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ABSTRACT 

 
As our environment changes, there is an increased need to quantify the effects on our ecosystems 
and verify the nature-based climate solutions combating them. The current indicative measures, 
such as biomass estimates, are largely dependent on field-based measurements. However, trees 
can be detected and characteristics can be measured in remote sensing images, allowing for more 
data to become available. This study focused on the extent to which computer vision algorithms' 
classification of blue oak trees (Quercus douglasii) in remote sensing images could help in 
understanding the carbon and water dynamics within oak woodlands. Geographic Object-Based 
Image Analysis (GeOBIA) was optimized to classify an oak savanna in the lower Sierra Nevada 
foothills by testing parameter combinations of segmentation functions: `slic` segments responded 
the best to the spectral features of the landscape, while the addition of an edge class between trees 
helped with breaking up clumps of trees. The development of a crown area-based biomass equation 
with initial values estimated from field diameter at breast height measurements was unsuccessful 
due to the difficulties in isolating individual oak trees. Analyzing land cover type and 
evapotranspiration yielded expected relationships, and the ability of generalized additive models 
to  predict evapotranspiration demonstrates how a GeOBIA classification can be upscaled for 
ecosystem modeling. The classification and measurements from a GeOBIA classification has 
potential to fill gaps in data, but will require a multi-step approach of image processing algorithms 
and initial field measurements to develop accurate relationships. 

 

KEYWORDS 

 
oak savanna, segmentation, machine learning random forest classifier, NAIP imagery, OpenET 

  



Megan Y. Hur   Classification for Modeling of Biomass and Evapotranspiration Spring 2024 

2 

INTRODUCTION 

 

As the environment changes due to climate change, there is a growing need to measure the 

impacts on our ecosystems. Biomass estimations can be an indicative measure to understand the 

health of vegetation in ecosystems. Knowing the amounts of biomass, the total weight of plant 

material, and whether it is growing or shrinking could help with analyzing how trees are 

responding to changes in carbon, water, and nutrient cycles as a result of increases in carbon 

dioxide and variations in weather patterns (Jenkins et al. 2003, Garcia et al. 2017). Many nature-

based climate solutions aim to better manage and restore ecosystems by increasing vegetation and 

carbon stock, increasing the importance of biomass estimations to verify such programs. In 

addition to environmental implications, the reliable estimation of biomass has various applications, 

such as bioenergy and estimating fuel loads for fire management (Parresol 1999, Woodall et al. 

2011). Agricultural planners can use biomass data to infer crop yield from orchards (Koc-San et 

al. 2018, Dong et al. 2020). Biomass data is fundamental to gauge the health of an ecosystem in 

the face of climate change, so more products are needed, but many biomass estimations are 

restricted to the limitations of field-based methods. 

The current methods to estimate biomass, which are essential to understanding ecosystem 

ecology, are mostly field-based. Biomass values are measured through the time-consuming, costly, 

labor-intensive, and damaging task of felling and weighing tree components, which may lead to 

small sample sizes, and biased and unrepresentative biomass estimations (Jenkins et al. 2003, 

Karlik and Chojnacky 2014). Based on the tree’s measurements and mass, allometric equations 

can be fit. The parameters for these equations are commonly measured tree characteristics, such 

as diameter at breast height (DBH), diameter at root collar (DRC), height, and crown size (Parresol 

1999, Karlik and Chojnacky 2014, Ozdemir et al. 2019). For example, the equations developed in 

the first biomass study on California blue oak by Karlik and Chojnacky (2014) use DBH and DRC 

as inputs to estimate components and total aboveground biomass. However, measurements taken 

in the field limit biomass estimates spatially and temporally. Field-based methods to obtain 

biomass values are difficult, leaving a gap for remote, computer-based ways to estimate biomass. 

Computer vision methods on remote sensing images could measure the characteristics of 

trees away from the field, eliminating restrictions on biomass estimations. The purpose of 

computer vision and image processing in the environmental sciences is often for land cover 

https://www.zotero.org/google-docs/?Lz65ZT
https://www.zotero.org/google-docs/?ZTymcR
https://www.zotero.org/google-docs/?ZTymcR
https://www.zotero.org/google-docs/?HoSPAQ
https://www.zotero.org/google-docs/?HoSPAQ
https://www.zotero.org/google-docs/?BTmBsP
https://www.zotero.org/google-docs/?BTmBsP
https://www.zotero.org/google-docs/?h7RnwG
https://www.zotero.org/google-docs/?h7RnwG
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classification (e.g., to detect land use change). Models could identify individual trees in remote 

sensing images of Normalized Difference Vegetation Index (NDVI). Geospatial softwares can 

measure the crown sizes of detected trees and allometric equations would determine biomass. 

Brandt et al. (2020) outlined the tree detection step in a proof of concept paper in the West African 

Sahara and Sahel, and the model had high agreement between the manually outlined tree crown 

areas and the predicted areas. When training a model, studies consider several factors, such as 

whether or not the desired objects should have a shadow, minimum crown size, or the handling of 

clumped trees (Gonzalez et al. 2010, Brandt et al. 2020). This entire workflow has been done to 

estimate carbon stock by Tucker et al. (2023): the team identified and measured over 9 billion tree 

crown areas in the African drylands, displaying how estimation can be done away from the study 

site while covering substantial areas over time, which is not possible with taking field 

measurements. 

The study by Tucker (2023) opens up new possibilities to do a similar tree detection 

workflow on other ecosystems. In particular, the current literature overlooks biomass estimation 

of oak trees in savannas and woodlands. Oak species are the most common species group in 

California and account for 15% of California’s forest basal area (Karlik and Chojnacky 2014). 

Additionally, oak trees are culturally significant to Indigenous people in California, as acorns were 

a direct and indirect food source and the tree mass provided material for wood products (Long et 

al. 2016). This study will focus on blue oaks (Quercus douglasii), which has the largest areal extent 

of oak woodlands in California and is the fourth most common oak species (Karlik and Chojnacky 

2014, Harold Mooney and Erika Zavaleta 2016). Historically, the trees acted as an indicator for 

changing seasons, whereas today, the biomass of trees can be a measure of the oak woodland’s 

wellbeing amongst disruptions, such as fire suppression policies, urban development, and 

agricultural conversion (Harold Mooney and Erika Zavaleta 2016, Long et al. 2016). 

In this study, I asked how well the classification of blue oak trees (Quercus douglasii) in 

remote sensing images by computer vision algorithms could be used to understand carbon and 

water dynamics of oak woodlands. While the study by Tucker (2023) uses U-Net Architecture, a 

convolutional neural network for image segmentation, there are varying levels of image processing 

complexity that can be tested. For my first subquestion, I optimized steps of a land cover 

classification workflow called Geographic Object-Based Image Analysis (GeOBIA) by 

determining the best functions, function parameters, and the best truth data classes for 

https://www.zotero.org/google-docs/?NcGfP6
https://www.zotero.org/google-docs/?I8pZ8O
https://www.zotero.org/google-docs/?Tscz0K
https://www.zotero.org/google-docs/?KB21Cc
https://www.zotero.org/google-docs/?wb3ap5
https://www.zotero.org/google-docs/?wb3ap5
https://www.zotero.org/google-docs/?MDQfsE
https://www.zotero.org/google-docs/?MDQfsE
https://www.zotero.org/google-docs/?6RRuor
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classification of an oak savanna remote sensing image. Next, I asked how well the biomass of oak 

trees at my study site, Tonzi Ranch, could be estimated using an allometric equation, field DBH 

measurements, and crown area detected and measured from the GeOBIA classification of a USDA 

NAIP image. Lastly, I predicted the evapotranspiration of the study area using generalized additive 

models (GAMs), based on the percentage of land classified as a certain cover type. I expected to 

reach a satisfactory classification through an iterative process, and that there would be a 

relationship between crown area and biomass, and percent land cover class and evapotranspiration. 

 

METHODS 

 

Study site 

 
Tonzi Ranch is a woody oak savanna in the lower foothills of the Sierra Nevada Mountains, 

located near the city of Ione, California (latitude: 38.4309°N; longitude: 120.9660°W). The site is 

classified as a Mediterranean and Csa Köppen climate (mild temperatures with dry, hot summer). 

The overstory is primarily made up of blue oak trees (40% of total vegetation) and sporadic grey 

pine trees (Pinus sabiniana), and the understory has annual C3 grasses and herbs (purple false 

brome, smooth cat's ear, and rose clover) that green during the winter rainy season from October 

to April (Figure 1) (Ma et al. 2016). 

 

 

 

 

 

https://www.zotero.org/google-docs/?WY8zzB
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Figure 1. Photos of Tonzi Ranch and location of the study site. Oak trees along the road at Tonzi Ranch in April 
2023 (left). The view of trees at Tonzi Ranch from atop the eddy covariance tower in April 2023 (middle). Tonzi 
Ranch relative to the state of California, viewed in Google Earth (right). 
 

Data sources and processing 

 
Field measurements 

 
In order to have known biomass estimations for trees, I needed field measurements for each 

tree to input into allometric equations. There are tagged blue oak trees at Tonzi Ranch that have 

been measured in DBH surveys in 2006, 2011, 2012, and 2016. All of these trees have dendrometer 

bands that show incremental growth in circumference. Tonzi Ranch provided previous years’ 

survey data: for each tree, the data includes the date, latitude and longitude, tag number, DBH, and 

notes. 

We conducted another DBH survey in April 2023 to add another point to the data. Using a 

tape measure, I measured the increment first. Then, I measured the full circumference of the tree 

at the location of the dendrometer band, which is roughly 1.3 m (4.3 ft) above the ground. 

Circumference  (𝐶) was converted to diameter (𝑑) using the following equation: 

(1)       𝑑	 = 	 !
"
 

For each tree, I took photos and we recorded notes that were used to inform how to 

delineate tree crowns. Notes included whether or not the tree was dead and without leaves, if it 

had more than one trunk, and whether it was standing solo or clumped with other trees. I used a 
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phone camera to take a photo of the entire tree, as well as an upward facing photo of the canopy a 

couple feet from the trunk of each tree and at shoulder level (Figure 2). 

 

  
 
Figure 2. Example fieldwork photos of Tree 26 taken in April 2023. Two photos were taken per tree. The first 
photo is of the full height of the measured tree, also showing the area surrounding the tree (left). The second photo is 
an upward facing photo of the canopy a couple feet from the trunk at shoulder level, in an effort to show the canopy 
structure (right). 

 

Due to some irregularities in the measurements, I cleaned the data and reduced the number 

of trees and DBH observations available. I narrowed the DBH dataset by excluding a number of 

trees that had two observations per time point and trees with only one or two observations. Further, 

I focused on trees that were consistently growing by removing trees whose DBH shrunk or had 

DBH measurements that were increasing and decreasing. 

 
NAIP imagery 

 
To measure crown size away from the site, I needed remote sensing images, so I 

downloaded rasters from USDA’s National Agriculture Imagery Program (NAIP) through Google 
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Earth Engine. The program takes aerial images in red, green, blue, and near infrared bands (R, G, 

B, NIR) at a high spatial resolution of 0.6 m over the continental U.S during the agricultural 

growing season every 1 to 2 years (“NAIP” 2018). I selected to use the NAIP image taken on 21 

July 2018 for its high contrast between the overstory and understory and due to the lack of image 

corrections that may be needed. To test the GeOBIA methodology and develop a biomass model, 

I extracted a small area of Tonzi Ranch centered around where the measured trees were located, 

and as for the comparison with evapotranspiration, I exported a larger area that included regions 

with more dense canopies of blue oak trees and regions that were more sparse (Figure 3). 

 

https://www.zotero.org/google-docs/?RmmURu
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Figure 3. NAIP RGB images of Tonzi Ranch in July of 2018. (a) The small area used for GeOBIA optimization 
and biomass model development. (b) The large area used for predicting relationships between land cover type and 
evapotranspiration. 
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In addition to the four bands collected in the NAIP image, I calculated the Normalized 

Difference Vegetation Index (NDVI) using QGIS’ Raster Calculator for a fifth band to inform 

segmentation. NDVI is known as a measure of “greenness” and is often used to quantify the 

relative health of vegetation where –1 indicates brown or unhealthy vegetation and +1 indicates 

green or healthy vegetation (GISGeography 2017). NDVI is computed from near infrared (𝑁𝐼𝑅) 

and red bands using the following equation: 

(2)      𝑁𝐷𝑉𝐼	 = #$%	'	%()
#$%	*	%()

 

In the NDVI raster of Tonzi Ranch, the brighter pixels with positive NDVI are the green trees and 

the darker pixels with negative NDVI are areas with dried grass (Figure 4). 

 

https://www.zotero.org/google-docs/?Tx9MCO
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Figure 4. NDVI raster of Tonzi Ranch in July of 2018. The brighter areas with higher NDVI values are assumed to 
be tree crowns, while the lower NDVI values are the understory grasses. (a) The NDVI of the small area used for 
GeOBIA optimization and biomass model development. (b) The NDVI of the large area used for predicting 
relationships between land cover type and evapotranspiration. 
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Biomass data 

 
For the available DBH, I calculated the above ground biomass (𝐴𝐺𝐵) in kilograms using 

the following allometric equation that is specific to blue oak trees, developed by Karlik and 

Chojnacky (2014) (Equation 3, Figure 5): 

(3)    𝑎𝑏𝑜𝑣𝑒	𝑔𝑟𝑜𝑢𝑛𝑑	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	(𝐴𝐺𝐵) 	= 0.0683	𝐷𝐵𝐻+.-./0 

 

 
 

Figure 5. Aboveground biomass (AGB) of trees at Tonzi Ranch. AGB, in kilograms, was estimated using an 
allometric equation developed by Karlik and Chojnacky (2014) from diameter at breast height (DBH) measurements, 
in centimeters. AGB and DBH have an exponential relationship. 

 

Since the dates of the DBH surveys and the dates in which NAIP imagery was collected 

do not match, I used the `approx` function in R to approximate the DBH and the biomass for the 

dates we have NAIP images. This linear interpolation step is necessary since the biomass derived 

from DBH values would not be representative of the estimated biomass derived from crown size 

measurements in the NAIP images due to the difference in years. 

 

https://www.zotero.org/google-docs/?dEamEy
https://www.zotero.org/google-docs/?dEamEy
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OpenET evapotranspiration 

 
For the last subquestion on evapotranspiration and canopy cover patterns, I downloaded 

evapotranspiration data for July 2018 from OpenET in Google Earth Engine of the larger area of 

Tonzi Ranch (OpenET CONUS eeMETRIC Monthly Evapotranspiration v2.0) (Figure 6). The 

OpenET product is a monthly dataset at 30 m resolution, modeled and aggregated using a variety 

of sources for land surface temperature, vegetation characteristics, and soil moisture data. 

Evapotranspiration (ET) is the sum of all the processes that move water into the atmosphere, 

including evaporation from soil and transpiration from leaves. 

 

 
 

Figure 6. OpenET evapotranspiration of the larger area of Tonzi Ranch in July 2018. Higher amounts of 
evapotranspiration occurred in the northeast (top right) region of the expanded study area than in the southwest corner 
(bottom left). 
 

Tree crown detection with GeOBIA 
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In order to measure tree crown measurements remotely, I delineated crowns in the NAIP 

image. The crowns of trees can be detected because by the time the NAIP images are taken during 

the summer months, the grass between the oak trees are dried up, so the understory has low NDVI 

values and the green leaves of the blue oak trees have higher NDVI values (see Figure 3, 4). NDVI 

also helps with clearly distinguishing trees apart from their shadows that are seen in the RGB 

image. 

This is the same idea used by Brandt et al. (2020) and Tucker et al. (2023) to identify 

billions of trees in African drylands. These studies used manually delineated tree crowns for the 

training set in the deep learning network U-Net architecture. Conversely, in this study, I used 

Geographic Object-Based Image Analysis (GeOBIA), which is a workflow that combines 

computer vision and machine learning for land cover classification. There are three main parts of 

this methodology: image segmentation, truth data points, and classification. I followed a GeOBIA 

tutorial by OpenSourceOptions, which is taught using Python and QGIS, a geographic information 

system software (Hafen 2020a, 2020b). 

 

Segmentation parameters 

 
The first part in GeOBIA is the segmentation of a remote sensing image. Segmentation 

functions from `skimage.segmentation`, such as `slic` (simple linear iterative clustering, SLIC) 

and `quickshift` (quickshift mode-seeking algorithm), use algorithms to meaningfully group 

neighboring pixels based on similarities in the band information given. In our case, the best 

segmentation result would  have a greater number of segments, smaller segment sizes, and more 

clumpiness (i.e., rather than rectangular segments). Oversegmentation is ideal to prevent a segment 

from having pixels that are representative of more than one land cover type, as this would confuse 

the statistics used for classification. 

I changed the parameters of the segmentation functions to manipulate the number of 

segments, the size of the segments, and the clumpiness, to achieve the desired segments. The 

parameter in `quickshift` that was changed is `max_dist` (the maximum distance at which to stop 

including pixel data in a segment), while ̀ n_segments` (the estimated number of segments wanted) 

and `compactness` (the weight given to balance color proximity and space proximity, with higher 

values making segments more rectangular) were the parameters changed for `slic`. The exact 

https://www.zotero.org/google-docs/?MKexbf
https://www.zotero.org/google-docs/?gp7JgM
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number of segments produced and notes on the segment shapes were recorded for each 

segmentation parameter combination, which were used to determine the best segments. 

 

Classes for supervision 

 

The other major part in GeOBIA that informs classification is truth data points. In QGIS, I 

manually added vector point features that labeled coordinates with its land cover type. The 

landscape of Tonzi Ranch is moderately binary, so my points were either labeled as grass or tree. 

However, due to regions of the remote sensing image with a high density of blue oak trees, I 

included a third label and placed points in between trees, calling it the edge class. I hypothesized 

that the spectral characteristics at the edges of tree canopies may be different than at the center of 

the tree crown, due to factors such as leaf area index. I used visual evaluation to determine how 

well the inclusion of edges added to the accuracy of tree crown delineation and the disaggregation 

of tree clumps. 

 

Classification and accuracy 

 

I used Python’s `geopandas` to split the truth data points randomly into training and test 

datasets, 70% and 30% respectively. Then, I rasterized the training vector points with `gdal` for 

classification where the labeled points were matched with the corresponding segment. In the last 

part of GeOBIA, the random forest classifier (`sklearn.ensemble.RandomForestClassifier`) was 

trained on the band statistics of the segments that have an associated truth label. With the 

understanding of the spectral distributions of grasses compared to trees, the classifier predicted 

and classified the remaining segments that did not have a truth label. 

Pixel accuracy evaluated the classification output produced by the GeOBIA methodology. 

Scikit-learn’s confusion matrix (`sklearn.metrics.confusion_matrix`) used the previously set aside 

labeled test data points and the classes of the predicted segments to assess the accuracy of the 

classification. 

 

Biomass model development 
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One objective of this study was to create a model and data product quantifying the amount 

of biomass in the blue oak trees at Tonzi Ranch. I used biomass estimates known from allometric 

relationships with DBH to create a relationship between remote-sensing derived crown 

measurements and biomass that could be used for trees without DBH measurements. Since we 

knew the biomass for trees with DBH measurements, we hypothesized that we could fit a model 

between biomass and the detected crown areas of those trees. This new relationship could then be 

used to find the biomass of trees with only crown size data from remote sensing images and no 

field measurements. 

I started by vectorizing the classified raster with QGIS’ Vectorize (Raster to Vector) tool. 

Then, in the attribute table, I added a new column and calculated the area of each vector polygon 

using the field calculator (Geometry > $area). With the GPS locations of surveyed trees overlaid, 

I viewed each vector polygon that was classified as tree, and if the tree crown was near a GPS 

point and depending on the availability of interpolated DBH data, I added the tree’s survey number 

and DBH to the attribute table. I plotted the DBH, crown area, and biomass points to develop 

crown area-biomass relationships. 

 

Patterns in canopy cover and evapotranspiration 

 
 For the analysis on canopy cover and evapotranspiration, I performed geographic object-

based image analysis on a larger USDA NAIP image. I segmented the expanded area using 

different parameters than was used with the smaller area, because the best segmentation function 

and parameters that were determined do not scale with the sizes of images, so a new model 

classified the image. 

I created a land cover raster of Tonzi Ranch in 2018 by aggregating the number of pixels 

per class in the classified raster while resampling. In R, I made individual rasters for each class 

(grass, tree, and edge) and then upscaled the classified raster with `terra::resample`, because 

OpenET evapotranspiration data is at a coarser spatial resolution. During the resampling of each 

class’ raster, I calculated summary statistics: for each larger pixel, I counted the number of smaller 

pixels in the classified raster and divided by the total number of smaller pixels to get the percentage 

of pixels classified as a certain cover type. In an effort to understand the amount of clumping that 
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was classified, I calculated the number of unique vector polygons present in the coarser pixel using 

`zonal_stats` in the `rasterstats` Python package, and the average tree polygon size.  

After constructing a table with data on tree cover percentage, grass cover percentage, edge 

cover percentage, evapotranspiration, number of polygons, and mean polygon size for each pixel 

in the raster of Tonzi Ranch, I plotted the relationship between land cover percentage and ET. I 

developed generalized additive models (GAMs) (`mgcv::gam` function in R) using one or more 

variables in the data table to understand how well land cover type could predict evapotranspiration. 

I evaluated the GAMs by assessing the residuals, finding Root Mean Squared Error (RMSE), and 

conducting t-tests. 

 

RESULTS 

 
Tree crown detection with GeOBIA 

 

Segmentation parameters 

 
 The first part of the GeOBIA workflow, image segmentation, is an iterative process that 

has importance, as it creates meaningful objects from which segment band statistics are collected 

to determine land cover class. To produce objects that best represent the spectral characteristics of 

the pixels, I tested different segmentation functions and parameters on the smaller 2018 NAIP 

image of the study site.  

As noted in the `quickshift` documentation, I observed that as I increased the value of the 

`max_dist` parameter, the number of segments created decreased. The relationship between the 

`max_dist` parameter and the number of segments was not linear; instead, the number of segments 

decreased exponentially (Figure 7). Notably, there was a big difference in the output between 

`max_dist` of 1 and 1.05: each segment only had 1 to 2 pixels when using a `max_dist` of 1, so the 

shape of the segments were all rectangular and 71,926 objects were produced (Table 1). Other 

`max_dist` values created segment shapes that were very clumpy, but `quickshift` created large 

segments on the perimeter of the image that were present regardless of the parameters and the 

spectral characteristics (Figure 8). 
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Figure 7. Number of segments created by segmentation functions. (a) `quickshift` segments decreased with 
increasing `max_dist` parameter. (b) `slic` segments increased with increasing `compactness` parameter.  
 

3 2 1.5 1.4 

    

1.3 1.25 1.1 1 

    
 

Figure 8. Segments created by the `quickshift` segmentation tests with `max_dist` parameters. Segments are 
overlaid on top of the NDVI image. 
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Table 1. Results of `quickshift` segmentation tests. The table lists the unique identifier name for the output raster 
of segments, the value inputted for the `max_dist` parameter, the time it took for the segmentation to complete, the 
number of segments created, and notes on the shape of the segments. The bolded rows were determined as the best 
`quickshift` segments. 
 

Name `max_dist` Time (s) # of Segments Notes 

2018_segments_test
_quickshift1 

3 2.36 1341 large segments, some with both classes 

2018_segments_test
_quickshift2 

2 2.31 4081 large edge segments, very small segments 

2018_segments_test
_quickshift3 

1 2.69 71926 all segments 1-2 pixels = too small 

2018_segments_test
_quickshift4 

1.5 2.31 4091 large edge segments, very small segments 

2018_segments_test
_quickshift5 

1.25 2.46 6951 very small, many segments under 10 pixels 
better medium edge segments 

2018_segments_test
_quickshift6 

1.3 2.34 6947 very small, many segments under 10 pixels 
better medium edge segments 

2018_segments_test
_quickshift7 

1.4 2.32 6945 very small, many segments under 10 pixels 
better smaller edge segments 

2018_segments_tes
t_quickshift8 

1.1 2.77 7436 very small, many segments under 10 pixels 
better smaller edge segments 

2018_segments_tes
t_quickshift9 

1.05 4.33 
2.34 

9150 very small, many segments under 10 pixels 
better smaller edge segments 
larger segments in grass, very small 
segments for shadows and tree crowns 

 

For `slic`, the number of segments created decreased with a lower `compactness` value and 

the same ̀ n_segments` value (Figure 7, Table 2). A ̀ compactness` of 10 created uniform rectangles 

across the entire image, a `compactness` of 0.1 segmented well around the spectral features of the 

trees and grass, and a `compactness` of 0.001 created longer vertically oriented segments (Figure 

9). 
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Table 2. Results of `slic` segmentation tests. The table lists the unique identifier name for the output raster of 
segments, the value inputted for the `n_segments` parameter, the value inputted for the `compactness` parameter, the 
time it took for the segmentation to complete, the number of segments created, and notes on the shape of the segments. 
The bolded row was determined as the best `slic` segments. 
 

Name `n_segments` `compactness` Time (s) # of Segments Notes 

2018_segment
s_test_slic1 

1000 10 0.14 918 large uniform rectangles 

2018_segment
s_test_slic2 

1000 0.1 0.18 654 large clumpy segments, seems 
to respond to spectral features 
better than quickshift 

2018_segment
s_test_slic3 

1000 0.001 0.16 144 very large streaky clumps 

2018_segment
s_test_slic4 

10000 10 0.16 10170 small uniform rectangles 

2018_segment
s_test_slic5 

10000 0.1 0.18 9475 very small segments, grass 
segments more rectangle, 
tree segments a little more 
clump 

2018_segment
s_test_slic6 

10000 0.001 0.20 6028 longer vertical rectangles 

 

 `compactness` 

`n_segments` 10 0.01 0.001 

 
1000 

   

 
10000 

   

 

Figure 9. Segments created by the `slic` segmentation tests with `n_segments` and `compactness` parameters. 
Segments are overlaid on top of the NDVI image. 
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`Quickshift` took an average of 2.44 seconds, whereas `slic` took an average of only 0.17 

seconds to complete segmenting. However, segmentations run after having already been run once 

using the same functions and parameters would sometimes take less time, so time may not scale 

with the parameters and was not a factor when deciding which segments are best to use. 

Based on the number of segments created, the notes on the shapes of the segments, and 

viewing the output in QGIS, I decided on the following segmentation functions and parameters: 

𝑞𝑢𝑖𝑐𝑘𝑠ℎ𝑖𝑓𝑡_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠	 = 	𝑞𝑢𝑖𝑐𝑘𝑠ℎ𝑖𝑓𝑡(𝑖𝑚𝑔,𝑚𝑎𝑥_𝑑𝑖𝑠𝑡 = 1.1, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡2𝑙𝑎𝑏 = 𝐹𝑎𝑙𝑠𝑒) 

𝑠𝑙𝑖𝑐_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠	 = 	𝑠𝑙𝑖𝑐(𝑖𝑚𝑔, 𝑛_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 10000, 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 = 0.1) 

When the study site was the smaller area of Tonzi Ranch, the `slic` segments (`slic_segments`) 

were used for the remainder of the study, as the segments were smaller and clumpier around trees. 

 

Classes for supervision 

 

For the classification without the edge class, I added 123 grass points and 147 oak points 

(total of 270 truth data points), and for the classification with the edge class, I added 123 grass 

points, 146 oak points, and 53 edge points (total of 322 truth data points) (Figure 10). I aimed to 

add oak tree points at the center of tree crowns, placed grass points also in regions that were cast 

by shadows, and labeled edge points on the pixels of segments located in tree clump areas that 

were classified as trees in the classification with two classes. 
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Figure 10. Truth data points over 2018 NAIP RGB image. Grass (purple) and oak (red) classes (left). Grass 
(purple), oak (red), and edge (yellow) classes (right). 
 

Classification and accuracy 

 

By appearance, the classification with the edge class was more accurate than the 

classification without an edge class, but both classifications had similar pixel accuracies. The 

amount of area that was classified as tree reduced and larger tree polygons were broken up into 

smaller ones (Figure 11). 

 

 
 
Figure 11. GeOBIA classification results of the smaller area of Tonzi Ranch in July of 2018. (a) Image was 
classified with two classes: grass and oak. (b) Image was classified with three classes: grass, oak, and edge. 
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Both classifications output by the GeOBIA methodology resulted in high pixel accuracy 

for all classes. For the classification with two classes (grass, oak), the random forest classifier was 

97.4% accurate in predicting that a segment was grass and 100% accurate when predicting that a 

segment was oak tree (Table 3). For the classification with three classes (grass, oak, edge), the 

random forest classifier was 97.7% accurate in predicting that a segment was grass, 93.8% accurate 

when predicting that a segment was oak tree, and 86.4% accurate when predicting that a segment 

was edge (Table 3).  

 
Table 3. GeOBIA classification pixel-based validation for the smaller area of Tonzi Ranch. Confusion matrix 
and accuracy for classification with two classes: grass and oak (top). Confusion matrix and accuracy for classification 
with three classes: grass, oak and edge (bottom). 
 

 
Actual 

Predicted 

Grass Oak 

Grass 38 0 

Oak 1 42 

Accuracy (%) 97.44 100 

 

 
Actual 

Predicted 

Grass Oak Edge 

Grass 42 0 1 

Oak 0 30 2 

Edge 1 2 19 

Accuracy (%) 97.67 93.75 86.36 

 

Biomass model development 

 

There were many sources where error was introduced, which prevented creating a biomass-

crown area equation. Due to the lack of isolated tree crown polygons next to GPS locations of 

labeled surveyed trees and ambiguous DBH data, I was only able to select 11 trees, all contributing 
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varying uncertainties. I expected an increasing relationship between crown area and biomass, but 

plotting each tree’s crown area and interpolated DBH resulted in a scatter of points (Figure 12). 

Without a clear relationship, I did not develop a biomass-crown area equation. 

 

 
 
Figure 12. Biomass, diameter at breast height (DBH), and crown area for selected trees. (a) Biomass increases 
with DBH. (b) Crown area and biomass for the selected trees show no relationship. 
 

Patterns in canopy cover and evapotranspiration 

 
Since segmentation is dependent on the size of the image, I tested more `slic` parameter 

combinations for the GeOBIA classification of the larger area of Tonzi Ranch, and decided on the 

following segmentation function and parameters: 

𝑠𝑙𝑖𝑐_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠	 = 	𝑠𝑙𝑖𝑐(𝑖𝑚𝑔, 𝑛_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 100000, 𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 = 0.1) 

The GeOBIA classification of the larger area of Tonzi Ranch was able to classify at high 

accuracy, but had the same problem of large polygons for clumps of trees. The northeast region 

has a high density of trees that were clumped together into large tree polygons in the classification, 

whereas the western and southern regions of the study area have more clearly isolated trees broken 

up mostly by grass (Figure 13). The classification of the larger area of Tonzi Ranch had high pixel 
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accuracy for each of the three classes. The random forest classifier was 88.6% accurate in 

predicting that a segment was grass, 91.1% accurate when predicting that a segment was oak tree, 

and 82.4% accurate when predicting that a segment was edge (Table 4). 

 

 
 
Figure 13. GeOBIA classification results of the larger area of Tonzi Ranch in July of 2018. Image was classified 
using three truth data classes: grass, oak, and edge. 
 
Table 4. GeOBIA classification pixel-based validation for the larger area of Tonzi Ranch. Confusion matrix and 
accuracy for classification with three classes: grass, oak, and edge. 
 

 
Actual 

Predicted 

Grass Oak Edge 

Grass 39 0 1 

Oak 2 41 2 

Edge 3 4 14 

Accuracy (%) 88.63 91.11 82.35 
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The results of upscaling each land cover type (grass, tree, and edge) and calculating the 

cover percentage were as anticipated with the top right half of the site having high tree percentages 

and the bottom left half having high grass percentages (Figure 14). 

 

 
 
Figure 14. The percentage of each land cover type in each upscaled pixel. (a) Percent of pixels classified as grass. 
(b) Percent of pixels classified as tree. (c) Percent of pixels classified as edge.  
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 Comparing land cover percentage with evapotranspiration show expected results. 

Evapotranspiration decreases with more grass cover, having a negative correlation, while ET 

increases with more tree cover, showing a positive correlation. Percent of edge cover and 

evapotranspiration also have a positive correlation, but the relationship is not strong with an R2 of 

0.022 (Figure 15). 

 

 
 

Figure 15. Relationship between evapotranspiration and cover percentage separated by land cover type. Tree 
and edge percent have positive relationships with evapotranspiration, and grass percent has a negative relationship 
with evapotranspiration. 
 

After testing different variables in regular general additive models, I determined that land 

cover percentage can be used to predict evapotranspiration. The errors of the models ranged from 

13 to 17 mm, and including tree percentage as a parameter improved the RMSE than when edge 

and grass percentage were used as the sole variable (Figure 16). The spread of the residuals is 

similar between models, especially for GAMs with two or more predictors and ones that include 

tree percentage (Figure 16). There are more outlier residuals present for the model with grass 
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percentage and the model with edge percentage as the parameter, but all the models have mean 

residuals close to 0 (Figure 16). 

 

 
 
Figure 16. Results of generalized additive models (GAMs) predicting evapotranspiration (ET) using different 
combinations of land cover predictor variables. (a) Root Mean Squared Error (RMSE) comparing models that 
include and exclude tree cover percentage. (b) Residuals of GAMs all have means close to 0. 

 

Furthermore, I focused on four generalized additive models: tree percentage, edge 

percentage, grass percentage, and tree and edge percentage. When conducting Student's unpaired 

t-tests to compare the residuals to 0, all models had a p-value greater than 0.39, meaning that there 

was not a significant difference between the predicted and actual values of evapotranspiration 

(Appendix Table A2). Residuals for the four GAMs over- and underestimate in similar places 

(Figure 17, Appendix Figure A1). Grass percentage has the widest residual range, and edge 

percentage overestimates in the top right region of the large study site where there is a high density 

of trees (Figure 17). Overall, the various GAMs performed similarly and in agreement between 

the model predictions and actual values. 
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Figure 17. Residual rasters of generalized additive models (GAMs) predicting evapotranspiration. (a) GAM 
with tree percentage predictor variable. (b) GAM with grass percentage predictor variable. (c) GAM with edge 
percentage predictor variable. (d) GAM with tree and edge percentage predictor variable. 

 

DISCUSSION 

 

Despite the difficulties of classifying oak savanna landscapes, parts of the geographic 

object-based image analysis methodology can be altered to improve results. The `slic` 

segmentation function was more responsive to the spectral characteristics than `quickshift`. 

Clumps of trees can be disaggregated with the addition of a ground truth ‘edge’ class, but other 

computational functions could be used to reduce the loss of tree crown area. Ground truth data on 

crown area and precise tree location would increase the accuracy of remote crown area 
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measurements and will work towards creating a biomass-crown area equation. Land cover 

percentage, derived from a GeOBIA classification, as parameters in generalized additive models 

is a predictor of evapotranspiration. With an applicable tree crown detection methodology, there 

are many implications to improve the work of forest managers and agricultural planners, and verify 

nature-based climate solutions. 

 

Tree crown detection with GeOBIA 

 

Segmentation parameters 

 

The shape of the `slic` segments were distinct depending on if the function as segmenting 

grassy regions or trees, suggesting that the segmentations resulting from `slic` were more 

responsive to the spectral characteristics in the oak savanna remote sensing image. When the 

`compactness` parameter was 0.1, the `slic` function segmented grassy areas into uniformly sized 

rectangles and the segments for areas with trees were a different clumpy shape (Figure 8). 

Contrastingly, decreasing the `max_dist` parameter closer to 1 in `quickshift` made the segments 

smaller and contain fewer pixels, but the shape of the segments and included pixels appeared 

random, not reflecting the difference in tree and grass in the images. 

These patterns suggest that `slic` would similarly segment for other sparse and open-

canopy landscapes, where some features, like tree crowns, are textured and the regions in between 

are spectrally homogenous. Studies that segment images into superpixels in an effort to isolate 

trees from the background find agreement in the resulting classification, as SLIC is able to 

delineate between features well depending on the number of segments and compactness 

parameters (Zimudzi et al. 2019, Correa Martins et al. 2021). Though, improvement is needed 

when the image is highly heterogeneous or strongly affected by shadows (Correa Martins et al. 

2021). With careful selection of parameter values and depending on the background landscape, 

segmentation can improve the definition and classification of trees. 

 

Tree clump disaggregation 

 

https://www.zotero.org/google-docs/?LHlmmS
https://www.zotero.org/google-docs/?6UMsFx
https://www.zotero.org/google-docs/?6UMsFx
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I found that the addition of an edge truth data class disaggregated larger polygons of clumps 

of trees during classification than when an edge class was not included. Studies highlighted the 

space in-between trees and touching cells in microscopic imagery, during the learning process, 

giving them a larger weight in the model (Ronneberger et al. 2015, Brandt et al. 2020, Tucker et 

al. 2023). Like including an edge class, this approach emphasizes the gaps that need to be 

distinguished from the desired objects.  

Determining the best band or combination of bands is another method to enhance 

differences. The principal components of a principal component analysis can set the spectral 

threshold for mapping tree objects apart from the understory (Kamal et al. 2015). Additionally, the 

ecosystem type determines the band data used to inform segmentation. A study looking at denser 

plots of Norway spruce and hardwood trees tested each band and determined that the green band 

distinctly differentiated the tree crowns from the shadows present between trees (Ke and 

Quackenbush 2011). Comparatively, the African drylands study found it sufficient to only use the 

NDVI band, as it made the tree crowns most distinct compared to the non-vegetated background 

(Brandt et al. 2020, Tucker et al. 2023).  

Additional image segmentation algorithms on the initial GeOBIA result can isolate tree 

crowns. Region growing starts at a crown seed location, which can be decided on by a local 

maximum filter, and merges with neighboring pixels (Wulder et al. 2000, Kamal et al. 2015). 

Otherwise, binary morphological watershed segmentation of a distance transform was 

implemented to separate the rows of trees planted in urban areas, suggesting that the strategy is 

possibly landscape-dependent (Ardila et al. 2012). Then, morphological opening operations can 

refine edges, preserving both the area and shape of the trees, while the approach used in my study 

resulted in smaller and less circular tree polygons. Disaggregation approaches, including 

considering the best band data, region growing, local maximal filtering, and watershed algorithms, 

could have been layered to isolate oak tree crowns. 

 

Biomass model development 

 
While the absence of ground truth data to verify crown area estimates measured from 

remote sensing images prevented this study from creating crown area-derived biomass estimates 

and equations, past research has used crown characteristics as predictors for biomass. Results 

https://www.zotero.org/google-docs/?DDmJgb
https://www.zotero.org/google-docs/?DDmJgb
https://www.zotero.org/google-docs/?4u4GXd
https://www.zotero.org/google-docs/?OXhrDz
https://www.zotero.org/google-docs/?OXhrDz
https://www.zotero.org/google-docs/?JTos8E
https://www.zotero.org/google-docs/?HBzdc0
https://www.zotero.org/google-docs/?5cRvUm
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have shown how diameter at breast height (DBH) is the strongest predictor of biomass, and the 

addition of crown characteristics, like width, length, and ratio, improves aboveground biomass 

models, but more so for tree components, suggesting that crown area and biomass may not have 

the strongest relationship to create a biomass-crown area relationship from (Cienciala et al. 

2008). Therefore, more predictors can be used in addition to crown characteristics, until accurate 

remote crown area measurements can be taken. Apart from tree characteristics, an important 

predictor of biomass to include in a model with crown area is stand density, particularly when 

quantifying belowground biomass as well (Dahlhausen et al. 2017). Blue oak trees have the 

highest stand density among California oak trees, and it can also have implications on 

competition for water, the amount of water that is evaporated and transpired, and the presence of 

hydraulic lift among clumped oak trees (Harold Mooney and Erika Zavaleta 2016). While 

diameter at breast height is a strong predictor of biomass, integrating crown area and stand 

density can improve biomass estimation models. This approach remains crucial until accurate 

remote crown area measurements are feasible and can alone estimate biomass.  

 
Patterns in canopy cover and evapotranspiration 

 

The positive relationship between amount of tree cover and evapotranspiration, and 

negative relationship between amount of grass cover and evapotranspiration found is well 

expected. Land cover and land use significantly affect hydrological processes; in addition to 

evapotranspiration, there are strong effects of land cover on soil moisture and water table depth 

(Zhang and Schilling 2006). It is important to understand these relationships as climate change 

alters our ecosystems. On the leaf scale, warmer temperatures and lower humidity will increase 

the evaporative demand of the environment, increasing rates of transpiration and providing a 

cooling effect for the leaf surface (Raschke 1960, Baldocchi et al. 2021). Increased 

photosynthesis due to higher CO2 concentrations could cause increased transpiration, but other 

studies conclude that CO2 would induce stomatal closure to maintain a certain ratio between leaf 

internal and atmospheric carbon dioxide concentrations (Baldocchi et al. 2021). Comprehending 

the intricate interplay between land cover, hydrological processes, and climatic factors is 

imperative in navigating the evolving landscape of our ecosystems under climate change. 

https://www.zotero.org/google-docs/?olftzk
https://www.zotero.org/google-docs/?olftzk
https://www.zotero.org/google-docs/?3GIkoi
https://www.zotero.org/google-docs/?mUVOhn
https://www.zotero.org/google-docs/?zDxHIA
https://www.zotero.org/google-docs/?jz9rRE
https://www.zotero.org/google-docs/?AyZDF4
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While the purpose of the edge class was to disaggregate large tree vector polygons, the 

edge class had a wider range of residuals and higher RMSE than the models predicting 

evapotranspiration with other land cover percentages, suggesting possible structural differences 

in the perimeter of the canopy or leaf morphology. Decreased leaf area index (LAI), amount of 

leaf material in a unit of the canopy, at the edges of trees, which are regions that were classified 

as tree when an edge class was not included, could explain why the model is overestimating 

evapotranspiration slightly more. Additionally, phenotypic plasticity in leaves may mean that 

leaves at the edges of a tree canopy could have different characteristics that allow them to persist 

through environmental conditions, such as increased temperatures from lower LAI and more 

exposure to direct sunlight. Oak trees can acclimate and grow leaves with different morphologies 

depending on the current needs, like varying leaf shape, size, thickness, and age (Ramírez-

Valiente et al. 2010, Viscosi 2015). The discrepancies in predicting evapotranspiration with the 

edge class compared to other land cover percentages suggest variations in canopy structure or 

leaf morphology. 

 
Conclusion 

 

There is a lot of potential in using classifications and delineations resulting from 

geographic object-based image analysis. Results and literature review display how remote 

detection is possible, but likely requires a multi-step approach of image processing algorithms, 

depending on the available data and landscape characteristics. Estimating environmental variables 

using values measured remotely is necessary, but field measurements are initially essential in order 

to develop the relationships needed to fill gaps in data. Predicting evapotranspiration with land 

cover percentage as parameters in generalized additive models showed how the current 

methodology is adequate for use in modeling through the upscaling and aggregating of data from 

a GeOBIA classification. 

 

Limitations 

 

The uncertainty surrounding the validity of the classification limited the study, especially 

around areas with many trees clumped together, which proved to be a substantial challenge. 

https://www.zotero.org/google-docs/?C0MUSG
https://www.zotero.org/google-docs/?C0MUSG
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Although we found that adding an ‘edge’ class helped with disaggregating large tree polygons, it 

is unclear whether the removal of area classified as tree into edge area gives a correct measurement 

of tree crown size without the availability of ground truth crown area data, so I could not assess 

the accuracy of crown area values. 

There was imprecision in the DBH measurements, ambiguous GPS information for 

individual trees at the study site, and a lack of disaggregated tree crowns. The inability to match 

crowns to surveyed trees caused some guesswork on my part, making it difficult to select which 

trees to consider and leaving an insufficient number of data points to create a crown area-biomass 

equation. These sources of uncertainties extend to any estimations and models developed from the 

classification and remotely detected measurements, but the errors could not be clearly quantified. 

As for generalizability, because a blue oak-specific allometric DBH-biomass equation was 

used for biomass estimates, the results would not have been applicable to all oak trees or other 

woody plants. 

 

Future directions 

 

The potential for the geographic object-based image analysis workflow to detect and 

measure tree biomass in more ecosystems is dependent on the ability to validate the estimates. The 

robustness of this study would be greatly improved by incorporating ground-truth data in the form 

of crown area field measurements or biomass estimates derived from lidar surveys, as well as more 

certainty over tree locations and their respective DBHs. 

Additionally, this study depended on pixel-based validation as the method to evaluate the 

GeOBIA classification, however object-based validation is the most appropriate form of 

assessment, as the segments used to collect training data in GeOBIA are meaningful objects that 

should be validated with objects. Object-based validation, or polygon accuracy, involves creating 

and rasterizing validation polygons in a geospatial software, like QGIS, and comparing the 

proportion of area within each polygon that was classified by GeOBIA. This assessment type 

allows us to generate a confusion matrix based on area of objects, instead of tally, which is more 

fitting for pixel-based classification (Congalton and Green 2019). Ground truth data and polygon 

accuracy would help us understand the applicability and usefulness of the geographic object-based 

image analysis methodology. 

https://www.zotero.org/google-docs/?xi0uRo
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With more vigorous testing of parameters and certainty in the truth data and field 

measurements, this research can be expanded to all California oak savannas. Either a general 

biomass equation for oak trees can be used by aggregating existing allometric equations for 

multiple species or species-specific biomass equations after conducting species classification can 

estimate biomass. Additionally, the methodology can be tested on other sparse ecosystems, such 

as open canopy forests, woodlands, and the tundra. 

Once a robust and accurate model is built, the methodology could also classify images from 

various years to create a time series that analyzes changes in tree crown size, canopy shape or 

position, and biomass and carbon stock as environmental conditions fluctuate. 

 

Broader implications 

 

Many tools are available that will help transition away from expensive and laborious field 

forest inventories and towards automatic detection of land cover types and species classification 

in remote sensing imagery. With sufficient spatial, spectral, and temporal resolution and some 

ground truth data for validation, there are numerous applications for tree crown detection.  Despite 

the difficulties, like the complex objects in images and large variability in spectral characteristics 

between urban tree types, that exist when classifying trees in urban areas, the geographic object-

based image analysis method expands research into measuring health associated with green spaces 

and allows for monitoring by forestry institutes (Ardila et al. 2012). There are environmental 

implications for forest and oak savanna managers who can use this research to understand the 

growth or decline of trees in their landscape. Automatic detection of tree counts and sizes helps 

agricultural planners manage orchards and estimate yields from their crops (Koc-San et al. 2018, 

Dong et al. 2020). 

Vegetation built up by nature-based solutions to combat climate change requires 

verification. Environmental changes resulting from increased carbon dioxide levels, extreme 

temperatures, and fluctuating precipitation will cause alterations in water use by plants. Therefore, 

the amount of data that could be made available through remote detection warrants continued 

research. 

 

https://www.zotero.org/google-docs/?Qmqcd8
https://www.zotero.org/google-docs/?yOt7y6
https://www.zotero.org/google-docs/?yOt7y6
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APPENDIX 

 
Table A1. Attribute table used to analyze the relationship between biomass and crown area. The table lists the 
surveyed tree number, crown area measured from the GeOBIA classification in QGIS, interpolated DBH for 2018, 
biomass estimated from biomass-DBH allometric equation, and notes on choosing selected trees. 
 

Tree Area (m2) DBH (cm) Biomass (kg) Notes 

12455 74.053952 42.708 1050.437 probably 2+ trees in polygon duo, or 
sideways canopy 

12451 10.418264 49.339 1521.734  
15 4.505195 36.312 692.256 GPS somewhat close to polygon 
12270 13.797230 42.565 1041.336  
12068 23.089247 46.873 1333.857 dead as of 2023 
12256 21.118227 22.783 209.045 GPS somewhat close to polygon 
12247 20.273629 26.618 311.806  
12387 19.710476 34.832 622.316  
12252 12.389446 29.914 420.889 GPS somewhat close to polygon 
12386 9.855246 42.657 1047.047  
12238 44.207844 32.372 515.833  
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Table A2. Results of Student's unpaired t-tests for residuals from generalized additive models. The table lists 
the predictor variables used in the GAMs, t-values, and p-values. 
 

Variable(s) T-value P-value 

Tree percentage -0.85 0.3947 

Grass percentage -0.74 0.4586 

Edge percentage -0.18 0.8595 

Tree and edge percentage -0.83 0.4075 
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Figure A1. Evapotranspiration values predicted by GAMs compared to actual measurements. Eight different 
predictor variable combinations. 


