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ABSTRACT

Coast redwood ecosystems along the northern California coastline are heavily reliant on fog and
low cloud cover (FLCC) inputs, especially during dry summer months with lower precipitation.
These ecosystems are also among the most vulnerable to irreversible damage from high severity
wildfires. This study uses remote sensing imagery, primarily MODIS satellite data, to examine
how variations in FLCC across different times and study areas impact the health of vegetation,
indicated by the Normalized Difference Vegetation Index (NDVI). A Generalized Additive
Model (GAM) was used to determine how FLCC fluctuations, along with climatic variables
associated with fire, influence the severity of wildfires. Overall, FLCC days per month did not
have a notable increase or decrease over the course of the study period, from 2000 to 2022.
Additionally, fluctuations in FLCC are closely linked to variations in NDVI, with notable
exceptions during drought periods. The results showed that precipitation, maximum vapor
pressure deficit (VPD), and the Enhanced Vegetative Index (EVI) were significant in predicting
the difference Normalized Burn Ratio (dNBR), but mean temperature and FLCC proportion were
not significant in prediction power. Examining pre-ignition conditions revealed notably low
FLCC and precipitation levels at each site, along with elevated maximum VPD and temperature.
Results reveal the importance of fog in affecting vegetation health, along with the capabilities of
using remote sensing technologies to monitor coastal forest ecosystems. Additionally, findings
show that implementing forest management strategies during heightened risk for fire ignition
events is crucial in addressing unprecedented high severity wildfires.
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INTRODUCTION

Coastal forests in northern California contain some of the oldest and most diverse

biomes, including coast redwood ecosystems, which are also among the most susceptible to

severe ecological damage from high severity wildfires (Mahdizadeh 2021, Potter 2023). Forest

managers and researchers are interested in understanding the implications of recent wildfires

occurrences and how they can effectively manage for future events. Although the full extent of

climate change effects on fire behavior across the globe is not fully quantified, a new pattern of

unprecedented high severity wildfires at a higher frequency throughout California has been

associated with climate change (Westerling 2006, Miller 2009, van Mantgem 2013). Since 1984,

high-severity wildfires in northern coastal California have been increasing by around 10% per

decade (Huang 2020). Wildfires in this area have been immense in recent years, capturing the

attention of resource managers, fire scientists, and the general public (Halofsky 2020). There are

many shifting factors impacting wildfire, and one of the most elusive is the influence of fog in

the region.

Changes in fog and low cloud cover (FLCC) frequency and associated climate variables

have important implications for both vegetation of the region and wildfire occurrence. Cold

upwelled ocean water along the coast is associated with strong warm-season subsidence, along

with surface winds which create conditions for marine fog formation (Filonczuk 1995, Koračin

2014). Water from fog often makes up a significant proportion of hydrological factors of

ecosystems, especially the coastal coniferous forests of northern California (Corbin 2005,

Weathers 2020). These forests experience a significant reliance on fog as a water source, most

notably during summer when rainfall is absent (Dawson 1998, Torregrosa 2016). Notable species

such as coast redwood, or Sequoia sempervirens, have a limited range not more than 80 km

inland of the coast (Johnstone 2010). S. sempervirens requires a high ratio of water supply to

water loss, so without the consistent occurrence of summer fog, no true redwood forest is

possible (Cooper 1917).

One way to quantify the relationship between fog and vegetation is using remote sensing

data. Satellite observations are useful detectors of fog since they are able to differentiate between

fog and other clouds or land surfaces based on infrared radiance properties (Gultepe 2009,

Torregrossa 2014). Remotely sensed data makes the investigation of FLCC variability possible at
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a larger scale where ground proofing is not possible (Cermak 2018). Daily overpass imagery

from satellites, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), allows

data users to determine FLCC presence at a highly detailed spatial and temporal resolution

(Jensen 2008).

The utilization of remote sensing tools also facilitates the understanding of wildfire

patterns and vegetation health by recording highly accurate records on wildfires in geospatial

form and presenting metrics of vegetation productivity. One metric is the Normalized Difference

Vegetation Index (NDVI), derived from NOAA's Advanced Very High Resolution Radiometer

(AVHRR) instrument, which is an indicator of vegetation greenness and health (Pettorelli 2005,

Eastman 2013). Remote sensing data and technologies have also been widely used for mapping

and monitoring areas affected by fires (Matci 2020). One important climatic variable that is

related to FLCC and burn severity is vapor pressure deficit (VPD). VPD is the difference

between the actual water vapor content of the air and its saturation potential value, serving as a

metric of the atmosphere’s ability to extract moisture from land surface (Erard 2016). The

measure of VPD is closely related to variability in burned forest areas in the western United

States (Seager 2015). High VPD values lead to rapid water loss from plants, and if sustained,

significantly dry out vegetative material (Williams 2014). Considering both VPD and FLCC is

important to strengthen the burn severity model and determine the correlation strength of each

climatic variable. Other studies have drawn conclusions between VPD and burn severity (Sedano

2014, Grünig 2023, Wasserman 2023), created FLCC or NDVI time series (Fensholt 2012,

Nghiem 2019, Werner 2022, Eisfelder 2023), but none have done all of these while also

incorporating FLCC into burn severity regression models.

This study utilizes current remote sensing tools and climatic variable datasets to

determine the effects of FLCC level variability over time and across different regions on

vegetation health, along with the increasing prevalence and severity of wildland coastal fires.

The first subquestion examines the relationship between fog levels and vegetation growth along

the northern California coast. I expected that coastal areas with high fog presence year-round

(northern and coastal regions) will experience associated higher NDVI values than areas with

low fog presence (southern and inland regions). The second subquestion explores the

relationship between FLCC occurrence and other relevant climatic variables during the fire

season and the occurrence and severity of burned area. I inferred that fog occurrence during the
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fire season will be a significant predictor of the difference Normalized Burn Ratio (dNBR) when

used in a model with these other variables. The third subquestion asks what the overall fog

patterns in the study region are when looking at the entire study period. I hypothesized that fog

patterns in the northern California coastal forest study region will fluctuate, but during the

22-year study period, will show a decrease in fog days per month over time.

METHODS

2. Study Site

​​My study focuses on northern California coastal forests, which are generally defined as

forests within 50 km of the coast (Noss 2013). Depending on the local topography, the true range

of this ecosystem may be even more limited in extent from the coast, as fog may not penetrate as

far inland (Torregrosa 2016). Coastal forests are among the most heavily affected by marine fog

variation (Petreshen 2021).

In examining the relationship between fog levels and vegetation growth through the

measurement of NDVI, I limited my focus to six locations in which wildfires occurred during the

study period, from 2000 to 2022 (Figure 1). The correlation between fog occurrence and the

severity of fire will also be determined by examining these six fire locations. These fires are

located in the following areas: Sonoma County, Point Reyes, Santa Cruz and San Mateo

counties, Klamath National Forest, and Napa and Lake counties (Table 1). Other fire events in

northern California during recent years were either not large enough in extent and severity for the

study purposes or did not meet the 50 km coastal proximity requirement.
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Figure 1. ArcGIS Pro map with the six study sites delineated. The Northern California boundary line is also
defined (Burns 2024).

Table 1. Fires used in the study. Parameters include fire name, start and end date, fire location, fire size, elevation,
and land cover type.
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I chose study sites both close to the Oregon-California border and south of the San

Francisco Bay to examine the difference between latitudinal-based fog fluctuations, as

northernmost coastal areas historically experience more fog days and greater productivity (Chen

2021). I also chose areas that are directly on the coast (e.g., Point Reyes, Santa Cruz), along with

areas that are in the eastern extent of the coast redwood range (e.g., Sonoma County, Napa and

Lake counties) (Figure 2). The eastern extent has a more sparsely populated redwood population

instead of continuous redwood forest, and acts as an indicator of the border of shifting climatic

conditions (Fernández 2015).

Figure 2. Coast Redwoods Distribution map. In California, from the CA Department of Parks and Recreation.
February 2021.
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2.1 Data Collection

My primary fog dataset was extracted from the MODIS 1km FLCC Google Earth Engine

Application (Werner 2022). Moderate Resolution Spectroradiometer (MODIS) sensor data is

largely available on a daily basis. The Terra MODIS satellite was used by Werner’s team to

create an FLCC dataset that spans over 20 years, from 2000-2022. The Terra MODIS cloud flags

were evaluated to create a FLCC dataset along the California and southern Oregon coast for the

summer months, June through September. The dataset was provided in a monthly summary as

the number of fog days per month. In addition, the study author provided me with daily FLCC

rasters of my study area, clipped to northern California, from June through September of 2020

(Z. Werner, personal communication). This data indicated fog presence through a binary system,

1 meaning FLCC presence and 0 meaning no FLCC presence as detected by MODIS.

To obtain burn severity shapefiles, I used the USDA Rapid Assessment of Vegetation

after Wildfire (RAVG) Burn Severity Viewer (USGS 2022). This dataset uses satellite data to

estimate post-fire vegetation conditions on National Forest System (NFS) lands, including the

composite burn index (CBI), percent basal area loss, and percent canopy cover loss. To access

the data for my study sites, I changed the date range to “2000-2022”, and filtered by products

RAVG, MTBS (Monitoring Trends in Burn Severity), and BAER (Burned Area Emergency

Response). I downloaded the KMZ Wildfire Shapefiles, which were used to delineate each site.

The difference Normalized Burn Ratio (dNBR) is often used to assess fire severity, and is

created by subtracting post-fire NBR from pre-fire NBR (Delcourt 2021) (Table 2). To obtain

dNBR data, I accessed the Climate Engine database, which is a free web application that uses

GEE to download and process a wide variety of climate and remote sensing datasets (Huntington

2017). I clipped to my specific fire boundaries and downloaded Earth Observations data at the

daily scale, which I then summarized to a monthly value.

To access vegetative health data in the form of NDVI, I used the MODIS Terra Daily

NDVI Data from the Google Earth Engine (GEE) Catalog. The Normalized Difference

Vegetation Index (NDVI) is generated from the Near-IR and Red bands of each scene as (NIR -

Red) / (NIR + Red), and ranges in value from -1.0 to 1.0 (Table 2). This product is generated

from the “MODIS/MCD43A4_006_NDVI” surface reflectance composites (Gorelick 2016).
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For relevant climatic variable data, I accessed the Parameter-elevation Regressions on

Independent Slopes Model (PRISM) Climate Dataset, which gathers climate observations from a

wide range of monitoring networks and develops spatial climate datasets to reveal climate

patterns (Oregon State 2023). I downloaded .csv files for each study site for mean temperature,

precipitation, and maximum vapor pressure deficit variables. Most of my analysis is done using

the R package, ‘prism’, which allows users to access the Oregon State PRISM climate data and

process the results.

Table 2. Spectral Indices. Includes Formula Description. NIR is the Near Infrared wavelength band, and SWIR is
the short-wave infrared band.

2.2 Data Analysis

2.2.1 Fog and Vegetation

2.2.1.1 Google Earth Engine NDVI

Using the GEE Code Editor, I imported the shapefiles from RAVG for each of the six

study sites and clipped my analysis to each area. I used the MODIS NDVI image collection to

access the data, and filtered for my study dates: January 1, 2000, to December 31, 2022.

Additionally, I also isolated dates with sensor information gaps and removed these points from

the dataset to avoid generating faulty NDVI composite data. For each site, I downloaded the data
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into R Studio and generated a chart of long term time series after filtering NDVI for the summer

months only. I added a marker to indicate the time of fire ignition events for each site. Creating a

time series of NDVI allows for direct comparison with the FLCC time series for the same

locations.

2.2.1.2 FLCC and NDVI Time Series

I downloaded rasters from the MODIS 1 km Monthly Fog and Low Cloud Cover

2000-2022 dataset. For each study site, I created a for loop in R Studio to extract the FLCC data

for a specified coordinate. Then, I divided the number of fog days by the numbers of days in

each month to create an FLCC proportion variable. To determine the relationship between NDVI

and FLCC proportion, I plotted the two variables on the same chart for the same time period for

each site, after standardizing the variables for direct comparison. For each study site, plotting

monthly NDVI and FLCC proportion as a correlation plot did not yield a significant linear

relationship, so I found it more fitting to examine the variables in a time series setting.

2.2.2 Fog and Burn Severity

2.2.2.1 Generalized Additive Model

To determine the relationship between burn severity and FLCC, I used a Generalized

Additive Model (GAM) (Formula 1). The GAM is an additive modeling technique that does not

make assumptions about the underlying distribution of the dataset, along with using smooth

functions to capture the impact of predictive variables (Stasinopoulos 2024). My initial

methodology, the multivariate linear regression (MLR) model, did not lead to conclusive results

due to the non-linear relationships of the variables, so the GAM was better suited to the data.

The GAM model used five inputs to predict dNBR, with data from each study site

(Figure 3). I used the Climate Engine dNBR data, FLCC proportion data, along with additional

variables from PRISM that are known to affect burn severity: precipitation, maximum VPD, and

mean temperature (Dillon 2011, Abatzoglou 2013). I also used the Enhanced Vegetation Index

(EVI) from Climate Engine, which is a vegetation metric similar to NDVI but different in that it
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uses a blue band in addition to the red and NIR bands (Jiang 2008). After downloading the data

and preprocessing it in R Studio, I used the ‘gam’ function from the mgcv package (Wood 2017).

Generating a summary of the model outputs the parametric coefficients, significance of each

smooth term, adjusted R-squared, and deviance explained by the model.

Figure 3. Burn Severity Model Flowchart. Relevant climatic variables are included and defined.

Formula 1. Generalized Additive Model. The model relates a univariate response variable, Y, to some predictor

variables, si.
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2.2.3 Fog Trends

2.2.3.1 FLCC Time Series

Using the generated fog proportion from the MODIS 1 km FLCC dataset, I carried out a

time series analysis of FLCC cover for each of the six study sites. I used the entire period of data

available, from 2000 to 2022 for summer months, to create a smoothed trendline for the data,

with +/- 1 standard error (Figure 4).

Figure 4. Methods flowchart and data sources. A summary of the entire methodology, including data sources.
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2.2.4 Pre-ignition conditions

To examine ignition conditions at each study site, I isolated FLCC proportion,

precipitation, maximum VPD, and mean temperature and looked at the variables at each fire start

date, for the period leading up to the fire and at the time of ignition.

Results

Google Earth Engine NDVI

While the average monthly NDVI had a seasonal fluctuation at each study site, I found

that it was highest at the Woodward and CZU coastal study sites for pre-fire (unburned), or

baseline conditions (Figure 5). The CZU August Lightning Complex site, located in Santa Cruz

county, displayed a 0.82 NDVI baseline value. Additionally, the Woodward site, located in Point

Reyes, showed a baseline NDVI value of 0.76. These values were contrary to the initial

hypothesis that the northernmost study site, Siskiyou, would have the highest baseline NDVI;

Siskiyou had an NDVI baseline of 0.67.

However, coastal sites had higher NDVI values compared to more inland sites, which

was an expected finding. For example, the Tubbs site, which is located in a more inland area in

Sonoma County, had a baseline NDVI value of 0.65. The Kincade site, which is neighboring the

Tubbs site in Sonoma County, also had a baseline NDVI of 0.62. The Walbridge study site,

which is also relatively inland, experienced a baseline NDVI value of 0.73.
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Figure 5. Average NDVI Time Series for summer months. (a) Siskiyou study site in the far north of California,
(b) CZU August Lightning complex study site in the southern end of the study region, Santa Cruz county.

Another finding was the notable drop-off in NDVI for all study sites after a fire event.

For example, the Walbridge fire in 2020 caused a decrease in NDVI by 0.25, and NDVI was still

decreased by 0.16 two years later (Figure 6). The high severity coastal forest fires caused a

significant drop off in NDVI.
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Figure 6. A monthly NDVI time series from the Walbridge study site. The site is located in western Sonoma
County, and the time spans from 2000-2023, with the fire ignition event as a dashed line.

FLCC and NDVI Time Series

The FLCC proportion and average monthly NDVI were scaled for comparison for each

site, and compared. One notable example is the Walbridge study site, where NDVI and FLCC

track each other closely from 2000 until 2007, when they drastically diverged (Figure 7). During

the period from 2007 to 2010, FLCC proportion levels are high, while NDVI experiences a

decrease.
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Figure 7. A time series of both monthly NDVI and FLCC in the Walbridge fire study site, zoomed into years
2000-2011. The drought period is highlighted, and the variables are scaled for direct comparison.

The coastal site of Woodward in Point Reyes experienced among the highest fog days per

month, with up to 21 days of FLCC detection, while also displaying high levels of baseline

NDVI of around 0.76. The Walbridge inland site experienced a lower level of FLCC, with a high

of 8 days per month. The Siskiyou northern site had high levels of FLCC, with the maximum

value of 25 days per month, along with a baseline NDVI level of 0.76.

Fog and Burn Severity: GAM

After implementing the GAM model, I found that precipitation, maximum VPD, and the

Enhanced Vegetative Index (EVI) were significant variables in predicting dNBR in the model.

Mean temperature and proportion of fog days were not significant in prediction power (Table 3).

The statistic metric indicates that variables with a higher value have a more significant

contribution to the model. Average EVI was exceptionally high at a 55.23 statistic value, and

precipitation followed with 4.65, along with maximum VPD at a 3.00 statistic value.
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Additionally, the edf (estimated degrees of freedom) metric suggests that variables with a higher

edf value display a more flexible model fit, which allows for more curvature in the relationship

between the predictor and the response variable. Precipitation had the most flexibility, with an

edf of 9.68. Fog proportion and average temperature were the lowest, with an edf of 1.0.

Variables with a significant p-value of ≤ 0.05 were precipitation, maximum VPD, and average

EVI, while fog proportion and mean temperature did not meet this threshold.

Table 3. Results of burn severity GAM model. Columns include terms (average temperature, precipitation,
maximum VPD, average EVI, and fog (FLCC) proportion), along with edf (estimated degrees of freedom), statistic,
and p-value.

Furthermore, the model was responsible for 88.4% of deviance explained, along with a

high adjusted R-squared value of 0.854 (Figure 8). The R-squared provides a measure of how

well the variability in the response variable is explained by the model. Here, 85.4% of the

variance in the response is explained by the predictors in the model, adjusted for the number of

predictors. Additionally, the Generalized Cross-Validation score was 0.0042549. This metric is

used to assess the model’s predictive performance or tuning the model's smoothing parameters,

and a lower value indicates a better model fit (Scheipl 2011). The estimated scale parameter used

in the model, scale est., is related to the variance of the error terms. The small value, 0.0033409,

indicates less error variance and therefore a better fit of the model to the data.

Figure 8. Results of the burn severity GAM model. Outputs include R-squared, deviance explained, Generalized
Cross Validation (GCV) score, and scale est. (scale parameter, estimated).
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Fog Trends

After creating a time series of FLCC days per month, I found that FLCC fluctuates on a

yearly basis with no clear increase or decrease over the study period for all sites. Examining the

Wallbridge site as an example, there is a slight increase during the years 2011 to 2017, but no

notable trends otherwise (Figure 9). For this site, there is high variation in the data, with fog days

occurring as low as zero in one month, and up to eight days per month at other points.

Figure 9. A time series of FLCC in the Walbridge fire study site from 2000-2022. Site in western Sonoma
County.

Pre-fire Ignition Conditions

I found that for fire ignition conditions at each location, results were consistent across

study sites. For example, at the Woodward study site in Point Reyes, FLCC proportion and

precipitation, while high at the actual time of ignition, displayed lower values for the preceding

year period (Figure 10). Additionally, mean temperature and maximum VPD values were both
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elevated at the time of fire ignition events. These conditions were similarly significant at all six

study sites.

Figure 10. Time series of climatic variables for pre-fire period conditions, for the Woodward study site. (a)
Fog and Low Cloud Cover (FLCC), with preceding one year highlighted, (b) precipitation, with preceding one year
highlighted, (c) Vapor Pressure Deficit (VPD) maximum and mean temperature, with temp. scaled for comparison.

DISCUSSION

Fog Levels and Vegetation Growth Through NDVI

This study helped convey the ecological role and importance of fog in maintaining

vegetation health. Findings highlight the dependency of vegetation on FLCC (Burgess 2004),

especially during the arid summer months of the region’s Mediterranean climate (Giorgi 2008).

In coast redwood forests of northern California, the study by Dawson (1998) found that S.

sempervirens receives 19% of its summer water from fog and fog drip. In examining the summer

monthly NDVI and FLCC proportion for each study site, I found that contrary to my hypothesis,
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the northernmost site, Siskiyou, did not experience the highest levels of NDVI, despite having

the highest FLCC occurrence of a maximum of 25 days per month. There are multiple

possibilities for these NDVI values. The rapid drops in value from the NDVI time series for

Siskiyou indicate likely sensor interference due to the high FLCC presence during the summer. A

study by Motohka (2011) found that residual small clouds were attributed to contamination of

about 40% of their MODIS data after cloud screening. These findings indicated that cloud

interference significantly decreased NDVI values during the growing season. Noise due to

clouds was found to be a severe problem for time series monitoring in another study by Salgado

(2023), which used satellite sensors with low-to-medium spatial resolution such as the Terra and

Aqua MODIS satellites. In my study, the NDVI dataset was a 16-day composite, but despite the

averaging of NDVI across this period, I still found images that were missing pixels and had to

filter them out. In the case of Siskiyou, sensor disruption seems likely, as fog presence is so high

that even a cloud filter might not yield a time series free of noise.

Another finding of the study was the proximity to the coast as more important in

indicating FLCC, rather than the latitudinal gradient of increased fog presence towards the

Oregon border. Multiple studies have found that coastal fog tends to be denser and more

persistent compared to inland areas due to onshore marine influences and specific microclimates

along the coast (Weiss-Penzias 2012, Sawaske 2015, Baguskas 2016). These findings explain

why coastal sites such as Woodward and CZU had higher FLCC and NDVI values compared to

more inland sites like Tubbs, Kincade, and Walbridge. Additionally, the Tubbs and Kincade sites

included urban development, which also contributes to a lower NDVI average value (Lee 2023),

as predominantly built environment materials will reflect lower greenness overall.

I also found strong linear patterns between FLCC proportion and average summer NDVI

for each study site, with exceptions during drought periods. While the scatterplot of the two

variables did not reveal any linear trends, comparing the scaled values revealed a strong

relationship. A study by Ball (2020) had similar findings, with fog distributions correlating with

patterns of vegetation greenness, and an overall increase in greenness with fog density. In

considering drought, many studies have been able to discover a sharp decline in NDVI values

during drought periods (Rousta 2020, Ding 2022, Wang 2023). A study by Corbin (2005) found

that 28-66%, depending on species, of the water taken up by plants via roots during summer

drought came from fog rather than winter rain. However, these summer fog inputs are often not
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sufficient during years of abnormally low winter rain, leading to lower NDVI values despite

higher FLCC presence during drought conditions.

Fog Occurrence During Fire Season and Wildfire Severity

The results of the GAM model showed that precipitation, maximum VPD, and average

EVI were significant, while fog proportion and mean temperature did not meet this threshold.

While temperature on its own is not significant in this case, temperature is incorporated into the

VPD calculation (Holden 2018). Therefore, maximum VPD is a strong variable in dNBR

prediction power. Fog proportion was not a significant variable in the model, which suggests not

only do the limitations of the FLCC dataset need to be considered, but also that other

methodologies should be considered in creating the burn severity model. Pre-fire conditions were

more informative; heightened maximum VPD values at ignition events were in-line with findings

from studies by Sedano (2014) and Seager (2015). Sedano found a significant relationship

between daily VPD and the probability that a lightning strike would develop into a fire.

Additionally, they found that above average VPD following ignition increased the likelihood that

fires would grow to be significantly large. A study by Michelle (2021) verified that VPD is an

essential climate indicator for forest fires, as it represents the stress conditions for vegetation

prone to fires. While not significant in the model, FLCC still plays an important role in coastal

forests through its effects on lowering temperatures and increasing moisture levels (Torregrosa

2016), acting as an ecosystem component that helps moderate fire behavior.

Overall Fog Patterns and Implications

Contrary to my hypothesis, fog patterns over the course of the study period, from 2000 to

2022, did not experience a significant decreasing trend. This result suggests a high level of

variability in fog occurrence, which reflects the complex interplay of local and regional climatic

factors driving fog formation (Koračin 2014). These findings are also at odds with results from

Johnstone (2010), which was able to extrapolate a ~33% decrease in fog hours since the early

20th century. There are multiple possibilities for this discrepancy. The Johnstone study has data

until 2010, so my study examines an additional 12 years beyond this point. Interestingly, another
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study by Lebassi (2009) found a decreasing trend in coastal California summer daytime

maximum temperatures since 1970, and suggested an increase in “cool sea-breeze flows and its

associated coastal stratus”, or fog, as a primary cause. Additionally, there are some limitations of

the FLCC dataset from MODIS. The study by Werner (2022) used the MODIS cirrus cloud flag,

identifying clouds above 6 km, removing these, and then considering all remaining clouds as

FLCC. This assumption is based on the study by Francis (2020), which says “low-level marine

stratus clouds comprise more than 75% of clouds on the coast of California” during the summer

months. Additionally, FLCC burn-off time is quite variable (Haeffelin 2010), and if it is not

present during the MODIS 10:30 am overpass time, then FLCC presence for that day will not be

recorded. The absence of a discernible long-term trend in fog occurrence highlights the

challenges in predicting fog (Kim 2022) and anticipating the ecological impacts of changing

trends, which underlines the need for continuous monitoring and advanced modeling techniques

to better understand these dynamics.

Future Directions

Fog plays a multifaceted role in influencing vegetation health and wildfire dynamics in

the Northern California coastal forests. The observed relationships between FLCC, vegetation

growth, and burn severity demonstrate the importance of atmospheric climatic factors in

terrestrial ecosystems. Furthermore, the discovered variability in fog patterns and their impacts

calls for further research. Future studies should focus on refining remote sensing methodologies

to capture more detailed fog dynamics and explore the interactions between fog, climate change,

and ecosystem responses. For example, the refinement of satellite products, such as MODIS, and

development of an improved cloud detection system can increase the validity of results for future

applications. Additionally, incorporating longer temporal datasets and more sophisticated climate

models could enhance understanding of how coastal ecosystems evolve under changing climate

scenarios. Although NDVI is the most common spectral index for monitoring vegetation changes

(Tucker 1979), the study results also indicate that noise from residual clouds is minimized when

using other indices like EVI, NDWI, or NDII instead of NDVI. Future studies should integrate

additional environmental variables, such as soil moisture levels or wind patterns, to further

improve the predictive capabilities of wildfire models.
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Broader Implications and Management

The broader implications of this study are highly relevant to ecosystem management,

wildfire mitigation strategies, and climate adaptation efforts. By continuing to improve

understanding of FLCC impacts on wildfire ignition, implications of fog dynamics will be better

understood. As coastal forest ecosystems continue to face the challenges of climate change and

increasing wildfire risks, it is crucial that research continues to evolve, enabling better

preparedness and response strategies to protect these critical natural environments and the

communities that depend on them. Understanding the fog-fire relationship inside coastal forests

is a key aspect of ecosystem management in order to carry out informed wildfire preparedness

and climate adaptation strategies. Creating a hazardous condition detection system using remote

sensing tools would be highly impactful in creating warnings when wildfire ignitions are most

likely to occur, helping to protect vulnerable groups that are at the highest risk of experiencing

negative effects of high severity fires or other climate disasters.
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