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ABSTRACT 

 

In the context of anthropogenic perturbations to greenhouse gas concentrations, understanding 

the biophysical processes that modulate such gasses is essential in accurately modeling Earth’s 

rapidly changing climate. Ecosystems are inherently nonlinear systems, in which the effects of 

causal variables cannot be separated or uncoupled from the variables that they influence. In order 

to uncover pathways of causality between variables, statistical methods must account for the 

associated asynchronous dynamics of time-delayed feedback loops that occur at different time 

scales. This study applies two algorithms for time-series analysis: (1) wavelet based time scale 

decomposition and (2) convergent cross mapping, in order to identify and quantify the extent to 

which contending environmental biophysical controls modulate fluxes of methane and carbon 

dioxide. Wavelet-decomposition and subsequent reconstruction of signals enabled isolated 

analysis at hourly, diel, multi-day, and seasonal time scales. These isolated signals were then 

inputted into a convergent cross mapping algorithm, for which the output correlation-coefficient 

was taken as the final quantifying parameter for causality. The following variables had the 

highest forcing capacity on methane flux at the (a) hourly, (b) diel, (c) multi-day, and (d) 

seasonal scale: (a,c) water vapor flux and (b,d) carbon dioxide flux. Analogously, the following 

variables had the highest forcing capacity on carbon dioxide flux: (a,b) water vapor flux, (c) 

methane flux, and (d) ecosystem respiration. Water vapor flux plays a dominant role in 

modulating fluxes of methane and carbon dioxide at shorter time scales, either directly via 

transpiration or indirectly via plant growth. At longer time scales methane flux is dominated by 

microbial populations and carbon dioxide flux is rooted in plant-mediated availability of oxygen. 

Wavelet decomposition proved to be a robust method for analyzing trends at different 

frequencies in a given signal, however, convergent cross mapping poses less reliability, in the 

context of noisy ecological data. 
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INTRODUCTION 

 
 

The biogeochemical cycling of carbon between the biosphere, hydrosphere, and 

atmosphere, has fundamental implications for Earth’s rapidly changing climate. Climate change 

is a multifaceted phenomenon, comprising abiotic and biotic factors that can amplify or intersect 

with the greenhouse gas effect. Whether a given ecosystem has a negative or positive radiative 

forcing (cooling or warming surface temperature) contribution to global warming, is ultimately 

contingent on the type of ecosystem, as the conditions which characterize each ecosystem 

determine the tendency for greenhouse gas sequestration or emission (De Deyn et al. 2008). 

Carbon dioxide (CO2) and methane (CH4), are the two dominant perturbed greenhouse gasses in 

terms of contemporary radiative forcing (Huntingford et al. 2015). Focusing on trace gas 

exchange and subsequent feedback of CO2 and CH4, across relevant terrestrial biomes that 

contain the cycling of these two gasses, is essential to better formulate global circulation models 

(Li et al. 2021). Trace gas exchange can be quantified based on fluxes, and measured using the 

eddy-covariance system (Liu et al. 2022). In the context of current-day carbon sequestration 

efforts, it is critical to understand how and which biophysical variables drive the fluxes of CO2 

(FCO2) and CH4 (FCO4) across different environmental conditions and vegetation types, in 

order to perform accurate climate modeling for future increases in surface temperature (Li et al. 

2021). 

Tidal wetland ecosystems are of particular interest when considering FCO2 and FCH4 as 

they sequester carbon over the long-term. Long-term cumulative carbon uptake is achieved 

through anaerobic conditions which protect existing soil carbon, while vegetation continues to 

sequester atmospheric CO2 (Valach et al. 2021). However, there exists a trade-off since the 

anaerobic conditions that reduce carbon loss from decomposition, also produce CH4 in 

inundated, fresh to brackish (slightly saline) wetlands (Valach et al. 2021). This being said, tidal 

wetlands have shown a high CO2-sequestration-to-CH4-emission ratio (Callaway et al. 2012; 

Windham-Myers et al. 2020), and are correlated to negative radiative forcing (Arias-Ortiz et al. 

2021). Wetlands contain the largest terrestrial carbon stores, therefore understanding the drivers 

of FCO2 and FCH4, which constitute overall carbon uptake and output, is imperative to 

predicting how these ecosystems will behave in a rapidly warming climate (Valach et al. 2021). 

In general wetland ecosystems, the variables that have been found to influence FCO2 include: 
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ecosystem respiration, solar radiation, precipitation, air temperature, and water vapor flux 

density (Sturtevant et al. 2016). Variables that influence FCH4 in wetland ecosystems are less 

linearly identifiable, as these processes vary in coupling strength in the short term and long term 

(Liu et al. 2022). For example, the main seasonal drivers of FCH4 are soil and water 

temperature, but the main multi-day driver of FCH4 is water table height (Sturtevant et al. 2016). 

Thus, time scales of causality must be additionally taken into consideration. It is critical that 

applied statistical methods account for the asynchronous processes that modulate fluxes of CO2 

and CH4 in wetlands. 

Applied statistical methods must accurately quantify the level of causality for biophysical 

variables that drive FCO2 and FCH4, and depict at which time scales there is causality. 

Multispatial convergent cross-mapping (CCM) is a recently-developed algorithm that can be 

used as a test for causal associations between pairs of processes in a given time-series (Clark et 

al. 2015). A time-series is a set of observations represented sequentially in time, in uniform 

intervals, and time-series decomposition allows us to isolate the trends embedded in a time-series 

signal at different time scales. Wavelet-based decomposition, specifically, is the most suitable 

decomposition method for revealing periodicities in signals that are non-stationary (varying in 

time) (Cazelles et al. 2008), which is the case in ecological systems comprising trace gas 

exchange. Two promising solutions to improving ecological modeling of FCO2 and FCH4 in 

wetlands are wavelet decomposition and convergent cross mapping, especially in the context of 

identifying causal associations between these fluxes and possible biophysical drivers. 

The objective of this study is to investigate if wavelet-based time scale decomposition 

and convergent cross mapping can depict the timescales of causality within biophysical variables 

that modulate CH4 and CO2 fluxes in a tidal wetland ecosystem. The first aim is to apply 

wavelet-based decomposition to isolate major time scales of variation within a continuous 

time-series of FCO2 and FCH4, and each of their various contending biophysical drivers. The 

second is to apply CCM to identify and quantify scale-emergent causality between FCO2 and 

FCH4 and each biophysical variable. 
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METHODS 
 

 

Study site 

 
 

This study will analyze 170 days worth of bio-meteorological measurements starting 

September 2021, from Hill Slough, a freshwater tidal wetland located in the California 

Sacramento-San Joaquin River Delta. 

Values for flux densities of greenhouse gasses: CO2 (FCO2) and CH4 (FCH4) were 

derived from the eddy covariance method, providing direct and continuous observations of the 

flux densities of these greenhouse gasses between the soil surface-atmosphere interface. 

The specific continuous variables to compare with both FCH4 (gap-filled [nmol CH4 m-2 

s-1]) and FCO2 (gap-filled [umol CO2 m-2 s-1]) are: water vapor flux [mmol H2O m-2 s-1], gross 

primary productivity (gross photosynthesis estimated from Reichstein et al. 2005 [umol CO2 m-2 

s-1]), ecological respiration (ecosystem respiration estimated as performed in Reichstein et al. 

2005 [umol CO2 m-2 s-1]), air temperature [°C], air pressure [kPa], solar radiation 

(photosynthetically active radiation [umol m-2 s-1]), water temperature at 2 different depths below 

the ground surface (10cm, 30cm) [°C], soil temperature at 4 different depths below the ground 

surface (0cm, 8cm, 16cm, 32cm) [°C], vapor pressure deficit [kPa], dissolved oxygen [mg L-1], 

water vapor density [kg m-3], water table height [cm], normalized difference vegetation index 

(half-hourly averages [index 0-1]), and conductivity (USGS NWIS at Jersey Island Dutch Slough 

site [microSiemens]). 

 
Analysis 

 
 

Wavelet-based time scale decomposition 

 
 

Theory. Although Fourier analysis can be used to quantify constant periodic components in a 

time-series, it cannot characterize signals whose frequency content changes with time (Cazelles 

et al. 2008), which is the case in ecological systems. A wavelet transform decomposes a signal 

over functions (wavelets) that are narrow for high frequency signal properties and wide for low 



Sofía M. Swatt State Space Reconstruction in Ecological Data Analysis Spring 2023 

5 

 

 

𝑎 

frequency signal properties (Cazelles et al. 2008). Wavelets can be expressed as the function (φ) 

of time position (τ) and wavelet scale (a): 

φ (𝑡) =  1  φ( 𝑡−τ ) 
𝑎,τ 𝑎 

 

The wavelet transform of a time-series signal x(t) is done by computing the integral of the 

product of the signal and the wavelet (φ) over continuous ranges of a and τ to get a wavelet 

coefficient 𝑊 (𝑎,τ) which represents the contribution of scale to the signal at different time 
𝑥 

positions (Cazelles et al. 2008). 𝑊 (𝑎,τ) is a large positive value if there is good matching 
𝑥 

between x and φ, a low value if the matching is low, and a large negative value if the matching is 

high but in the opposite phase of the wave. By doing so, the resulting wavelet coefficients 

comprise the reconstructed signal at each scale. The wavelet transform can be expressed as the 

following: 

+∞ 
𝑊 (𝑎,τ) =  1  ∫ 𝑥(𝑡)φ* ( 𝑡−τ )𝑑𝑡 = 

+∞ 
∫ 𝑥(𝑡)φ 

* 
(𝑡)𝑑𝑡 

𝑥 
−∞ 

𝑎 𝑎,τ 
−∞ 

where φ* is the complex conjugate form of a wavelet, which only assumes positive frequencies 

within its range. By including the complex form of a wavelet, the resulting transform is less 

oscillatory than would be in the case of using a real wavelet (Prieto-Guerrero and 

Espinosa-Paredes 2019). 

 
Application. In order to describe the temporal dynamics occurring at different time scales in the 

data, I applied maximal-overlap discrete wavelet transform (MODWT) in MATLAB Version 

2020b (The MathWorks Inc. 2020) for the wavelet decomposition, with the Daubechies 

least-asymmetric wavelet filter (‘sym4’). The MODWT package has been deemed advantageous 

for signal processing of gap-filled eddy-covariance flux measurements over traditional 

orthonormal discrete wavelet transform (ODWT), because of its high definition over various 

signal lengths and power preservation for multiresolution analysis (Liu et al. 2022). Each 

time-series was reconstructed for dyadic scales 1 (21 measurements = 1 hour) to 13 (213 

measurements = 170.7 days) (Sturtevant et al. 2016). Because patterns resulting from ecological 

processes naturally occur over a scale range rather than one specific scale, the reconstructed 

signals were summed over adjacent scales to analyze four general time scales of variation: Scales 

𝑎 
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1 and 2 (1–2 h) form the “hourly” scale , representing perturbations such as clouds passing 

overhead (Sturtevant et al. 2016). Scales 3–6 (4 h to 1.3 days) form the “diel” scale, representing 

the day-night cycle in sunlight and temperature (Sturtevant et al. 2016). Scales 7–10 (2.7–

21.3 days) form the “multi-day” scale, identifying synoptic weather variability and variations in 

water table. Scales 11–13 (42.7–170.7 days) form the “seasonal” scale, representing the annual 

solar cycle and phenology (Sturtevant et al. 2016). 

 
Convergent cross mapping to quantify causality 

 
 

Theory. The CCM algorithm predicts the current quantity of one variable Mx using the time lags, 

or repeated delays in time between another variable My and Mx, and vice versa. Mx and My are 

projections of the true (unknown) system M, to each respective axis. The theory states that if Mx 

and My belong to the same dynamical system, the cross-mapping between them shall be 

convergent (Cao et al. 2021). In a system Y = f (X,Y) cross-mapping signifies matching the 

values for Mx and My at the same time t. Convergence in CCM means that if X causes Y, then the 

longer an observation period, the increased accuracy of predicting Y using X. More specifically, 

since Mx and My are summaries of X and Y, Mx is then being used to predict Y. A high 

correlation between the CCM reconstruction and original data signifies a coupling interaction of 

X to Y, and acts as a proxy of causality. These correlation coefficients, delineated as cross 

mapping skill (⍴) can take values between -1 and 1 (Martin et al. 2019). The correlation 

coefficients are computed as the cosine of the angle between the predicted projected unit vectors 

where 1 represents a perfect correlation, 0 represents a complete failure of the reconstruction, 

and a hypothetical −1 would represent perfectly anti-correlated reconstruction vectors, which 

only occurs if the predicted values are exactly the opposite sign of the actual values (Martin et al. 

2019). 

 
Application. To identify and quantify scale-emergent causal interactions between each 

contending variable and FCO2 or FCH4, I applied CCM in R Studio (RStudio Team 2020), using 

the rEDM: Empirical Dynamical Modeling package, to each pair of time series signals for each 

of the 4 decomposed timescales. Time leads and lags are a necessary component to take into 

account in computing causal associations among a given pair of time series, as these forcing 
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dynamics in ecosystems are often phase-dependent and nonlinear. However, previous encounters 

with CCM have shown significant improvement in the algorithm’s output accuracy when 

changing two parameters: the time lag and embedding dimension (Mønster et al. 2017). The 

optimal embedding dimension (E) for each time-scale was found using the ‘simplex()’ function 

in rEDM (E=5 hourly, E = 2 diel, E = 2 multi-day, E = 1 seasonal), however there is no function 

in rEDM for finding the optimal time lag. Therefore, based on the rEDM package description, 

the default optimal time lag (tp) was set -1 (Ye et al. 2019). This negative value of tp corresponds 

to estimating the past values of one time series, using the reconstructed states of the other time 

series. The subsequent outputs for cross mapping skill represent the extent to which one signal 

influences the other. 

 

RESULTS 

 

Wavelet based time scale decomposition 

 

In applying maximal-overlap discrete wavelet transform (MODWT) in MATLAB for the 

wavelet decomposition, there were roughly 12000 output coefficients for each input time series 

signal (signals with NaN cells were replaced as empty cells). These coefficients represent the 

scaling of reconstructed wavelet transforms that were saved in a matrix of 12096 by 13, for each 

variables’ time-series signal. The coefficients summed over adjacent scales (“hourly” scale 1-2, 

“diel” scale 3-6, “multi-day” scale 7-10, and “seasonal” scale 11-13) were then isolated as 4 

separate vectors of length 12096 for each variable, to then be inputted into the CCM algorithm. 

Examples of the reconstructed wavelet transforms for FCH4 are in Figure 1. and for FCO2 in 

Figure 2. See Appendix A for program detail. 
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Figure 1. FCH4 variation isolated with wavelet decomposition at (a) hourly, (b) diel, (c) multi-day, (b) seasonal time 

scales. The red line indicates the wavelet detail reconstruction. 
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Figure 2. FCO2 variation isolated with wavelet decomposition at (a) hourly, (b) diel, (c) multi-day, (b) seasonal time 

scales. The red line indicates the wavelet detail reconstruction. 
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Convergent cross mapping to quantify causality 

 
 

In applying rEDM: Empirical Dynamical Modeling package for the CCM analysis to all 

reconstructed wavelet transforms, the ‘cross mapping skill’ outputs were taken as a correlation 

coefficient. For both fluxes, the seasonal scale coefficients were greatest in magnitude compared 

to those of shorter timescales, and bi-directional forcing was exhibited by FCH4 (to FCO2), 

FCO2 (to FCH4), FH2O Vapor, and Ecosystem Respiration. See Appendix B for program detail. 

 
FCH4 

 
The primary drivers of FCH4 (Figure 3) were: FH2O Vapor (hourly and multi-day scales) 

and FCO2 (diel and seasonal scales). The following lists the CCM results in descending order for 

FCH4: 

 
Hourly. The strongest biophysical causal relationships regarding FCH4 at the hourly scale were 

from FCH4 to FH2O Vapor, FH2O Vapor to FCH4, FCO2 to FCH4 and Ecosystem Respiration 

to FCH4. The negative correlations reflect how the predicted signal was opposite in sign to 

corresponding time-locations of the actual signal. 

1. FCH4 xmap FH2O Vapor1 (⍴ = 0.179) 

2. FH2O Vapor (⍴ = 0.130) 

3. FCO2 (⍴ = 0.0593) 

4. Ecosystem Respiration (⍴ = 0.0249) 

5. FCH4 xmap Ecosystem Respiration1 (⍴ = 0.0175) 

6. Photosynthetic Radiation (⍴ = 0.0131) 

7. Water Temperature at 10cm depth (⍴ = 0.00740) 

8. Water Temperature at 30cm depth (⍴ = 6.87E-03) 

9. Dissolved Oxygen (⍴ = 3.55E-03) 

10. Soil Temperature at 16cm depth (⍴ = 0) 

11. Vegetation Index (⍴ = 0.00) 

12. Vapor Pressure Deficit (⍴ = -0.000349) 

13. Soil Temperature at 8cm depth (⍴ = -0.00107) 

14. Water Table Height (⍴ = -0.00259) 

15. Soil Temperature at 0cm depth (⍴ = -0.00455) 

16. Soil Temperature at 32cm depth (⍴ = -0.00480) 

17. Air Pressure (⍴ = -0.00622) 

 
1 “xmap” is specified for FH2O Vapor and Ecosystem Respiration, which were the only variables that exhibited 

bidirectional forcing towards both FCH4 and FCO2 
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18. H2O Vapor Density (⍴ = -0.00759) 

19. Air Temperature (⍴ = -0.00761) 

20. Hydraulic Conductivity (⍴ = -0.00880) 

 
Diel. The strongest biophysical causal relationships regarding FCH4 at the diel scale were from 

FCO2 to FCH4, FH2O Vapor to FCH4, FCH4 to FH2O Vapor, and Photosynthetic Radiation to 

FCH4. 

1. FCO2 (⍴ = 0.369) 

2. FH2O Vapor (⍴ = 0.355) 

3. FCH4 xmap FH2O Vapor1 (⍴ = 0.338) 

4. Photosynthetic Radiation (⍴ = 0.235) 

5. Ecosystem Respiration (⍴ = 0.151) 

6. Soil Temperature at 16cm depth (⍴ = 0.144) 

7. Air Temperature (⍴ = 0.137) 

8. Vapor Pressure Deficit (⍴ = 0.130) 

9. Soil Temperature at 8cm depth (⍴ = 0.116) 

10. FCH4 xmap Ecosystem Respiration1 (⍴ = 0.105) 

11. Soil Temperature at 0cm depth (⍴ = 0.0908) 

12. Water Table Height (⍴ = 0.0850) 

13. Soil Temperature at 32cm depth (⍴ = 0.0661) 

14. Water Temperature at 30cm depth (⍴ = 0.0657) 

15. Air Pressure (⍴ = 0.0631) 

16. Water Temperature at 10cm depth (⍴ = 0.0405) 

17. Hydraulic Conductivity (⍴ = 0.0276) 

18. H2O Vapor Density (⍴= 0.0148) 

19. Dissolved Oxygen (⍴ = 0.00732) 

20. Vegetation Index (⍴ = 0.00) 

 
Multi-Day. The strongest biophysical causal relationships regarding FCH4 at the multi-day scale 

were from FH2O Vapor to FCH4, FCH4 to FH2O Vapor, FCO2 to FCH4, and H2O Vapor 

Density to FCH4. 

1. FH2O Vapor (⍴ = 0.500) 

2. FCH4 xmap FH2O Vapor1 (⍴ = 0.406) 

3. FCO2 (⍴ = 0.286) 

4. H2O Vapor Density (⍴ = 0.285) 

5. Vapor Pressure Deficit (⍴ = 0.266) 

6. Hydraulic Conductivity (⍴ = 0.259) 

7. Ecosystem Respiration (⍴ = 0.243) 

8. Soil Temperature at 8cm depth (⍴ = 0.219) 

9. Soil Temperature at 16cm depth (⍴ = 0.207) 
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10. Air Temperature (⍴ = 0.206) 

11. Water Temperature at 10cm depth (⍴ = 0.198) 

12. Photosynthetic Radiation (⍴ = 0.186) 

13. Soil Temperature at 32cm depth (⍴ = 0.185) 

14. Soil Temperature at 0cm depth (⍴ = 0.176) 

15. Water Temperature at 30cm depth (⍴ = 0.161) 

16. FCH4 xmap Ecosystem Respiration1 (⍴ = 0.151) 

17. Air Pressure (⍴ = 0.124) 

18. Water Table Height (⍴ = 0.112) 

19. Dissolved Oxygen (⍴ = 0.0875) 

20. Vegetation Index (⍴ = 0.00) 

 
Seasonal. The strongest biophysical causal relationships regarding FCH4 at the seasonal scale 

were from FCH4 to FH2O Vapor, FCO2 to FCH4, Air Temperature to FCH4, and Soil 

Temperature at 16 cm below the soil’s surface to FCH4. 

1. FCH4 xmap FH2O Vapor1 (⍴ = 0.927) 

2. FCO2 (⍴ = 0.926) 

3. Air Temperature (⍴ = 0.920) 

4. Soil Temperature at 16cm depth (⍴ = 0.882) 

5. Ecosystem Respiration (⍴ = 0.880) 

6. Water Temperature at 10cm depth (⍴ = 0.870) 

7. Air Pressure (⍴ = 0.870) 

8. Soil Temperature at 32cm depth (⍴ = 0.868) 

9. FH2O Vapor (⍴ = 0.838) 

10. Vapor Pressure Deficit (⍴ = 0.837) 

11. Water Temperature at 30cm depth (⍴ = 0.810) 

12. FCH4 xmap Ecosystem Respiration1 (⍴ = 0.786) 

13. Soil Temperature at 0cm depth (⍴ = 0.783) 

14. Soil Temperature at 8cm depth (⍴ = 0.688) 

15. H2O Vapor Density (⍴ = 0.572) 

16. Photosynthetic Radiation (⍴ = 0.442) 

17. Water Table Height (⍴ = 0.113 

18. Dissolved Oxygen (⍴ = 0.0488) 

19. Hydraulic Conductivity (⍴ = 0.0231) 

20. Vegetation Index (⍴ = 0.00) 
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Figure 3. Causal Capacity of Contending Variables on FCH4. Applied rEDM package on contending 

biophysical drivers of FCH4. Cross Mapping Skill (⍴) represents correlation coefficients index (0-1). The closer ⍴ is 

to 1 is indicative of how much information from variable Y is stored in variable X, and thus how well X can predict 

Y, quantifying the level of causality from Y to X (Sugihara et al. 2012). 
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FCO2 

 
The primary drivers of FCO2 (Figure 4) were: FH2O Vapor (hourly and diel scales), 

FCH4 (multi-day scale), and Ecosystem Respiration (seasonal scale). The following lists the 

CCM results in descending order for FCO2: 

 
Hourly. The strongest biophysical causal relationships regarding FCO2 at the hourly scale were 

from FCO2 to FH2O Vapor, FH2O Vapor to FCO2, FCH4 to FCO2, and FCO2 to Ecosystem 

Respiration. 

1. FCO2 xmap FH2O Vapor1 (⍴ = 0.146) 

2. FH2O Vapor (⍴ = 0.111) 

3. FCH4 (⍴ = 0.0486) 

4. FCO2 xmap Ecosystem Respiration1 (⍴ = 0.0372) 

5. Soil Temperature at 16cm depth (⍴ = 0.0110) 

6. Vapor Pressure Deficit (⍴ = 0.00729) 

7. Photosynthetic Radiation (⍴ = 0.00684) 

8. Dissolved Oxygen (⍴ = 0.00355) 

9. Soil Temperature at 32cm depth (⍴ = 0.00228) 

10. Water Temperature at 10cm depth (⍴ = 0.000405) 

11. Vegetation Index (⍴ = 0.00) 

12. Air Temperature (⍴ = -0.000296) 

13. Ecosystem Respiration (⍴ = -0.000308) 

14. Water Table Height (⍴ = -0.00211) 

15. Soil Temperature at 0cm depth (⍴ = -0.00367) 

16. Air Pressure (⍴ = -0.00491) 

17. Hydraulic Conductivity (⍴ = -0.00531) 

18. H2O Vapor Density (⍴ = -0.00593) 

19. Soil Temperature at 8cm depth (⍴ = -0.00746) 

20. Water Temperature at 30cm depth (⍴ = -0.0100) 

 
Diel. The strongest biophysical causal relationships regarding FCO2 at the diel scale were from 

FCO2 to FH2O Vapor, FH2O Vapor to FCO2, Ecosystem Respiration to FCO2, and FCO2 to 

Ecosystem Respiration. 

1. FCO2 xmap FH2O Vapor1 (⍴ = 0.816) 

2. FH2O Vapor (⍴ = 0.803) 

3. Ecosystem Respiration (⍴ = 0.548) 

4. FCO2 xmap Ecosystem Respiration1 (⍴ = 0.535) 

5. Photosynthetic Radiation (⍴ = 0.511) 

6. Vapor Pressure Deficit (⍴ = 0.468) 

7. Air Temperature (⍴ = 0.466) 
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8. Soil Temperature at 8cm depth (⍴ = 0.394) 

9. FCH4 (⍴ = 0.377) 

10. Soil Temperature at 16cm depth (⍴ = 0.367) 

11. Soil Temperature at 0cm depth (⍴ = 0.324) 

12. Soil Temperature at 32cm depth (⍴ = 0.307) 

13. Water Temperature at 30cm depth (⍴ = 0.271) 

14. Water Table Height (⍴ = 0.254) 

15. Air Pressure (⍴ = 0.251) 

16. Water Temperature at 10cm depth (⍴ = 0.244) 

17. Hydraulic Conductivity (⍴ = 0.0773) 

18. Dissolved Oxygen (⍴ = 0.0228) 

19. H2O Vapor Density (⍴ = 0.0168) 

20. Vegetation Index (⍴ = 0.00) 

 
Multi-Day. The strongest biophysical causal relationships regarding FCO2 at the multi-day scale 

were from FCH4 to FCO2, Vapor Pressure Deficit to FCO2, FH2O Vapor to FCO2, and Air 

Temperature to FCO2. 

1. FCH4 (⍴ = 0.369) 

2. Vapor Pressure Deficit (⍴ = 0.281) 

3. FH2O Vapor (⍴ = 0.274) 

4. Air Temperature (⍴ = 0.264) 

5. Water Temperature at 10cm depth (⍴ = 0.222) 

6. Hydraulic Conductivity (⍴ = 0.204) 

7. FCO2 xmap Ecosystem Respiration1 (⍴ = 0.200) 

8. Photosynthetic Radiation (⍴ = 0.198) 

9. Water Temperature at 30cm depth (⍴ = 0.195) 

10. FCO2 xmap FH2O Vapor1 (⍴ = 0.183) 

11. Soil Temperature at 32cm depth (⍴ = 0.164) 

12. Air Pressure (⍴ = 0.158) 

13. Soil Temperature at 0cm depth (⍴ = 0.152) 

14. Ecosystem Respiration (⍴ = 0.149) 

15. Soil Temperature at 16cm depth (⍴ = 0.137) 

16. Soil Temperature at 8cm depth (⍴ = 0.136) 

17. Water Table Height (⍴ = 0.119) 

18. H2O Vapor Density (⍴ = 0.107) 

19. Dissolved Oxygen (⍴ = 0.0363) 

20. Vegetation Index (⍴ = 0.00) 
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Seasonal. The strongest biophysical causal relationships regarding FCO2 at the seasonal scale 

were from Ecosystem Respiration to FCO2, Soil Temperature at 0 cm below the soil’s surface to 

FCO2, Water Temperature at 10 cm below the soil’s surface to FCO2, and FCH4 to FCO2. 

1. Ecosystem Respiration (⍴ = 0.956) 

2. Soil Temperature at 0cm depth (⍴ = 0.908) 

3. Water Temperature at 10cm depth (⍴ = 0.890) 

4. FCH4 (⍴ = 0.880) 

5. Air Temperature (⍴ = 0.874) 

6. Air Pressure (⍴ = 0.871) 

7. Vapor Pressure Deficit (⍴ = 0.835) 

8. Soil Temperature at 16cm depth (⍴ = 0.779) 

9. FCO2 xmap FH2O Vapor1 (⍴ = 0.763) 

10. FCO2 xmap Ecological Respiration1 (⍴ = 0.726) 

11. Soil Temperature at 32cm depth (⍴ = 0.685) 

12. Soil Temperature at 8cm depth (⍴ = 0.671) 

13. FH2O Vapor (⍴ = 0.615) 

14. Water Temperature at 30cm depth (⍴ = 0.604) 

15. H2O Vapor Density (⍴ = 0.546) 

16. Water Table Height (⍴ = 0.302) 

17. Hydraulic Conductivity (⍴ = 0.136) 

18. Dissolved Oxygen (⍴ = 0.0681) 

19. Vegetation Index (⍴ = 0.00) 

20. Photosynthetic Radiation (⍴ = -0.0725) 
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Figure 4. Causal Capacity of Contending Variables on FCO2. Applied rEDM package on contending 

biophysical drivers of FCH4. Cross Mapping Skill (⍴) represents correlation coefficients index (0-1). The closer ⍴ is 

to 1 is indicative of how much information from variable Y is stored in variable X, and thus how well X can predict 

Y, quantifying the level of causality from Y to X (Sugihara et al. 2012). 
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DISCUSSION 

 
 

To improve the accuracy of climate model predictions with respect to the effects of future 

climate change on greenhouse gas emissions, this study aimed to uncover and quantitatively 

compare the biophysical variables that influence FCH4 and FCO2 in a tidal wetland ecosystem 

by the application of two statistical approaches in succession: (1) wavelet-based decomposition 

and (2) convergent cross mapping. With respect to FCH4 in the Hill Slough Wetland, the 

following variables had the highest forcing capacity on methane flux at the (a) hourly, (b) diel, 

(c) multi-day, and (d) seasonal scale: (a,c) water vapor flux and (b,d) carbon dioxide flux. 

Analogously, the following variables had the highest forcing capacity on carbon dioxide flux: 

(a,b) water vapor flux, (c) methane flux, and (d) ecosystem respiration. 

For a majority of the computed signals, the cross mapping skill coefficients, which 

quantify the extent to which one variable influences another (based on the proximity of the CCM 

prediction compared to the actual signal), were comparatively larger for seasonal time scales, 

than for the shorter time scales. In addition, various computed signals in the hourly scale for 

FCH4, and in the hourly and seasonal scales for FCO2, resulted in negative values of the 

coefficients, signifying that portions of the predicted signal were opposite in sign to 

corresponding portions of the actual signal, which can further indicate an inaccurate input value 

for the time-lag specifically associated with the causal relationship in question (Martin et al. 

2019). 

 
Bi-directional forcing 

 
 

With respect to bi-directional forcing (besides that between FCH4 and FCO2), only water 

vapor flux and ecosystem respiration exhibited forcing towards both FCH4 and FCO2. At the 

hourly scale, the results indicate a slightly stronger forcing from both FCH4 (⍴ = 0.179) and 

FCO2 (⍴ = 0.146) to water vapor flux, than in the direction from water vapor flux to both FCH4 

(⍴ = 0.130) and FCO2 (⍴ = 0.111). At the diel scale, the greatest overall forcing capacity was 

from FCO2 towards water vapor flux (⍴ = 0.816). At the seasonal scale, the largest overall 

forcing capacity was exhibited by FCH4 towards water vapor flux (⍴ = 0.927). Overall, the 

results suggest a strong forcing capacity on all time scales from FCH4 to water vapor flux, as 
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well as from FCO2 to water vapor flux at hourly and diel scales. When considering the strong 

influence of water vapor flux in the direction of both FCH4 and FCO2, this would indicate the 

presence of a strong bi-directional feedback. 

 
FCH4 

 
 

FH2O vapor 

 
 

Water vapor flux had the highest influence on methane flux at hourly (⍴ = 0.130) and 

multi-day (⍴ = 0.500) time scales, and was among the variables of highest influence at the diel 

(⍴ = 0.355) and seasonal (⍴ = 0.838) scales. Given the following indirect mechanisms and 

supporting literature explaining the coupling of water vapor flux and FCH4 (e.g., Bansal et al. 

2020, Angle et al. 2016), there is greater plausibility in these findings as they correspond to 

bidirectional forcing of these two fluxes. An analogous study, using wavelet decomposition to 

isolate time scales of variation, in conjunction with mutual information as a means of causal 

analysis, found water vapor flux to be indicative of evapotranspiration having greater influence 

on FCH4 at hourly, diel, and multi-day (in the absence of strong water table variation) scales 

(Sturtevant et al. 2016). This study was also conducted in a non-tidal wetland in the same San 

Joaquin-Sacramento River Delta region. 

During evapotranspiration, the lacunar air ventilation system in wetland vegetation that 

allows the transport of oxygen to the rhizosphere (narrow region of soil influenced by 

microorganisms that produce or oxidize CH4), also allows porewater CH4 to diffuse directly 

from the rhizosphere to the atmosphere (Bansal et al. 2020). The coupling of water vapor flux 

and FCH4 can be explained by the following indirect relationship: increased water vapor flux is 

indicative of increased radiation, as well as evapotranspiration, which further indicates increased 

photosynthesis, which provides the necessary substrate for methanogenesis, the process of 

anaerobic respiration which produces CH4 (Rinne et al. 2018). Given that methanogenesis was 

estimated to account for 80% of FCH4 in oxygenated wetland soils (Angle et al. 2016), in along 

with the diffusion of porewater CH4 to the atmosphere during evapotranspiration, there is greater 

plausibility of a causal relationship between water vapor flux and FCH4. 
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Microorganisms in Methane Modulation 

 
 

However, there is controversy regarding whether soil-water characteristics dominate 

control over FCH4 in wetland ecosystems. With soil temperature and water temperature as 

parameters of soil-water characteristics, my study found soil and water temperature to have, on 

average, relatively less influence on FCH4 at all hourly (⍴ = -0.003 for soil; ⍴ = 0.007 for 

water), diel (⍴ = 0.104 for soil; ⍴ = 0.053 for water) and multi-day (⍴ = 0.197 for soil ; ⍴ = 0.104 

for water) time-scales, in comparison to the seasonal scale (⍴ = 0.805 for soil; ⍴ = 0.840 for 

water). Other studies have consistently reported soil temperature and water temperature to 

dominate seasonal variation in methane emissions (Zhu et al. 2021; Chadburn et al. 2020), which 

could be due to soil temperature modulating the productivity and growth rates of methanogens 

(microorganisms that produce CH4) and methanotrophs (microorganisms that oxidize CH4) 

(Schütz et al. 1990). Therefore microbial dynamics are likely a strong influence on the seasonal 

cycle of wetland methane emissions, as the pathways of producing CH4 or oxidizing CH4 are 

more influenced by soil and water temperature at seasonal scales, than at shorter time scales. 

Furthermore, CH4 cycling microorganisms are influenced by the soil’s hydrologic conditions, 

with methane producers being restricted to soils of higher moisture (Maietta et al. 2020). With 

hydraulic conductivity as a parameter of soil saturation, I found hydraulic conductivity to have 

the highest influence on FCH4 at the multi-day scale (⍴ = 0.259), relative to all other time scales 

(seasonal: ⍴ = 0.0231, diel: ⍴ = 0.0276, hourly: ⍴ = -0.00881). Given that soils that experience 

prolonged periods of saturation support a high abundance of methanogens (Maietta et al. 2020), 

and thus significant FCH4, one can infer that a multi-day period of prolonged saturation supports 

optimum soil conditions for methanogens. 

The highest driver of FCH4 at the seasonal scale was from FCO2 (⍴ = 0.926), and 

closely followed by air temperature (⍴ = 0.920). Degradation of soil organic carbon to 

methanogenic substrates (e.g., H2, CO2, acetate) is arguably the rate-limiting step in the 

production of CH4 (Conrad 2020). Given that methanogens and methanotrophs can be affected 

by limiting nutrients in wetland soils, and that CO2 is conducive to CH4 production, this would 

support the reasoning behind FCO2 having the highest influence on FCH4 at the seasonal scale. 
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Similarly, seasonal variations in CH4 emissions from a wide range of ecosystems have exhibited 

an average temperature dependence similar to that of CH4 production derived from pure cultures 

of methanogens (Yvon-Durocher et al. 2014). Thus we can infer that the consistent temperature 

dependence of CH4 emissions is most prominent at the seasonal scale. Given the time scale of 

causality, one can infer that CO2 as the limiting nutrient in CH4 production, as well as the 

ambient temperature effect on rates of reaction, are most apparent at longer time scales. 

Water table is an additional parameter that has been shown to modulate FCH4, with 

increases in fluctuation correlating with increases in FCH4 (Yuan et al. 2021). My findings with 

respect to water table’s influence on FCH4 were highest at the seasonal scale (seasonal: ⍴ = 

0.113, multi-day: ⍴ = 0.112, diel: ⍴ = 0.085, hourly: ⍴ = -0.003). However, relative to the other 

contending variables, water table did not have a notable influence on FCH4, which could be due 

to either a sub-optimal value for time lag which would inhibit the CCM’s ability to capture the 

appropriate time-lagged influence, or possible failure modes with respect to the signal’s 

processing under CCM. 

In conclusion, at shorter timescales FCH4 is predominantly influenced by 

evapotranspiration, at the multi-day scale FCH4 is driven by soil hydrological conditions that 

enable an abundant population of CH4 producing microorganisms. Lastly, at the seasonal scale 

FCH4 is influenced by FCO2, as increased carbon dioxide flux into soils enables optimal 

nutrient soil profile for CH4 production or oxidation by microorganisms, as well as air 

temperature due to the temperature dependence of methanogenesis (methane production). 

 
FCO2 

 
 

FH2O Vapor 

 
 

Water vapor flux had the highest influence on carbon dioxide flux at hourly (⍴ = 0.111) 

and diel (⍴ = 0.803) time scales. Given the consistent documentation in the literature of FCO2 

influence from vegetation above-ground biomass, there is a greater support in my findings as 

they correspond to the coupling of water vapor flux and FCO2, via the indirect mechanisms that 

account for plant growth regulating evapotranspiration. 
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Because the stomata (micropores in the epidermis of a leaf or plant stem) regulate the 

entry and exit of water vapor and CO2, stomata are not only the key to the assessment of 

evapotranspiration and water balance (represented by water vapor flux), but are also important 

for the estimation of FCO2 (Zha et al. 2013). 

FCH4 had the highest influence on FCO2 at the multi-day scale (⍴ = 0.369) and 

ecosystem respiration has the highest influence at the seasonal scale (⍴ = 0.956). The proposed 

mechanisms behind these results are interconnected, considering how methanotrophs oxidize 

CH4 to CO2, utilizing the oxygen supplied to the rhizosphere from ecosystem respiration, which 

itself also produces CO2 (Bansal et al. 2020). Oxygen availability and diffusivity in wetlands are 

controlling factors for the production and consumption of both CO2 and CH4 in the subsoil, and 

hence, control the potential emission of these greenhouse gasses to the atmosphere (Elberling et 

al. 2011). Increased FCH4, associated with CH4 soil-uptake, would then enable increased levels 

of FCO2 to the atmosphere from CH4 oxidation, and can then be inferred as the primary control 

of FCO2 at multi-day scales. With respect to ecological respiration influencing FCO2 at the 

seasonal scale, the absence of plant above-ground biomass, or vegetation foliage, increases CO2 

emissions, as reduction in vegetation results in greater rates of ecosystem respiration relative to 

photosynthesis (Yu et al. 2022; Olsson et al. 2015), which promotes CO2 emissions. Because 

ecosystem respiration comprises a major portion of total FCO2, one can infer that vegetation 

characteristics, at longer time scales, are the primary control of ecosystem respiration, and thus 

also of FCO2. 

Vapor pressure deficit also had a high influence on FCO2 at multi-day (⍴ = 0.281) and 

seasonal (⍴ = 0.835) timescales. The proposed explanation for this control of FCO2 exemplifies 

the multifaceted, non-linear mechanisms of gas exchange at the plant-atmosphere interface: 

surface conductance (heat transmitted from a surface to the fluid in contact with the surface, or 

vice versa) was more sensitive to vapor pressure deficit under high radiation, leading to 

increased water vapor flux from transpiration, except when there was soil water deficiency in 

midsummer leading to a lower and constant surface conductance, thereby reducing transpiration 

(Zha et al. 2013). 

In conclusion, with respect to the processes that modulate FCO2 across wetlands, a 

common theme is rooted in associated plant-atmosphere interactions. At the hourly and diel scale 

water vapor flux corresponds to rates of evapotranspiration, as well as vapor pressure deficit (at 
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longer time scales) directly corresponding to the surface conductance, and thus 

evapotranspiration. At multi-day and seasonal scales, FCH4 and ecosystem respiration, as the 

primary controls of FCO2, correspond to plant-mediated availability and diffusivity of oxygen as 

a limiting step in multiple CO2 production pathways. 

 
Limitations of time series analysis 

 
 

The discrepancies between previous findings for FCH4 specifically and results derived 

from wavelet decomposition and CCM here is most likely attributable to a combination of failure 

cases in which the CCM algorithm may falsely predict and/or detect causality. MODWT-based 

wavelet decomposition is deemed as an effective approach for revealing time-dependent 

variations and phases in the data (Yaacob et al. 2021). Because signal processing via wavelet 

time-scale decomposition has shown reliable performance for decomposing nonstationary FCH4 

signals (Knox et al., 2018, 2021; Chamberlain et al., 2018; Sturtevant et al., 2016), it is less 

likely to be a sourcepoint of error, or consist of a relatively smaller portion of the inaccuracies in 

overall state space reconstruction in comparison to the CCM analysis. However, a notable 

limitation of using wavelet analysis surrounds the decomposed time scales that are subject to a 

scaling factor of 2n, which may not necessarily correspond to ecological scales (Sturtevant et al. 

2016). 

 
Failure cases 

 
 

CCM may not be as robust in its ability to discern causal dynamics in the context of 

performing ecological state space reconstruction, when considering the following possible failure 

modes: (1) nonreverting continuous dynamics, (2) synchrony, (3) integer multiple periods, (4) 

pathological symmetry, and (5) process noise (Yuan and Shou 2022). Given that CCM detects a 

continuous delay map between two variables (X and Y) and uses this to infer the presence and 

direction of causation, in the first failure mode, a continuous map might be found from the delay 

space of X to time and from time to Y, which falsely assumes causality from X to Y when there 

is a clear temporal trend among the two variables (Yuan and Shou 2022). In the second case, 

when the coupling is so strong that it results in synchronization of variables X and Y, 
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bidirectional causality may be inferred when it is unidirectional (Mønster et al. 2017). In the 

third case, when X’s period, or length of complete cycle, is an integer multiple of Y’s period, Y 

may be predicted to cause X when there is no causal relation (Yuan and Shou 2022). In the fourth 

failure case, when there is persistent symmetry CCM fails to predict bidirectional causality (Yuan 

and Shou 2022). In the case of process noise (discordant data that may arise from natural 

variation and stochastic processes), for higher levels of noise CCM correlations drop linearly as a 

function of added noise, and the rate of convergence becomes a more robust indicator of 

causality (Mønster et al. 2017). Because convergence is yet to be a well-defined quantifiable 

parameter in the literature, this lack of definitive measure poses an issue for determining 

causality based solely on the rate of convergence. It is essential to account for these CCM failure 

modes when considering the legitimacy of CCM as a statistical tool for ecological data analysis. 

Moreover, time-lag is one of the two parameters that have a significant influence on the 

CCM algorithm’s output accuracy (Mønster et al. 2017). Because the time lag was only set to a 

default value of -1, and plausibly not the optimal value for each pair-wise computation, this 

default setting of time lag can account for an underestimation or overestimation in causality. 

Therefore, for future studies, it is recommended to procure the optimal time lag and embedding 

dimension for each pair-wise computation. 

 
Implications 

 
 

Wavelet decomposition is a reliable statistical method for data analysis at isolated 

frequencies. However, further investigation of CCM and similar statistical algorithms that test 

for causality in non-deterministic systems is essential to consistently and accurately identify and 

quantify causal relationships in ecological systems. 

The differences in CCM correlation coefficients among timescales for each respective 

pair-wise analysis highlights the importance of including properties of scale for comprehensively 

understanding causality and accurately predicting the interactions between FCH4 and FCO2 and 

their biophysical controls. 

Although the causal associations regarding water vapor flux and carbon dioxide flux for 

FCH4, and water vapor flux, methane flux, and ecosystem respiration for FCO2 were consistent 
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with previous conclusions, further investigation on the biophysical controls of trace gas 

exchange across different biomes is necessary to better formulate global circulation models. 
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Appendix A: Dutch Slough Wetland Wavelet Decomposition for 170 day time-series 

Appendix B: Dutch Slough Wetland rEDM 
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