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ABSTRACT

Wetlands serve as significant carbon sinks in global climate dynamics. However, their sensitivity
to climate variability can convert them quickly into carbon sources under adverse climate
conditions. This study explores the efficacy of lidar technology in providing high-resolution data
to model wetland carbon flux and vegetation structure. By employing a combination of
UAV-based LiDAR surveying and multispectral imaging, this research gathered extensive
ecological and topographical data from three wetland sites within the Sacramento San Joaquin
River Delta: Twitchell Island, Mayberry Slough, and Dutch Slough. This paper focused on three
primary objectives: 1) to evaluate the potential of LiDAR data in calculating NDVI, 2) to
evaluate the potential of LiDAR data in estimating carbon flux within wetlands and 3) to develop
and test a graph neural network designed to predict carbon fluxes through lidar statistics and
multispectral imagery data. Data processing and exploratory analysis were conducted using
software tools to process, analyze, and visualize LiDAR and multispectral data, revealing
significant correlations between LiDAR-derived features such as point density, intensity, and
elevation with carbon flux. The findings demonstrate that LiDAR offers a promising tool for
ecological modeling and carbon flux estimation in wetland ecosystems. By modeling the data
with a graph neural network, the study highlights the challenges associated with the data and
emphasizes the potential of remote sensing technologies to elevate ecological monitoring and
conservation strategies.

KEYWORDS

LiDAR, wetlands, carbon flux, NDVI, graph neural networks, LiDAR statistics, modeling

1



Qi Jia Sun Carbon in Wetlands with LiDAR Spring 2024

INTRODUCTION

Wetlands are pivotal in global climate regulation, acting as carbon sinks through the

sequestration of atmospheric carbon in soil and vegetation (Nahlik & Fennessy, 2016). The

carbon sequestration process in wetlands is characterized by significant fluctuations between

photosynthesis, decomposition, and respiration regulating atmospheric carbon dioxide levels

(Valach et. al 2021). However, wetlands are extremely sensitive to climate variability — small

changes in climate can drastically alter their hydrology and carbon storage capacity —

transforming them from carbon sinks to sources (Zhang et. al 2023). Thus, wetland conservation

is essential for biodiversity, water quality, and climate regulation in the global carbon cycle.

LiDAR technology is an important method of remote sensing that can effectively

penetrate dense foliage, creating intricate high-resolution models of wetlands, forest canopies,

and the ground surface (Lang and McCarty 2014). Wetland ecosystems have complex vegetative

structures and carbon dynamics, creating challenges in ecological modeling (Bian et al. 2021).

As LiDAR generates high-resolution models, LiDAR-based methods may be key in helping

better understand wetland vegetative complexities (Sharma & Naik 2023). The significance of

LiDAR in ecological research is highlighted by its role in estimating effective leaf surface area,

which influences photosynthesis efficiency and a plant’s capacity to intercept light (Wang &

Fang 2020, Hu et al. 2020). Within wetland ecosystems, where carbon flux is a key indicator of

ecological health, the ability to measure leaf area accurately is indispensable. Current methods

for measuring ecosystem carbon flux typically involve setting up eddy covariance towers to

collect data over time (Rosentreter 2022). However, in less accessible areas, constructing these

towers may be inconvenient and in some cases, disruptive to the ecosystem. Thus, precise

LiDAR data, which captures vegetative structures more effectively than any other remote sensing

technology, could be instrumental in enhancing our predictive ability for carbon fluxes and

deepening our understanding of the intricate process of photosynthesis (Yuan et. al 2018).

This research intends to address a central research question: Can LiDAR data offer

accurate estimations of NDVI and carbon footprint within wetlands? This research also seeks to

address three pivotal subquestions. First, I want to find which LiDAR features are essential for

accurately calculating NDVI within wetland ecosystems. I hypothesize that attributes such as

point density, point intensity, and height are critical in this context. Second, the study seeks to
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determine the efficacy of predicting carbon flux. I hypothesize that by better representing vertical

vegetation structures, I will see similar results to NDVI. Third, the research seeks to use a graph

neural network to represent wetland structure and to predict carbon flux. I hypothesize that

additional information from the ecosystem will be required to help adjust the model for

predictions. By using existing LiDAR data from UAVs and flux data from Ameriflux towers on

Twitchell Island, Dutch Slough, and Mayberry Slough, developing features, and fine-tuning a

graph neural network, this paper seeks to help better position the potential of using LiDAR data

within wetland ecosystem studies.

METHODS

Study site

The data collection and data pre-processing methods were paid for by the Berkeley

Biometeorology Lab and conducted by a third-party entity. The data was collected across three

distinct environments within the Sacramento San Joaquin River Delta: Dutch Slough, Mayberry

Slough, and Twitchell Island. These locations are wetland ecosystems with differing features that

provide a diverse setting for geospatial analysis. The areas chosen for the study were within a

15-kilometer radius of the eTrac Continuously Operating Reference Station "VORTEX," located

in Antioch, CA (NOAA). This selection of sites enabled a comprehensive examination of

ecological and topographical characteristics within the delta region. These areas were chosen due

to the availability of the data as well as the existence of the eddy-covariance towers that have

continuously collected data for long periods (Baldocchi 2014). The carbon flux data is available

publicly on the Ameriflux websites.

LiDAR data collection methods

The data collection employed a combination of UAV LiDAR surveying and multispectral

imaging to capture high-resolution data of the study area. A total of 34 UAV flights were

conducted using a DJI Matrice 600 Pro, equipped with a Riegl MiniVUX-1 Laser Scanner and an

Agrowing Sony Alpha a7RII 10-band Digital Camera (Bauer & Nagy 2024). The UAV flights

3



Qi Jia Sun Carbon in Wetlands with LiDAR Spring 2024

were meticulously planned to optimize LiDAR data density, camera overlap, and overall flight

efficiency, maintaining a consistent altitude of 90 meters above ground level. Ground Control

Points were strategically placed across the survey area to prepare for the UAV survey (USGS).

Marked with black and white aerial panels, these GCPs were essential for ensuring the accuracy

of the LiDAR data, with each point undergoing a three-minute observation period via RTK

GNSS (Fan et. al 2019).

LiDAR data processing

Trajectory processing was carried out using Novatel Inertial Explorer Xpress, which

integrated GPS and GLONASS data from both the mobile platform and the base station to refine

the UAV's trajectory (NovAtel). LiDAR data processing was conducted using Phoenix Spatial

Explorer software, where raw scan data was time-matched with the trajectory data to produce

geo-referenced scan data. Further classification and analysis of the LiDAR data were performed

using LiDAR360 software.

The multispectral images captured by the UAV were batch-processed for radiometric

calibration, using a 24-square Color-Checker board placed on the launch pad (Tocci et. al 2022).

These images were then orthorectified to generate high-resolution mosaics (Huang et. al 2021).

Additionally, the research involved the generation of Digital Terrain Models and Digital

Elevation Models using Autodesk Civil3D 2023. This process used classified LiDAR data to

create ASCII files that served as the basis for terrain modeling. Finally, the data included

rigorous accuracy and density analyses of the LiDAR data. The LiDAR data's vertical accuracy

was assessed by comparing the elevation of GCPs with the point cloud data using the LiDAR QC

tool in Global Mapper (Zayed et. al 2023). Additionally, the Density Quality Analysis tool in

LiDAR360 was utilized to evaluate the point cloud density for each site (Petras et. al 2023).

Carbon data collection and data processing

Eddy covariance is a method primarily capturing pointwise measurements of gasses like

carbon dioxide at specific locations using sensors on flux towers (Sanchez et. al 2022). However,

due to its localized nature, it does not directly offer a direct comprehensive view of gas
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exchanges over larger areas. Unlike variables such as temperature or precipitation, flux data

cannot be easily extrapolated or obtained at specific points (Shao et. al 2024). Thus, to

extrapolate carbon flux tower data to broader spatial scales, data from the eddy covariance

sensors is used alongside models to create probabilistic maps indicating the origins of air parcels

interacting with the sensor. The Kljun footprint model estimates the source of atmospheric

measurements taken at a specific location and stands out due to its flexibility and applicability to

a wide range of heights, atmospheric stabilities, and surface roughness, making it highly versatile

for ecological and meteorological studies (Kljun et. al 2015). The Kljun footprint model operates

by calculating the statistical distribution of upwind surface areas that influence the measurements

at the sensor location based on wind direction, wind speed, and atmospheric stability. The model

outputs a footprint function that represents the probability distribution of source areas, indicating

the likelihood that different locations contributed to the detected fluxes at the tower.

These datasets are derived from these models and measurements are compiled into TIFF

files containing 48 layers each, representing 30-minute intervals from 00:30 to 24:00 UTC. One

of these layers is displayed in Figure 1. This carbon data was averaged throughout the 48 layers

for a daily average. Each pixel in these high-resolution Geotiffs represents a percentage of the

total footprint, encoded logarithmically for data efficiency. Each file uses a placeholder value of

1e-28 for pixels not part of the footprint to not add additional value to the total sum. Thus, the

sum of all pixel values in a single footprint should be less than or equal to 1.0. Additionally, the

dataset includes daily heat maps and contour lines representing 80% of the confidence interval of

the footprint during both daytime and nighttime, displayed in blue and green respectively. A

yellow-to-red gradient in the maps represents a 2D histogram, indicating how frequently each

pixel appears within the 80% threshold of each footprint throughout the day.
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Figure 1. Kljun calculated footprint values for Twitchell Island at time 00:00.

LiDAR statistics

LiDAR data consists of XYZ coordinates (latitude, longitude, and elevation) and

intensity values that correspond to the reflectivity of the surfaces from which the laser pulses are

reflected (Neon). From this data, LiDAR can represent the structure and height of the data in a

way that other remote sensing surveys cannot. Based on a predefined pixel, I can compute

pixel-level statistics on the data. I have chosen four key statistics.
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1. Mean elevation is a pivotal metric in wetland environments, as it dictates water

saturation levels, vegetation types, and the area's overall hydrology (Buffington

et. al 2021). I focus on mean elevation because it directly influences local climate

conditions. For instance, higher mean elevations within a pixel may suggest the

presence of densely stacked vegetation or tall trees, indicative of distinct

ecological characteristics. Conversely, lower elevations might correspond to

roads, open water, or bare ground, elements with very little carbon capacity

(Zhang et. al 2021).

2. Mean density reflects the structural and density attributes of vegetation (Cekada et

al. 2010). This metric is essential for estimating biomass and, consequently, the

carbon storage capacity of wetlands. Denser point measurements suggest robust

vegetation, crucial for effective carbon sequestration and ecosystem productivity.

Areas with sparse vegetation may indicate less biomass and potentially different

ecological functions (Li et al. 2013).

3. 95 percentile height can identify some of the taller areas where there could be

more influence from trees on carbon flux (Lang 2014). This metric also correlates

with biomass levels, pinpointing areas of higher carbon storage. Typically, taller

vegetation, especially trees, will exhibit a higher 95% confidence interval of

height, signifying significant biomass accumulation.

4. Mean intensity offers clues about the ground surface and vegetation types through

reflectivity data, aiding in the classification of wetland areas and assessing

vegetation health (Dai et. al 2022). This measure can help distinguish between

wet and dry areas, which is crucial since these conditions affect carbon exchange

rates differently. Variable reflectance properties can indicate how surfaces with

similar characteristics might exhibit comparable carbon flux outputs.

These LiDAR statistics are generated in R (lidR), which processes LiDAR point cloud data to

analyze its spatial and reflective attributes. I set the pixel size to the coarsest resolution available

for LiDAR imagery at 30 cm. This selection helps mitigate the challenges posed by the sparsity

and non-uniform distribution of LiDAR data across different areas. Larger pixel sizes are

beneficial as they help in averaging the data, providing a more consistent output, and reducing
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the effects of data clustering. After computing these statistics, the data is exported into a .tif file,

making it suitable for further analysis and processing in ArcGIS.

Data manipulation

Figure 1. ArcGIS workflow to standardize images

The workflow depicted in this diagram outlines a structured sequence of geospatial data

processing steps in ArcGIS Pro, specifically applied to LiDAR statistics Geotiff files for each

island. Here, I use the "mean_elevation.tif" data as an example. This workflow was applied to all

lidar statistics data for every site. The data is first processed with the Resample tool, which

adjusts the spatial resolution of the elevation data to match that of the "Mayberry_Spring

NDVI.tif'' file. The file “mean_elev.tif” will be used later to compute point-wise correlations.

Following resampling, the data undergoes a coordinate system transformation through the

Project Raster tool and ensures the elevation data is aligned correctly with the Mayberry Spring

NDVI dataset (ESRI).

8



Qi Jia Sun Carbon in Wetlands with LiDAR Spring 2024

The adjusted dataset is then passed into the Extract by Mask tool using the Mayberry

Spring NDVI file as the mask. This tool selectively extracts areas of interest from the elevation

dataset by applying the geographical boundaries of the Mayberry Springs NDVI as a mask. The

result is a refined dataset that is resampled, reprojected, and clipped to the areas defined by the

NDVI mask. This newly created dataset is ready for further analysis or integration with other

geospatial data layers (ESRI).

Exploratory data analysis and feature engineering

I generated basic descriptive statistics in Python, such as means, medians, ranges, and

standard deviations, to understand the lidar data's central tendencies and variability. I then

visualized these statistics in the form of histograms, box plots, and scatter plots, to discern the

distributions and relationships between variables. I also utilized heat maps and correlation

matrices to examine the relationships between LiDAR features, such as point density, intensity,

and height characteristics, and how they relate to carbon flux. From this information, I then

created new variables by transforming and combining existing variables. I employed regression

analysis to quantify the relationship between each LiDAR feature and the effective leaf area, and

correlation studies helped identify which features are most strongly linked to the effective leaf

area. The selection process prioritized features that are not only statistically significant but also

provide meaningful ecological insights (Miao et al. 2016).

Dimensionality reduction

Before developing a graph neural network (GNN), I applied dimensionality reduction of

the spectral data to reduce the large dimensionality of the data (Morehead et. al 2022). We chose

to aggregate data from all three wetlands to increase the diversity of the data and the number of

points for training. I clipped the regions to include only those covered by carbon flux

measurements. I also applied a mask to roads and water bodies to eliminate potential

confounding variables (Mateo-Garcia et. al 2018). These variables can add noise to carbon flux

predictions as they are not classified as vegetation. This process was essential in highlighting the

most pertinent features of the ecosystem processes, allowing for a streamlined and focused input
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into the GNN. The training of the GNN was an iterative process and used a subset of our data

while a separate validation set was reserved for performance evaluation.

Model building

I designed a GNN to represent the complex vegetative structures of wetland ecosystems

which incorporated data augmentation strategies, effectively increasing the diversity of our data

set, and bolstering the model's predictive accuracy and generalization capability. I used

max-pooling techniques to distill the data further, reducing dimensionality while preserving the

most salient features (Grattarola et. al 2021). The GNN's custom aggregation functions then

integrated these features, capturing the intricate relationships within the vegetation and their

spectral signatures (Sanchez-Lengeling et al. 2021). This approach was particularly suited to

dealing with the dimensionality and variability inherent in the LiDAR and multispectral data,

enabling a more nuanced understanding of the ecological processes at play. I also applied an

affine transformation to each of the .tif files. For geospatial analysis, features must be accurately

extracted from the raster data at the exact places where LiDAR data points exist especially when

integrating different data sources. The affine transformation pinpoints the raster pixels that

correspond to the LiDAR points and extracts data values from those pixels, ensuring that the data

is aligned and accurately represents the geographic layout of the study.

Model training

I have adapted the conventional train/test split to suit the interconnected nature of graph

data (Mishra et. al 2021). For node-level tasks where each node was associated with a pixel on a

graph, I implemented a train/test split by holding out a subset of nodes. Instead of removing

these nodes and their edges, which would disrupt the structural integrity of the graph, I retain

them within the network during the training phase. However, their labels are concealed or their

features are replaced with non-informative dummy data, such as a "MASK" label that indicates

the absence of information (Mishra et. al 2021).

This approach preserves the crucial topological structure of the graph, allowing for

uninterrupted information. By maintaining full connectivity, the GNN was trained to understand
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and leverage the inherent complexities of the graph, enabling a more accurate representation of

the ecological relationships and interactions within the wetlands. This withholding of

information allows us to robustly validate the model's performance to unseen data, which was

critical for advancing our understanding of wetland vegetation characteristics and dynamics.

Model fine-tuning and statistical analysis

The GNN was trained to effectively reflect different aspects of the wetland vegetation's

structural complexity as revealed by our UAV surveys (Law et. al 2001) and to predict

corresponding carbon fluxes. I will use the mean squared error function as our loss function to

evaluate the strength of our model (Wallach & Goffinet 1989). The fine-tuning process will

begin with hyperparameter optimization and will also explore advanced feature engineering

techniques to incorporate additional ecological variables that may integrate supplementary

sources, such as satellite imagery or in situ sensor data, to capture the intricate dynamics of

wetland ecosystems.
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RESULTS

Figure 2. Sample of Twitchell Island Points. This graph shows a plotted systematic sample of

14,000 points (every 10,000). This structure shows the uneven clustered distribution of lidar

points in this data.
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Figure 3. a) Twitchell NDVI, b) Mean Elevation, c) Mean Intensity. Each of the above maps

shows different characteristics of Twitchnell Island. (a) NDVI, (b) mean elevation, (c) mean

intensity. Twitchell Island shows the strongest relationships. Lower levels of NDVI are shown in

red which shows lower vegetation presence while green signifies higher levels of vegetation. In

the elevation map, yellows and oranges indicate lower elevation areas, while blues and greens

mark higher elevations. In the intensity map, colors like greens and blues indicate that the

surfaces reflect more light whereas darker areas might indicate lower reflectance.
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Figure 4. Intrasite Variable Correlations with NDVI. This correlation heat map shows four

lidar statistics in mean intensity, 95% height, mean elevation, and mean density over the three

different wetland sites of Dutch Slough, Twitchnell Island, and Mayberry Slough and their

effects with NDVI.
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Figure 5. Intrasite Variable Correlations with NDVI. This correlation heat map shows four

lidar statistics in mean intensity, 95% height, mean elevation, and mean density over the three

different wetland sites of Dutch Slough, Twitchnell Island, and Mayberry Slough and their

correlations with carbon flux.
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Figure 6. GNN Loss Function. This figure depicts the loss function of the GNN, which uses a

scaled-down form of mean squared error from 2900 to 2175 over 200 epochs.

DISCUSSION

This discussion addresses the strategic selection of pixel sizes for data sparsity,

minimizing biases in ecological analyses. It also discusses the correlation between NDVI,

topography, and intensity, highlighting the strong relationships with Twitchell Island. I then

compare LiDAR features across different wetland sites to highlight the variability and

commonalities in ecological patterns and the results of the GNN model in predicting carbon flux.

Finally, I emphasize the importance of a richer and more diverse dataset for a deeper

understanding and effective management of wetland ecosystems and highlight the vast potential

this research holds for fast and effective carbon monitoring.

LiDAR data sample visualization

The plot shows data points densely clustered in specific areas, justifying selecting larger

pixel sizes for coarser resolution. This approach helps mitigate the impact of data sparsity and
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uneven distribution seen across the plot. Such dense clustering indicates that smaller pixel sizes

could lead to biased representations, especially in less populated regions. Additionally, the sparse

data along the z-axis is characteristic of wetland areas, where even subtle elevation variations are

crucial for environmental analyses. This sparsity poses challenges in masking specific areas for

detailed studies, as some regions are significantly data-deficient, potentially introducing bias (Jin

et. al 2020, Sun et. al 2020). Thus, data was aggregated from all three wetland sites due to

ecological similarities across sites, allowing the model to identify common unifying patterns

rather than overfitting on specific features that might dominate in one wetland area (Zhang et. al

2020).

Vegetation and topographic influence

The Twitchell Island maps show stronger correlations over the other two wetland sites. I

first present the NDVI as a control map, followed by two additional maps of LiDAR statistics.

This helps better contextualize the ecological significance of the values observed across the

different datasets. Figure 2a) serves as a critical indicator of vegetative health, with NDVI

highlighting areas of living green vegetation (USGS). In this visualization, red colors signal

regions with scant vegetation, whereas green colors denote dense plant life. The wetlands present

a mosaic of red and green, mirroring the complex interactions between aquatic and terrestrial

ecosystems. This temporal snapshot also reveals that much of the alfalfa fields are not in peak

condition (Tedesco et. al 2022).

Figure 2b) provides a topographic profile of Twitchell Island where yellows and oranges

indicate lower elevations and blues and greens signify higher elevations (Hooijer & Vernimmen

2021). This map shows a strong negative correlation of -0.81 between elevation and NDVI,

indicating that lower-lying areas typically show higher NDVI levels. The lowest points usually

represent wetland areas and the highest points often correspond to trees adjacent to roadways.

Although trees in some ecosystems might exhibit higher carbon flux levels than wetlands

(Pangala et al., 2012), in this case, the dense alfalfa wetlands display significantly higher carbon

flux due to their vegetative density.

Figure 2c) is a mean intensity map of Twitchell Island and shows the distribution of how

different areas reflect light (Lang & McCarty 2009). Brighter greens and blues on the map
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indicate higher reflectance levels, typically associated with surfaces rich in moisture or having

specific material properties (Miguez & Fernández 2012). Conversely, darker yellows and reds

suggest lower reflectance, which could indicate drier vegetation, water bodies, or man-made

structures. Observing a correlation coefficient of 0.83 confirms this interpretation: areas with

brighter greens correspond to higher levels of NDVI which is similarly shown in green hues.

Synthesis of lidar features across wetlands in NDVI

Figure 4 illustrates the correlations among intrasite variables across various wetland sites,

revealing a consistent pattern in all but Dutch Slough. This suggests that certain ecosystems

share common underlying characteristics, which could be crucial for broader ecological

understanding and modeling (Xu et. al 2020). The data from Twitchell and Mayberry, show

correlations that may provide generalizable insights into wetland ecology. In contrast, Dutch

Slough exhibits an almost uniform distribution across its variables, deviating from the patterns

observed in Twitchell and Mayberry. This divergence suggests that relying solely on correlation

analysis is not sufficient for discerning broader, generalizable patterns across different wetland

environments (Ko et. al 2023). Recognizing these patterns allows for a better understanding of

the variance and consistency of wetland features across different sites and can be helpful for the

model to be able to recognize (Jafarzadeh et. al 2022).

Synthesis of lidar features across wetlands in carbon flux

Figure 5 highlights moderate correlation values between LiDAR statistics and carbon

flux across three wetland areas: Dutch Slough, Twitchell Island, and Mayberry Slough.

Correlation coefficients range from -0.3 to 0.3, indicating weak to moderate relationships.

Twitchell Island stands out as it exhibits the most significant correlations, suggesting some linear

relationship between LiDAR variables and carbon flux, akin to the stronger correlations

observed with NDVI compared to the other wetland sites. This might indicate more discernible

patterns at Twitchell compared to the other sites. In contrast, Dutch Slough consistently shows

positive correlations across all LiDAR attributes, whereas Mayberry Slough demonstrates very

weak to negligible correlations, highlighting the variability in environmental structure and
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carbon flux across sites. Both of these sites show little to no patterns between NDVI and carbon

flux correlations.

This variance suggests challenges in generalizing findings across different wetlands,

underlining the complexity of ecosystem interactions. Thus, a GNN approach might be

particularly advantageous, as a GNN can capture spatial relationships and leverage proximity

data, which could be crucial for identifying complex or non-linear patterns that traditional

correlation analyses will miss (Mishra et. al 2021, Zhou et. al 2018). However, before adopting a

GNN, enhancing the dataset with additional features or more comprehensive data could be

beneficial to provide a stronger dataset foundation (Maharana et. al 2022).

GNN loss function

According to Figure 6, the GNN still exhibits high loss after 200 epochs and struggles to

converge to a reasonable loss value, thereby failing to provide accurate predictions on carbon

flux data (Zhao et al., 2015). The difficulty in achieving convergence suggests that with the

current data and features, it is difficult to learn significant underlying patterns within the data.

Thus, expanding the dataset or refining feature selection might be necessary. Furthermore, the

current GNN architecture, which selects the 26 nearest points (forming a 3x3x3 cube) to define a

neighborhood (Kang et al., 2021), may be biased due to the clustered nature of LiDAR data,

which often shows stark density variations as observed in Figure 2. The nearest neighbor

approach may disproportionately favor clustered areas and lead to poor performance in sparser

regions where the 'nearest' neighbors could be relatively distant and potentially irrelevant to local

flux dynamics. Thus, imposing a distance limit on these neighborhood selections can be crucial

to improving the model. Additionally, if a point does not have enough neighbors, those points

can be considered outliers and excluded or handled differently to avoid skewing the model.

Another solution can be to adapt the GNN architecture to dynamically adjust the number

of points included from each area based on the local point density instead of using a fixed 26 (Ye

and Ji 2019). Specifically, we can add weighted edges in the graph to represent distances and

allow the model to emphasize more significant connections based on proximity (Gong & Cheng

2019). This adjustment could potentially enhance the model’s ability to handle variance and
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sparsity of ecological data, leading to more accurate and robust ecological predictions (You et. al

2019).

Limitations and future directions

The model’s performance underscores the need for a more expansive and robust dataset

to improve model convergence and enhance the accuracy of carbon flux predictions. The dataset

should expand to include more temporal snapshots that can reduce the variance in carbon flux

measurement. Although the data was averaged over the day for this model, extending the data to

span months or years could mitigate the high diurnal variance observed in daily carbon flux

measurements. Adding temporal diversity can also help the model capture more of the ecological

characteristics of wetlands. Furthermore, the current method of estimating carbon flux—utilizing

pointwise data from a flux tower, extrapolated using wind vectors and interpolation

techniques—may introduce biases that compromise the model’s predictive capabilities. Although

the Kiljun method for carbon flux estimation is robust, it still relies on interpolations that can be

problematic if the underlying assumptions are uncertain. Another concern is the dataset's

composition, which predominantly captures a phase of deceased alfalfa vegetation. This could

risk biasing the model's output by disproportionately representing dead vegetation, potentially

skewing the results toward these conditions. Thus, the dataset should expand to more diverse

vegetative types and states, increasing the model’s structural complexity. By incorporating more

features and environmental variables, the dataset will better represent and reflect the diverse

dynamics within wetland ecosystems.

Broader implications and conclusion

Our research contextualizes observed patterns within a broader ecological framework,

highlighting the potential of LiDAR technology for environmental management. As more

comprehensive data becomes available, LiDAR could potentially supplant the need for expensive

flux towers that require continuous monitoring. This shift would significantly expand the scope

and efficiency of LiDAR-based studies. In areas where constructing flux towers is impractical,

LiDAR offers an effective alternative, facilitating rapid and extensive environmental surveys
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without the logistical challenges and time constraints. With access to expanded remote sensing

data, measurements of additional environmental variables, and a larger dataset of wetlands, this

research could be invaluable in monitoring the carbon source and sink dynamics of these

ecologically sensitive areas. Furthermore, the implications of this research could extend beyond

wetlands to all ecosystems, making LiDAR a key tool in holding communities and nations

accountable for their carbon emissions and environmental commitments.
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