The only better performing regression models in the literature were MLR models 

trained by Fetcher (2009) and Klein-Banai and Theis (2013). These models used certain features 

that were not included in my analysis. Fetcher predicted log10(scope 1 + 2) emissions with R2 

values up to 0.915 using July mean temperature, January mean low temperature, and the 

percentage of coal in the energy mix as features, in addition to gross building area or FTE data. 

Klein-Banai and Theis (2013) included features such as emissions from commuting, cooling 

degree days, heating degree days, square feet of residential facilities, and other net square feet to 

predict gross emissions, in addition to features included in my approach, and achieved R2 values 

up to 0.954. STARS collects data for heating degree days and cooling degree days, therefore my 

analysis could be recreated and built upon using these features in MLR models. I chose to focus 

only on institutional characteristics that could be easily measured and provided by the HEI itself, 

and therefore did not use variables related to local climate in my analysis. 

The models trained in this study did not achieve extremely high accuracy, as would be 

evidenced by training and test R2 values of 0.9 or above; however, they can still be used to get 

general approximations for missing emissions data. The models can most closely predict emissions 

for scope 1 stationary (MLR: training R2 = 0.667, test R2 = 0.736), scope 1 total (MLR: training 

R2 = 0.650, test R2 = 0.670), scope 3 commuting (MLR: training R2 = 0.720, test R2 = 0.772), 

scope 3 total (MLR: training R2 = 0.559, test R2 = 0.632), and gross emissions (MLR: training R2 

= 0.798, test R2 = 0.765), since good model performance was observed for both the training and 

test data for these emissions categories. For these categories, the models are considered relatively 

accurate and generalizable. Scope 1 other sources (SLR GSF: training R2 = 0.600, test R2 = 0.181) 

and scope 3 fuel and energy (MLR: training R2 = 0.738, test R2 = 0.340) had relatively high training 

accuracy and low test accuracy, which raises concerns about the external validity of these models.  

Scope 3 emissions from business travel (MLR: training R2 = 0.460, test R2 = -0.075), goods 

and services (SLR FTE: training R2 = 0.231, test R2 = 0.441), and waste (MLR: training R2 = 

0.309, test R2 = 0.379), could not be predicted very accurately, with training and test R2 scores 

never exceeding 0.5. Models for all scope 2 categories generally performed poorly on the training 

data, although when using the test data, emissions from scope 2 electricity and scope 2 total were 
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able to slightly surpass an R2 of 0.5. The low predictive power of the models for scope 2 emissions 

is surprising, seeing as a strong correlation between HEI facility size, electricity consumption, and 

GHG emission was previously identified, which would suggest that scope 2 emissions could be 

predicted particularly well using variables such as GSF (Keegan 2006). Models for scope 2 thermal 

and scope 3 goods and services might have shown limited performance due to particularly small 

sample sizes. The other poor performing models applied to all the emissions categories that were 

not normally distributed after log-transforming the data and removing outliers, except scope 3 

emissions from waste, which was normally distributed according to the Shapiro-Wilk test. My 

methodology could be refined and modified to better predict emissions for these categories. Low 

R2 values for certain categories may also be an indication that that the linear relationship between 

log-emissions and the predictor data is not very strong. 

In response to my central research question, “How can HEI GHG emissions be most 

accurately predicted for specific scopes and sub-scope categories of emissions?,” I conclude that 

multiple linear regression can generally produce the highest accuracy predictions for most 

emissions categories. This is no surprise, since increasing model complexity typically guarantees 

better model performance; however, getting MLR estimates for different emissions categories 

involves collecting up to eleven data points on an HEI’s institutional characteristics. Simple linear 

regression using GSF or FTE as the input feature can produce similarly accurate predictions while 

requiring only one input data point. SLR using FTE is favored over SLR using GSF for emissions 

from scope 3 commuting and scope 3 fuel and energy; for scope 3 commuting, this logically makes 

sense, since the extent commuting activities is much more closely related to the number of students 

and employees than to the gross square footage of building space. 

 

Limitations and Future Directions 

 

 There are several limitations associated with my research. Data on GHG emissions and 

institutional characteristics is self-reported by HEIs to STARS. There is no assurance or 

verification of the validity of the reported data. Therefore, the accuracy of the data cannot be 

guaranteed with certainty. Another key limitation to my study is related to sample size. 

Participation in STARS is voluntary, which limits the number of HEIs for which data is available. 

Although STARS was chosen over SIMAP as a data source for this analysis, partly to achieve 
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larger sample sizes, I still only had data for slightly over 300 HEIs. Reporting for different 

institutional characteristics and emissions categories was irregular between HEIs, which further 

limited my sample size and resulted in an inconsistent number of observations for each emissions 

category; in some cases, such as scope 2 thermal and scope 3 goods and services, the small sample 

size may have contributed to poorer model performance. Splitting my data into a training and test 

set was also a challenge, seeing as not much data was set aside for testing (n < 50 for all categories). 

This makes the interpretation of model performance on the testing data less conclusive, since the 

calculated R2 and RMSE values may demonstrate greater variability or uncertainty; this means 

that the calculated metrics may not be as accurate as they would be with a larger sample size. 

A final limitation regarding my data includes its geographic coverage; most HEIs in my 

sample were North American, which means that my analysis is mostly representative of trends in 

GHG emissions and institutional characteristics in North America. Sub-scope level data for HEI 

GHG emissions is not as readily accessible for institutions in other countries. The Higher 

Education Statistics Agency (HESA), for example, reports GHG emissions data for HEIs based in 

the United Kingdom; however, data reporting is not entirely aligned with the GHG Protocol, and 

most data is reported as scope totals (HESA 2023). Efforts like those undertaken by STARS or 

SIMAP to aggregate and publicly report HEI emissions and sustainability data should be expanded 

in other countries and regions. 

One priority for my project was creating readily interpretable prediction models that could 

be implemented in a spreadsheet, instead of requiring more advanced tools such as a Jupyter 

Notebook and Python for model implementation. While linear regression models are easily 

interpretable, they are not necessarily the most powerful prediction models. More advanced 

machine learning models have been used to predict GHG emissions in other contexts (Ma et al. 

2021, Heurtebize et al. 2022, Serafeim and Velez Caicedo 2022, Sun and Chenchen Huang 2022, 

Wang et al. 2023). Future research should focus on applying other such prediction models to the 

HEI context for predicting sub-scope level emissions.  

Finally, the lack of formal guidance on HEI CF reporting, and the lack of official 

recommendations for the application of the GHG Protocol in the higher education sector leads to 

improper alignment between HEI frameworks such as SIMAP and STARS, and the GHG Protocol. 

Although the mapping stage of my analysis was included to address this shortcoming, it still relied 

on certain assumptions and interpretations that might not be completely accurate or appropriate 
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for the HEI context. More research should be done to clarify the alignment between SIMAP, 

STARS and the GHG Protocol, and further guidance should be developed to advise which GHG 

Protocol sub-scope categories are truly relevant to the HEI context. 

 

Broader Implications 

 

 Sustainability reporting among HEIs is in an early stage (Ceulemans et al. 2015, Sepasi et 

al. 2019). Universities and governments need to take steps to expand current emissions reporting 

efforts in the higher education sector, such as issuing declarations to promote sustainability in 

higher education, increasing governmental target-setting for emissions reductions, and expanding 

environmental auditing efforts (Grindsted 2011, Saha et al. 2021). GHG emissions disclosure and 

sustainability reporting are important as spur emissions reductions among HEIs, and offer a broad 

range of benefits across the entire university organization, such as increased participation of 

stakeholders in decision-making, stronger understanding and internalization of the institution’s 

mission and values among stakeholders, and the development of new communication channels 

(Tehmina 2015, Yáñez et al. 2019). Beyond providing benefits to the university, GHG emissions 

disclosure is a key aspect of HEIs fulfilling their role and responsibility to promote sustainable 

development and contribute to climate change mitigation (Knuth et al. 2007, Sedlacek 2013). 

Actors across society, including governments, corporations, and institutions like HEIs must all do 

their part to reduce GHG emissions and combat the climate crisis. 

My research is a response to a lack of comprehensive CF reporting across universities. The 

adaptation of corporate standards for sustainability reporting can increase comparability and 

consistency across HEIs, as was demonstrated by efforts to adapt the German Council for 

Sustainable Development’s sustainability code to the higher education sector (Huber and Bassen 

2018); however, in other cases, HEIs continue to adapt corporate standards in a less standardized 

and concerted manner (Robinson et al. 2018). CF reporting efforts among HEIs need to be 

expanded across the globe, and an international standard or guideline for GHG accounting in the 

higher education sector needs to be formally implemented and agreed upon. Only this way can 

CFs between HEIs truly be comparable, and reach a common level of depth and accuracy. 
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APPENDIX A: External Links 

 
Name Source Link 

Guidance for 
STARS 

participants 
using SIMAP 

AASHE 

 
a) AASHE website: Help Center > Operations > GHG Emissions:  

‘My institution uses SIMAP for its greenhouse gas emissions reporting. 
Are there any specific guidelines for SIMAP users?’: 
https://stars.aashe.org/resources-support/help-
center/operations/greenhouse-gas-emissions/#my-institution-uses-
simap-for-its-greenhouse-gas-emissions-reporting--are-there-any-
specific-guidelines-for-simap-users 

 
b) ‘Guidance for STARS participants using SIMAP.pdf’ in Google Drive: 

https://drive.google.com/file/d/1ph8wZdVXsf4znIwpk_cJeof67SXnO-
RF/view?usp=sharing 
 

 
STARS 
Report 

Content Data 
Display 

 

STARS 
https://reports.aashe.org/institutions/data-

displays/2.0/content/?institution__institution_type=DO_NOT_FILTER 
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APPENDIX B: Data Queries from STARS Report Content Data Display 
 

 
Variable 

 
STARS Version 

 
Type of 

Characteristic 

 
Specific 

Characteristic 

 
Category 

 
Subcategory 

 
Credit 

 
Reporting Field 

 
Date 

 
Time 

 
S1 Stationary 
Combustion 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

Gross Scope 1 GHG emissions from 
stationary combustion, performance 

year 

 
2/5/23 

 
12:00 

 
S1 Other Sources 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

 
Gross Scope 1 GHG emissions from 

other sources, performance year 

 
2/5/23 

 
12:04 

 
S1 Total 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

 
Total gross Scope 1 GHG emissions, 

performance year 

 
2/5/23 

 
12:07 

 
S2 Electricity 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

Gross Scope 2 GHG emissions from 
imported electricity, performance 

year 

 
2/5/23 

 
12:13 

 
S2 Thermal Energy 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

Gross Scope 2 GHG emissions from 
imported thermal energy, 

performance year 

 
2/5/23 

 
12:14 

 
S2 Total 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

 
Total gross Scope 2 GHG emissions, 

performance year 

 
2/5/23 

 
12:16 

 
S3 Business Travel 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

 
Scope 3 GHG emissions from 

business travel, performance year 

 
2/5/23 

 
12:18 

 
S3 Commuting 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

 
Scope 3 GHG emissions from 
commuting, performance year 

 
2/5/23 

 
12:19 

 
S3 Goods and Services 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

Scope 3 GHG emissions from 
purchased goods and services, 

performance year 

 
2/5/23 

 
12:20 

 
S3 Capital Goods 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

 
Scope 3 GHG emissions from capital 

goods, performance year 

 
2/5/23 

 
12:21 
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S3 Fuel and Energy 

Related 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

Scope 3 GHG emissions from fuel- 
and energy-related activities not 
included in Scope 1 or Scope 2, 

performance year 

 
2/5/23 

 
12:22 

 
S3 Waste 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

Scope 3 GHG emissions from waste 
generated in operations, performance 

year 

 
2/5/23 

 
12:23 

 
S3 Other 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory 

and Disclosure 

Scope 3 GHG emissions from other 
sources not included in Scope 1 or 2, 

performance year 

 
2/5/23 

 
12:25 

 
S3 Total 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Operations 

 
Air & Climate 

 
OP-1: Emissions Inventory and 

Disclosure 

 
Total Scope 3 GHG emissions, 

performance year 

 
2/5/23 

 
12:27 

 
Institutional Control 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-3: Institutional Boundary 

 
Institutional control 

 
2/5/23 

 
12:42 

 
Medical School 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-3: Institutional Boundary 

 
Is a medical school included in the 

institutional boundary? 

 
2/5/23 

 
12:45 

 
Professional Schools, 

Labs, Clinincs 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-3: Institutional Boundary 

Are all other professional schools 
with labs or clinics included in the 

institutional boundary? 

 
2/5/23 

 
12:46 

 
Satellite Campuses 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-3: Institutional Boundary 

Are all the satellite campuses 
included in the institutional 

boundary? 

 
2/5/23 

 
12:49 

 
Hospital 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-3: Institutional Boundary 

 
Is the hospital included in the 

institutional boundary? 

 
2/5/23 

 
12:50 

 
Endowment 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-4: Operational 

Characteristics 

 
Endowment size 

 
2/5/23 

 
12:52 

 
GSF 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-4: Operational 

Characteristics 

 
Gross floor area of building space 

 
2/5/23 

 
12:55 

 
Lab GSF 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-4: Operational 

Characteristics 

 
Floor area of laboratory space 

 
2/5/23 

 
12:56 

 
Health Care GSF 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-4: Operational 

Characteristics 

 
Floor area of healthcare space 

 
2/5/23 

 
12:57 
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Student FTE 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-5: Academics and 

Demographics 

 
Full-time equivalent student 

enrollment 

 
2/5/23 

 
12:59 

 
Employee FTE 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Report Preface 

 
Institutional 

Characteristics 

 
PRE-5: Academics and 

Demographics 

 
Full-time equivalent of employees 

 
2/5/23 

 
13:00 

 
Employee Researchers 

 
2.2 

 
Institution Type 

 
All Institutions 

 
Academics 

 
Research 

 
AC-9 Research and 

Scholarships 

 
Total number of employees that 

conduct research 

 
2/5/23 

 
13:04 

 


