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ABSTRACT 

 

Atmospheric rivers (ARs) were the focus of my study, as they are narrow corridors of water vapor 

transport that played a crucial role in delivering precipitation to the west coast of North America. 

Unlike tropical cyclones, ARs possessing relatively low energy but have significant  socio-

economic impacts through intense precipitation. Recent studies had identified a strong correlation 

between sea surface temperature (SST) and atmospheric water vapor content, which is a key factor 

in AR intensity ratings. Under climate change, land surface temperatures (LST) exhibited more 

pronounced fluctuations than SST, yet the implications of these changes on precipitation dynamics 

remained underexplored. I utilized the Atmospheric River Catalog SIO-R1 and the reanalysis 

model MERRA-2 to investigate the precipitation caused by landfalling ARs on North America's 

west coast from 1995 to 2015. I focused on how variations in LST influenced precipitation and the 

efficiency of water vapor conversion to precipitation. My findings revealed a marked seasonality 

in ARs, with peak precipitation intensities occurring at intermediate temperatures. There was a 

notable inconsistency between water vapor and precipitation in seasonal variation. During the 

rainy season, higher pre-precipitation LSTs were linked to an increased likelihood and intensity of 

extreme precipitation events, especially at higher latitudes. The intensity of extreme precipitation 

increased by over 7%/K, above the rate of increase in water vapor, highlighting the critical role of 

local LST in predicting precipitation from ARs. This research underscored the need for a more 

systematic investigation into the interplay between LST changes and precipitation conversion in 

the context of warming climates. 
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INTRODUCTION 

 

According to the IPCC Summary for Policymakers, “It is unequivocal that human influence 

has warmed the atmosphere, ocean, and land” (Change (IPCC) 2023). Climate change has elevated 

the global average temperature, and due to the current energy imbalance on Earth, temperatures 

will continue to rise toward equilibrium even with immediate emission cessation (Hansen et al. 

2011). In line with the Clausius-Clapeyron Relationship, elevating air temperature enhances the 

air's potential to hold water vapor. Specifically, for every 1 degree Celsius rise in temperature, the 

air's water content can increase by around 7% (Trenberth 2011). While greenhouse gas 

concentrations remain generally consistent throughout the atmosphere, discernible temperature 

and precipitation patterns emerge as a result of interactions between winds and ocean currents (Xie 

et al. 2010). As climate changes, temperature and precipitation distributions tend to expand, 

leading to more pronounced temporal and spatial variations. 

The expansion in the rainfall distribution will give rise to heightened rainfall extremes. In 

the context of climate change, both the frequency and intensity of extreme rainfall events are 

projected to intensify (O'Gorman 2015). Situated along the U.S. West Coast, California 

experiences the influences of both Mediterranean climate and mid-latitudinal dynamics, and there 

have been documented increases in precipitation variability in twenty-first-century California 

(Swain et al. 2018). Based on observational data, California's rainfall patterns have experienced 

shifts and delays of up to a month (Luković et al. 2021). The consequences of climate change-

induced extremes and alterations are heavily influenced by adaptation policies, with local soil and 

water management offering the potential to prevent and mitigate disasters (Ralph et al. 2019). 

Comprehensive rainfall prediction is essential for shaping adaptation strategies, and in California, 

atmospheric rivers represent a significant constituent of its precipitation patterns. 

Atmospheric rivers (ARs), as defined by NOAA, represent narrow channels responsible 

for the transport of water vapor outside the tropical regions (Gimeno et al. 2014). The predominant 

model for AR is quantified and characterized using Integrated Water Vapor Transport (IVT) 

(Waliser and Cordeira 2020). Globally, ARs contribute to 22% of the total global runoff, with 

regions such as California contributing over 50% (Paltan et al. 2017). Currently, the physical 

mechanism behind the formation of ARs remains unclear, limiting our ability to predict these 

events in advance; instead, we can only observe and predict them on a small-scale basis after they 
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have occurred (Payne et al. 2020). Nevertheless, ARs significantly impact California's climate, 

with floods and subsequent secondary disasters exacerbating droughts and wildfires in the 

following years (Michaelis et al. 2022). As sea surface temperatures (SST) rise, there's an expected 

surge in IVT over the Northeast Pacific Ocean. The transformation of precipitation due to IVT is 

modulated by topography and AR direction (Payne et al. 2020). Yet, there's a research gap 

concerning AR-associated rainfall trends in the climate change paradigm, especially related to land 

surface temperature (LST). 

In this study, I focused on identifying AR-induced precipitation trends along the west coast 

of North America during the period 1995-2015. The central research question is to determine how 

AR-induced precipitation is associated with LST and whether this can indicate potential extreme 

precipitation events. I started with examining the correlation between AR-induced precipitation 

and LST to look for potential associations. I analyzed the conversion ratio between IVT and 

precipitation and used the temperature before precipitation as the conditional variable for 

determining potential extreme precipitation. I then analyzed the data overtime, exploring the 

relationships between variables and interpreting and testing hypotheses for data associations. Since 

the changes in water vapor and precipitation is none linear to temperature, and I could not take 

topography into account in the calculation process, I focused on analyzing trends and the extent to 

which extreme weather occurs, rather than nonlinear theory. Finally, I conducted variable control 

of latitude to explore the change of the influence of different latitudes on the distribution. The 

analysis utilized AR data from the Catalog of landfalling atmospheric rivers along the western 

coast of North America (SIO-R1) generated based on NCEP Reanalysis (Gershunov et al. 2017). 

Temperature data and the calibration of precipitation data were using the Reanalysis Model 

MERRA-2 (Gelaro et al. 2017). 
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METHODS 

 

Study site and Data 

 

 I analyzed the landfalling atmospheric river (AR) events from 1995 to 2015 that caused 

precipitation on the west coast of North America using data from SIO-R1 and MERRA-2. The 

"Catalog of landfalling atmospheric rivers along the western coast of North America" (SIO-R1) is 

a seven-decade-long catalog of landfalling ARs based on NCEP Reanalysis (Gershunov et al., 

2017). This catalog compiles AR data at 6-hour intervals from 1948 to 2017, covering latitudes 

from 25 to 52.5 degrees north and longitudes from 100 to 125 degrees west. This range effectively 

encompasses the majority of the Eastern Pacific landfalling ARs, from their approach to the coast 

to their eventual landfall. The directory’s NetCDF file stored detailed daily rainfall data under the 

AR footprint (IVT > 250 kg/m/s) with a spatial resolution of 6x6 km (Figure 1).  

 

 

 

Figure 1. 1995 AR Precipitation Visualization from SIO-R1. This map displays the geographical distribution of 

AR-induced precipitation across the west coast of North America. X and Y axes represent longitude and latitude, 

respectively, with a continental base map. Colors indicate cumulative precipitation levels in millimeters for the year 

1995, with a spatial resolution of 6 x 6 km. 
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 For my temperature and rainfall data corrections, I used the Modern-Era Retrospective 

Analysis for Research and Applications, Version 2 (MERRA-2), which is the latest atmospheric 

reanalysis produced by NASA. MERRA-2 offers a resolution of 0.5° latitude by 0.625° longitude 

(Gelaro et al., 2017). The specific subset employed was MERRA-2 inst3_3d_asm_Np: 3d, 3-

Hourly, Instantaneous, Pressure-Level, Assimilation, Assimilated Meteorological Fields V5.12.4 

(M2I3NPASM), which provides instantaneous 3-dimensional data every three hours. The data 

covered the period from January 1, 1995, to December 31, 2015, except for December 31, 2012, 

which was missing due to leap year matching. The spatial coverage of the M2I3NPASM data 

extended globally from -180.0 to 180.0 degrees longitude and from -90.0 to 90.0 degrees latitude. 

I matched this data range with that of the SIO-R1 through location matching, ensuring that the 

final usage range was consistent with Figure 1. Given that the MERRA-2 data had a shorter time 

interval, I upscaled the data from 3-hour intervals to 6-hour intervals while maintaining the 

resolution at 0.5° x 0.625°. I corrected the IVT and precipitation values to address some 

inconsistencies in the model. Ultimately, I compiled a dataset of AR-induced precipitation events 

from 1995 to 2015, including variables such as location, IVT, precipitation, surface temperature, 

initial time, and duration (Table 1). All data were combined using ARID as the index, which is the 

number assigned to an event in the SIO-R1 catalog system. Each ARID is assigned a Date Number 

to prevent overlap, as the unique properties of ARs make simultaneous occurrences in my research 

area nearly impossible (Ryoo et al., 2015). 

 

Table 1. Variables used in the analysis. This table lists the variables analyzed in the study, along with their respective 

units and data sources. Each variable is essential for understanding the dynamics of atmospheric rivers and their impact 

on precipitation patterns. The table includes information on integrated water vapor transport (IVT), atmospheric river 

identification (ARID), geographical location, precipitation amounts, time intervals, and surface temperature. Data 

sources are primarily from the SIO-R1 and M2I3NPASM databases. The data units have been upscaled and aggregated 

to match the resolution required for visualization and analysis. The resolutions are listed to ensure clarity on the 

granularity of the data used in the study. 

 

Variable Unit Data Source Resolution 

IVT 
 

ARID 

kg/m/s 
 

/ 
SIO-R1 

6 x 6 km  
 

0.5° x 0.625° (aggregated) 

Per event, 2795-4126 

Location 
 

Precipitation 

degree 
 

mm 

SIO-R1 

Matched with M2I3NPASM 

0.5° x 0.625° 
 

0.5° x 0.625° (aggregated) 

Time Hour 
SIO-R1 

M2I3NPASM upscaled 
6 Hour Integrated 

Surface Temperature Kelvin M2I3NPASM 0.5° x 0.625° 
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Atmospheric river methodology 

 

Based on previous studies (Gimeno et al. 2014, Mundhenk et al. 2016), ARs are typically 

detected using two different spatial fields: some form of precipitable water (IWV) and some form 

of integrated water vapor transport (IVT). According to the recommendations of the AR Tracking 

Method Intercomparison Project (ARTMIP) (Shields et al., 2023), the current mainstream AR 

Catalog tier 2 primarily utilizes IVT as its main algorithm. IVT is defined as: 

 

IVT is calculated using the formula where g represents gravitational acceleration, q is specific 

humidity, u is zonal wind, v is meridional wind, and dp is the pressure difference between adjacent 

pressure levels (Mundhenk et al. 2016). The mass-weighted vertical integration of these 

components is performed using data from 1000 to 300 hPa, and the wind data is at 850 hPa. An 

IVT value greater than 250 kg/m/s is considered a general footprint of ARs, and the SIO-R1 model 

has demonstrated that all ARs meet this criterion (Lavers & Villarini, 2013; Gershunov et al., 2017). 

Since the purpose of my research is not to identify ARs, I will rely on and use the ARs cataloged 

by SIO-R1. AR intensity and categorization systems utilize Max IVT and duration as indices 

(Ralph et al., 2019). In this study, I will examine whether maximum IVT can serve as an effective 

indicator of AR impact. 

 

Climatology and variability 

 

The climatology of AR landfalls from 1995 to 2015 primarily focuses on frequency and 

seasonality. Detailed analyses regarding intensity, duration, and location of occurrence have been 

addressed in prior research (Gershunov et al., 2017). In the study area, the proportion of AR-

induced precipitation reaches 65% in coastal regions and 30% in inland areas, both of which 

exceed the global averages of 50% and 22%, respectively (Paltan et al., 2017). For regional 

classification, the areas I examined are designated as Western North America (WNA), Northern 

Central America (NCA), Central North America (CAN), and the principal coastal areas of the 
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North Pacific Ocean (NPO) according to the IPCC's updated climate zones (Iturbide et al., 2020). 

These regions are relatively understudied compared to the entire North American continent and lie 

at the fringes of projected precipitation increases and decreases in most climate models (Trenberth, 

2011). In California, for example, both the peak and the onset of the precipitation season have been 

delayed, yet these shifts have not significantly impacted overall precipitation levels (Luković et 

al., 2021). According to studies on the effect of sea surface temperature on IVT, ARs should have 

seen a notable enhancement post-1970 (Huang et al., 2020); however, such enhancement is not 

evident in current records. In fact, the increase in surface temperatures has been even more rapid, 

with winter LST already rising by more than 2 degrees Celsius since 1980 (Gonzales et al., 2019). 

These changes highlight the need to study the impact of land surface temperature on AR-induced 

precipitation patterns. Given that the overall change in total precipitation is not pronounced, the 

shift in the distribution of extreme precipitation under climate change must be attributed to factors 

other than merely an increase in water vapor (Neiman et al., 2008). In this study, I concentrated 

on analyzing temperature changes preceding AR-induced precipitation events. 

 

Data processing  

 

All data cleaning, calculations, merges, and visualizations were conducted using a Jupyter 

Notebook, programmed in Python 3. The bulk of the continuous meteorological data was stored 

in NetCDF format (Rew et al., 1989), while the SIO-R1 catalog was stored in text format. 

MERRA-2 data is organized daily, while SIO-R1 data is cataloged annually. The occurrence of 

leap years, as well as leap years with or without precipitation days, posed a challenge to data 

alignment. Despite efforts to minimize the impact on the synchronization of datasets, the data for 

December 31, 2012, remained elusive. The data was primarily read and linked to the information 

in the SIO-R1 catalog, correlating the contents of the NetCDF and text files, and assigning an 

ARID to each event for tracking purposes. In this process, it became evident for the first time that 

some AR events occurred without any associated precipitation. Subsequent data analysis was then 

performed on the IVT and precipitation data. Following this, MERRA-2 data was read and cross-

referenced against the existing ARIDs. During this comparison, events lacking precipitation data 

were excluded, and temperature variables were incorporated. The maximum surface temperature 

preceding each event was then aligned with its corresponding ARID. Typically, this maximum 
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temperature occurred 6 hours before the precipitation event, although occasionally it was 3 hours. 

Once all resolutions and timings were matched and verified, data visualization and analysis were 

conducted anew.  

 

Clausius-Clapeyron and hypothesis test 

 

When discussing the effects of climate change on precipitation, the concept of saturated 

vapor pressure is indispensable. Unlike the uncertainties associated with changes in precipitation 

distribution and extreme precipitation events, the increase in water vapor associated with climate 

change is notably consistent. The Clausius-Clapeyron equation delineates how the capacity of air 

to carry water vapor (q) increases with temperature: 

 

Where α(T) represents the scaling factor of the Clausius–Clapeyron equation and is defined as: 

 

For surface temperatures characteristic of ARs making landfall in California in the present climate, 

with an average LST of 13 °C, the scaling factor α(T) is approximately 6.6% per Kelvin (Dettinger, 

2011). This basic thermodynamic response is one of many factors that affect IVT strength and AR 

intensity. The conversion ratio of IVT to precipitation is subject to even greater influence (Payne 

et al., 2020). The increases in water vapor resulting from rises in SST or LST are not anticipated 

to surpass 14%. Yet, such changes cannot be solely attributed to the Clausius-Clapeyron 

relationship when observing AR precipitation (Michaelis et al., 2022). This indicates that other 

factors also influence precipitation in ARs, including but not limited to topography, the vertical 

profile of the atmosphere, and temperature anomalies (Gimeno et al., 2014; Corringham et al., 

2019; Huang et al., 2020). I conducted a hypothesis test on latitude to investigate its potential 

influence on the relationship between temperature and AR intensity. I segmented my research area 

into three latitudinal zones and performed data analysis independently for each region.  
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RESULTS 

 

Seasonality and distribution 

 

The temporal distribution and frequency of AR events from 1995 to 2015 show a seasonal 

pattern, with certain periods experiencing higher frequencies of events. This pattern is evident 

when examining the percentage of AR events occurring on each day throughout the 21-year period 

(Figure 2). The overlay of data points across each year reveals fluctuations in the daily occurrence 

of AR events, highlighting specific times when these events are more prevalent. A clear pattern 

emerges from the overlay of data points, indicating a degree of seasonality in the occurrence of 

AR events. 

 

 

 

Figure 2. Date Distribution and Occurrence of AR Events from 1995-2015. This time series graph displays AR 

events per day over a 21-year period. Each year is represented by a distinct set of data points plotted along the 

horizontal axis, which corresponds to days of the year (colored red), while the vertical axis (colored blue) quantifies 

the percentage of AR events occurring on each day.  

 

A clearer seasonal trend emerges with the analysis of the monthly distribution, with peaks 

in occurrence during certain months in the winter season. The variability within individual years 

around the overall monthly trend underscores the interannual differences in the occurrence of AR 

events. Each line representing a year adds to the complexity of the pattern, culminating in an 
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overlaid line that delineates the aggregated monthly percentage (Figure 3). The individual years 

demonstrate variability around the aggregate trend, indicating interannual differences in the 

monthly distribution of AR events. As evident from the graph, the year-to-year changes are very 

pronounced, with hardly any year perfectly conforming to the overall pattern. A less pronounced 

trend observed is the delay in the onset of the peak rainy season, shifting from September to 

October over the years. 

 

 

 

Figure 3. Monthly AR Occurrence Percentage by Year. This line graph illustrates the monthly distribution of AR 

events over the years. Each line corresponds to a different year, with the overall monthly percentage of AR events 

represented by an overlaid line marked with distinct symbols. 

 

The mapping of significant AR-related precipitation events that exceed 100 mm/day 

demonstrates a concentrated spatial distribution along certain regions, particularly along coastal 

areas (Figure 4). Areas with the highest frequency and intensity of AR precipitation events are 

highlighted by clusters of warmer colors. The distribution pattern shows a concentration of 

significant AR events along specific geographic regions. This distribution pattern is strongly 

correlated with topographic variations, indicating three distinct concentration zones from the coast 

to the Rockies, corresponding to areas with significant topographical changes. The latitude 
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distribution appears relatively random, and I will maintain this assumption until conducting the 

hypothesis test. 

 

 

 

Figure 4. Significant AR Precipitation Events from 1995-2015. This geographic map highlights areas with 

significant AR-related precipitation events exceeding 100 mm/day. The intensity and frequency of these events are 

represented by the size and color of the dots, with warmer colors indicating higher frequencies. 

 

Collectively, the data underscores the seasonality and spatial distribution of AR events over 

the two decades, highlighting areas with higher susceptibility to such events. The variability 

observed in both daily and monthly analyses, coupled with the geographic patterns of precipitation 

intensity, provides a foundational understanding of AR climatology. This allows me to utilize 20 

years of data to discern the effects of climate change from seasonal distribution patterns. 

  

IVT and precipitation 

 

The conversion from water vapor to precipitation is inherently a nonlinear process, 

influenced by numerous factors. I analyzed IVT and precipitation to determine whether the 

observed conversion ratio differed under the peak and mean values of each event (Figure 5). I also 
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compared their averages to extremes (Figure 5c, 5d). Given that duration is another indicator of 

ARs, it is possible that the effects of longer precipitation events could still be significant, even at 

lower peak intensities. 

 

 

 

Figure 5. Integrated Vapor Transport vs. Precipitation Analysis. This set of scatter plots illustrates the relationship 

between IVT and precipitation intensity for each AR-induced precipitation event. Subplots include: (a) average IVT 

vs. average precipitation, (b) maximum IVT vs. maximum precipitation, (c) average IVT vs. maximum IVT, and (d) 

average precipitation vs. maximum precipitation. Trend lines are included to indicate general trends, though they are 

not statistically significant. 

 

The relationship between IVT and precipitation is generally positive, although the R2 

values for both the maximum and mean correlations are very low. Interestingly, the data shows a 

large number of high precipitation events occurring at lower IVT states (Figure 5a). This further 

underscores that the intensity of precipitation, particularly during occasional extreme events, 

cannot be directly predicted by IVT alone (Figure 5b). An internal comparison reveals that the 

ratio between maximum and average IVT is consistently greater than 1, indicating that peak IVT 

closely resembles the overall water vapor content (Figure 5c). However, the distribution of 
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precipitation is more dispersed, with many instances where higher average values correspond to 

lower maximum values (Figure 5d). Such inconsistencies between IVT and precipitation are 

largely attributable to other unconsidered factors and their physical properties. 

 

 
 

Figure 6. IVT and Precipitation Patterns, Day of Year. This composite graph displays the relationship between day 

of the year and AR characteristics, with subplots showing: (a) average IVT, (b) average precipitation, (c) maximum 

IVT, and (d) maximum precipitation. IVT values exceeding 250 kg/m/s are noted as indicative of an AR footprint.  

 

The annual distribution of AR-induced precipitation events also provides additional 

insights (Figure 6). Because water has a higher specific heat capacity compared to land, the rate of 

change and magnitude of SST variations are smaller than those of LST. Previous studies have 

demonstrated the relationship between IVT and SST (Chen and Leung 2020). This association, 

coupled with the disparity between LST and SST, contributes to the reduced variability in the 

overall IVT values (Figure 6a, 6c). The persisting seasonality of IVT is linked to the fact that the 

SIO-R1 catalog I used records only landfalling ARs. The mean distribution of precipitation 

exhibits strong seasonality, whereas the distribution of maximum precipitation displays greater 

randomness (Figure 6b, 6d). With the increase in surface temperature during summer, even a 
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smaller content of water vapor can trigger short-term heavy rainfall events through convective 

processes within a brief period. This further reinforces the notion that Maximum IVT cannot 

directly represent AR-induced precipitation intensity. 

 

LST and AR events 

 

LST exhibits larger transient variability compared to precipitation and IVT. Initially, 

temperature anomaly was the preferred metric for exploring differences between temperature 

before rainfall and average temperature. However, due to challenges in extracting and identifying 

3-hour high precision temperature anomaly data, I opted to select the highest temperature before 

rainfall. This temperature metric exhibits a wide distribution owing to variations within the 24-

hour day and across different latitudes and altitudes in various seasons (Figure A1). By 

comparing1995 and 2015, we can observe the following trends (Figure 7). 

 

  
 

Figure 7. Maximum Pre-landfalling LST Distribution, with 1995 and 2015 Highlighted. This graph plots the 

maximum LST before AR landfall over the year, showcasing trends and variations. Data points from 1995 and 2015 

are highlighted, with an average trend line and shaded confidence intervals to show distribution spread. 

 

The distribution of LST exhibits a general seasonal pattern, albeit with strong variation. 

Additionally, upon comparing temperatures in 1995 and 2015, we note that the mean change is not 

substantial. However, there is a notable increase in the frequency of above-average temperatures 
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towards the end of 2015. Several factors could contribute to this effect, but it aligns with the 

monthly distribution data indicating a delayed onset of the rainy season. Based on the distribution, 

I conducted an analysis of the relationship between LST and AR (Figure 8). 

 

 
 

Figure 8. The Interrelationship between LST and AR. This scatter plot examines the correlation between pre-

landfall LST and AR characteristics: (a) cumulative precipitation, and (b) cumulative IVT. The trend line serves as a 

visual guide without statistical significance, highlighting the general distribution of data points. 

 

The distribution of points reveals a concentration of data with low precipitation values 

across the temperature spectrum (Figure 8a). However, as maximum temperatures increase, there 

is a slight uptick in precipitation totals, indicated by a small number of data points shifting upward. 

This relationship is weak, as the majority of data points remain clustered around the baseline. 

However, considering seasonal variations, even minor temperature changes during the 

precipitation season can lead to exponential increases in the likelihood of maximum precipitation. 

In contrast, as maximum temperature rises, the sum of IVTs also increases (Figure 8b). 

Unlike precipitation, the distribution of points is more dispersed and exhibits a clear upward trend. 

This suggests that higher surface temperatures may be associated with increased water transport 

during AR events. There is a strong correlation between SST and LST in both diurnal and seasonal 

trends, which might explain the relationship we observed. However, it still indicates a trend of 

maximum precipitation increasing with rising LST, suggesting a potential exponential increase. 

When comparing the distribution of IVT and precipitation, it can be observed that the highest peak 

of precipitation occurs at around 285K, whereas the highest peak of IVT occurs at 290K. Beyond 

290K, precipitation decreases rapidly to near the average level, while IVT maintains high. These 
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temperatures mainly occur in summer, which aligns with the observation that there is minimal 

precipitation during summer despite the persistence of a higher IVT. 

 

Latitude influence on IVT, precipitation, and LST relationship 

 

The relationship between IVT, precipitation, and LST across different latitudes provides 

insight into the geographical variability of AR events. This section focuses on the data for the 

latitude band 45-55 degrees (Figure 9 and Figure 10), with additional latitude bands 25-35 degrees 

and band 35-45 degrees in Appendix B (Figure B1-B4). These analyses employed the same 

methods as the previous ones (Figure 5, Figure 8) and were divided by different latitudes to assess 

the impact of latitude on the observed results. The analysis reveals that the variation in IVT versus 

precipitation was not significant, and there were no discernible latitude characteristics in 

precipitation (Figure 9, Figure B1, Figure B2). No significant difference can be seen in IVT and 

precipitation intensity. Specific images can be found in Appendix B (Figure B5, Figure B6). 

Seasonal trends are directly related to latitude (Figure 11). 

Latitude emerged as a crucial factor in the influence of LST. At high latitudes, both 

precipitation intensity and IVT increased with the rise of LST (Figure 10). Conversely, this trend 

was reversed at lower latitudes (Figure B3). This highlights the importance of considering latitude 

and climate zone influences on temperature changes when examining the impact of climate change 

on AR-induced precipitation. It also underscores the concept of a climate change threshold, 

prompting the consideration of whether temperature changes have altered seasonal behavior rather 

than solely affecting water vapor and precipitation conversion rates. 

The seasonal characteristics are particularly pronounced in different latitudinal regions. 

Apart from the variation in mean values, there are also distinct peak events associated with ARs. 

Notably, for the middle and high latitudes, the onset of the rainy season occurs significantly earlier 

compared to the lower latitudes (Figure 11). Regarding precipitation types, except for areas below 

0 degrees latitude where precipitation occurs at lower temperatures, the majority of AR-induced 

precipitation still falls in the form of rain. These lower-temperature precipitation events and their 

respective forms are highly sensitive to temperature increases, leading to significant changes in 

local hydrological characteristics. 
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Figure 9. IVT vs. Precipitation Analysis in latitude range 45°N-55°N. This series of scatter plots displays the 

relationship between integrated water vapor transport (IVT) and precipitation intensity at this specific latitude range. 

The subplots include: (a) average IVT vs. average precipitation, (b) maximum IVT vs. maximum precipitation, (c) 

average IVT vs. maximum IVT, and (d) average precipitation vs. maximum precipitation. 

 

 

 

Figure 10. The Interrelationship between LST and AR in latitude range 45°N-55°N. This scatter plot explores the 

correlation between land surface temperature (LST) prior to AR landfall and AR characteristics such as cumulative 

precipitation and IVT in this latitude range. The graph provides a visual guide to the distribution trends without 

statistical significance. 
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Figure 11. Maximum Pre-landfalling LST Distribution under Latitude Control. This graph presents the maximum 

LST before AR landfall across different latitude zones, plotted against the day of the year. Color coding differentiates 

the latitude zones, highlighting seasonal trends in LST variations. 
 

While my study did not analyze the paths and durations of ARs, it is known that the paths 

of ARs are primarily influenced by circulation and subtropical high guidance (Cordeira et al., 

2013). Additionally, the duration of AR is strongly correlated with water vapor supply, and longer 

durations tend to correspond to higher peak IVT values (Zhou et al., 2018). Although this 

correlation was not directly examined in my study, the high correlation between mean IVT and 

maximum IVT suggests a similar concept (Figure 5c). These changes become more pronounced 

with increasing latitude, particularly in the middle and high latitudes (Figure 10b).   
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DISCUSSION 

 

In this thesis, I explored the influence of land surface temperatures (LST) on atmospheric 

river (AR)-induced precipitation along the west coast of North America from 1995 to 2015, 

utilizing the SIO-R1 catalog and MERRA-2 model. My analysis revealed pronounced seasonality 

in AR events and a correlation with fluctuations in LST, providing insights into the efficiency of 

water vapor conversion to precipitation under varying conditions (Figures 2, 3, 4, 5, 6). I addressed 

a significant gap in understanding AR dynamics in the context of climate change, demonstrating 

that higher pre-precipitation LSTs are linked to increased likelihood and intensity of extreme 

precipitation events, especially at higher latitudes (Figure 10). This finding suggests that local 

temperature anomalies could serve as predictive tools for assessing AR impacts, supported by the 

observed interplay between LST and AR dynamics across various latitudes (Figures 9 and 10; 

Appendix B). Furthermore, I delved into the causative mechanisms behind these correlations, 

examining how global warming might be redefining hydrological dynamics on North America's 

west coast (Michaelis et al. 2022). By mapping these patterns against broader climatic shifts 

(Figure 11), I contributed to the discourse on climate resilience and adaptive strategies, which are 

crucial for managing risks associated with extreme weather events driven by atmospheric rivers, 

as evidenced by the significant variability in AR behavior (Gershunov et al. 2017; Dettinger 2011). 

 

Seasonality and delay rainy season 

 

The delayed onset of the rainy season, as evidenced by the timing of AR events, reflected 

a deviation from historical weather patterns (Figure 2, Figure 3). I noted this delay in the 

interannual variability of AR frequency, which could indicate a shift in climatic conditions, 

potentially associated with increased global temperatures (IPCC 2023). I observed the same delay 

in observational data, with a smaller geographical feature making the tendency to delay even more 

pronounced (Luković et al. 2021). Such changes necessitated a reassessment of water resource 

strategies to accommodate later start times for seasonal precipitation. My observations aligned 

with projections suggesting a redefinition of seasonality due to climate change, where the temporal 

dynamics of ARs and their associated precipitation are subject to shifts (Swain et al. 2018). A 
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broader understanding of these shifts offered valuable insights into the long-term planning required 

to adapt to changing precipitation patterns. 

Considering that the path of ARs is related to fluctuations in jet streams, changes in jet 

streams under climate change also influenced their paths (Woollings et al. 2023). The relationship 

between local temperature and short-duration rainfall was greater than the 6-7% moisture growth, 

consistent with my data (Schroeer and Kirchengast 2018). Currently, the temperature change in 

my data was not obvious (Figure 7), but in other meteorological data models with a larger scope, 

winter temperatures had increased significantly (Gonzales et al. 2019; Trenberth and Shea 2005). 

Seasonality and the delay in the rainy season were critical considerations for future climate 

modeling and social adaptation efforts. 

 

Clausius-Clapeyron relationship and inconsistency 

 

The Clausius-Clapeyron relationship did not fully capture the observed escalation of 

precipitation intensity from ARs in a warming climate (Figure 5). The complexities of atmospheric 

responses to LST changes seemed to amplify precipitation beyond the expected theoretical 

increase in water vapor capacity (Dettinger 2011; Payne et al. 2020). These findings pointed 

towards the need for an enhanced modeling framework that could account for additional 

atmospheric processes and feedbacks that might intensify the water vapor-precipitation 

relationship in AR scenarios (Michaelis et al. 2022). Contemporary numerical models consistently 

projected a notable increase in extreme precipitation, with estimates surpassing 7%/K in both 

frequency and intensity. However, given the limited availability of water vapor supply, an increase 

in extreme AR events inevitably resulted in a shift in the overall AR trend (Payne et al. 2020). This 

adjustment required compromises in one or more dimensions such as frequency, duration, and 

spatial distribution to accommodate the heightened extremes in precipitation intensity. 

 

Vertical profile, topology, and convection 

 

The vertical atmospheric profile and land topology appeared to modulate the impact of 

LST on AR precipitation efficiency (Figure 8). Complex interactions between the rising LST and 

the atmosphere's vertical structure led to an increased conversion of water vapor to precipitation. 



Jiawen Tang Atmospheric River and Climate Change Spring 2024 

 21 

Additionally, convection processes, intensified by higher pre-AR event temperatures, contributed 

to the variability and intensity of precipitation, especially in topographically diverse regions such 

as the North America West Coast. Topography and LST could alter precipitation form as well as 

intensity. Higher surface and vertical profile temperatures allowed more precipitation to fall as rain 

rather than snow. This effect significantly increased flood and drought risks (Corringham et al. 

2019). The phenomenon of surface temperature changes influencing precipitation patterns was 

initially observed and modeled in the Amazon rainforest (Swann et al. 2015). With the 

amplification of the urban heat island effect under climate change, convectively available potential 

energy (CAPE) at the urban scale was anticipated to undergo alterations in the future. This shift 

was poised to contribute to an uptick in extreme rainfall events at the local level, carrying more 

pronounced social ramifications than changes in the mean. Additionally, the projected increase in 

total precipitation coupled with a decrease in snowfall was forecasted to result in a significant 

surge in peak runoff alongside a notable decline in dry season runoff (Huang et al. 2020). Such 

dynamics could exacerbate California's water crisis and escalate wildfire risks, introducing 

heightened secondary hazards alongside direct heavy rainfall events (Landauer et al. 2019). 

 

Latitude and general pattern 

 

The impact of LST on AR dynamics exhibited a pronounced latitudinal variation (Figures 

9 and 10). At higher latitudes, increased LST correlated with a significant rise in both precipitation 

intensity and IVT, whereas at lower latitudes, these relationships were less evident (Figure B3). 

When considering latitude blocks, selecting the corresponding region was crucial. Numerous 

studies have focused on specific regions such as California (Ryoo et al. 2015; Corringham et al. 

2019; Luković et al. 2021; Michaelis et al. 2022). However, Oregon, also situated on the west coast 

of North America, has substantially less available data compared to Washington and California, 

which are located further north. Climate models commonly partition regions based on climate 

categories (Iturbide et al. 2020), but for AR models, the presence of a diverse mix of topographical 

features can yield varied results. Understanding these regional variations was essential for 

accurately assessing the impacts of ARs across different geographical areas. ARs wield significant 

influence globally, with their substantial water vapor transport serving as a pivotal factor in shaping 

future rainfall patterns (Paltan et al. 2017). The impact of latitude determined whether these 
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changes manifested positively or negatively. This latitude dependency underscored the crucial role 

of regional climatic factors in shaping the intricate interplay between temperature and precipitation 

during AR events. Consequently, a targeted approach in climate impact studies was essential to 

comprehensively understand and address the implications of AR dynamics across different 

geographical regions. While ARs carry substantial water vapor, their lower energy and shorter 

duration render them less concerning outside of directly affected areas. This has, in turn, 

contributed to a partial delay in the study of more detailed physical mechanisms. Studying the 

physical dynamics in more detail was crucial for further modeling of AR. 

 

Limitations 

 

The temporal scope of this study, limited to a 21-year period, was a primary constraint, 

stemming from the need to balance the extensiveness of data with the focus of the research topic. 

While this duration permitted an examination of seasonal patterns and their deviations, it might 

not have captured the full spectrum of climate change impacts over more extended periods (Figure 

2). Consequently, this limitation directed the exclusion of climate projections from the analysis. 

The dataset may not have sufficiently revealed the intricate relationships between climate variables 

that are essential for understanding the long-term trends of climate change. The temperature data, 

measured three hours prior to rainfall events, could potentially mask the subtle temperature 

anomalies pivotal to changes in rainfall conversion rates. The use of a 24-hour average temperature 

might have inadvertently integrated the cooling effect of precipitation itself, skewing the analysis 

of LST’s influence on precipitation (Figure 7). Addressing these concerns would require access to 

higher-resolution AR datasets and refined algorithms capable of discerning between pre-

precipitation temperature anomalies and the cooling effects of rainfall. 

The lower resolution of the AR data, coupled with discrepancies between different 

climatological systems, further compounded the study's limitations (Figure 9). Such 

inconsistencies could obscure the nuances of AR behaviors and the resultant precipitation patterns, 

particularly when correlating IVT and LST with precipitation outputs. A future expansion of this 

study might involve integrating higher-resolution data and standardizing across meteorological 

systems to improve consistency and reliability in the findings. Subsequent hypothesis testing, 

especially in relation to temperature anomalies and their role in precipitation efficiency, will 
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require these improvements to yield more definitive insights into the mechanisms driving AR-

related weather events. 

 

Future direction and Broader implications 

 

Advancing the understanding of atmospheric rivers and their interactions with land surface 

temperatures and sea surface temperatures will be crucial for enhancing predictive models and 

developing more effective mitigation strategies (Gelaro et al., 2017). Researchers should 

incorporate a more detailed examination of the vertical profiles of atmospheric rivers to understand 

the dynamics of moisture transport and precipitation processes more precisely. Convection in 

tropical regions exhibits an aggregation state; however, it remains unclear whether this state occurs 

in mid-latitudes, particularly in AR-induced precipitation (Angulo-Umana and Kim, 2023). 

Expanding the scope of hypothesis testing clarified the relationships between atmospheric 

variables, leading to more direct and actionable insights. Additionally, variance analysis helped 

clarify the consistency of relationships across different models, aiding in the refinement of climate 

projections (Chen and Leung, 2020). On a practical level, improvements in atmospheric river 

reporting systems significantly enhanced the timeliness and accuracy of weather forecasts, vital 

for emergency preparedness (Figure C1). Strengthening public awareness and planning for more 

intense precipitation events, especially in regions frequently affected by atmospheric rivers, was 

also essential (Michaelis et al., 2022). This approach not only aligned with the need for more 

comprehensive climate adaptation strategies but also ensured that communities were better 

prepared to handle the impacts of extreme weather events. By extending these efforts, researchers 

fostered greater resilience against the backdrop of evolving global climate conditions (Figures 9 

and 10). In conclusion, my thesis provided actionable insights that can be leveraged to enhance 

climate resilience, empowering policymakers and planners to better safeguard vulnerable 

communities and ensure a more sustainable future in the face of evolving global climate conditions.  
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APPENDIX A: Pre-landfall Temperature Distribution 
 

 
 

Figure A1. Maximum Pre-landfalling LST Distribution. This is the original version of Figure 7, which shows a 

clear overall seasonal trend and a high variance of the LST. 
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APPENDIX B: Hypothesis Test Graphs on Latitude Control 
 

 
 

Figure B1. IVT vs. Precipitation Analysis in latitude range 25°N-35°N. Similar to Figure 9, This set of scatter plots 

explores the relationship between IVT and precipitation intensity for each AR-induced precipitation event within this 

latitude range, detailing (a) average IVT vs. average precipitation, (b) maximum IVT vs. maximum precipitation, (c) 

average IVT vs. maximum IVT, and (d) average precipitation vs. maximum precipitation. 
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Figure B2. IVT vs. Precipitation Analysis in latitude range 35°N-45°N. Similar to Figure 9, this set of scatter plots 

investigates the relationships between IVT and precipitation intensity, featuring comparisons of (a) average IVT vs. 

average precipitation, (b) maximum IVT vs. maximum precipitation, (c) average IVT vs. maximum IVT, and (d) 

average precipitation vs. maximum precipitation. 
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Figure B3. The Interrelationship between LST and AR in latitude range 25°N-35°N. Similar to Figure 10, This 

scatter plot examines the correlation between pre-landfall LST and AR characteristics such as (a) cumulative 

precipitation and (b) cumulative IVT within this specific latitude range. 

 

 

 
 

Figure B4. The Interrelationship between LST and AR in latitude range 35°N-45°N. Similar to Figure 10, this 

plot analyzes the correlation between LST prior to AR landfall and AR outcomes including cumulative precipitation 

and IVT for this latitude band. 
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Figure B5. Total IVT Distribution under Latitude Control. This graph displays the total integrated water vapor 

transport (IVT) for each AR event plotted across different days of the year, with color coding to indicate different 

latitude zones, highlighting the spatial variability of IVT. 
 

 
 

Figure B6. Total Precipitation Distribution under Latitude Control. This plot shows the total precipitation for 

each AR event across the year, with variations in the size and color of the dots to illustrate the intensity and frequency 

of precipitation events in different latitude zones. 
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APPENDIX C: Relavent Graphs for Context Understanding 

 

 
 

Figure C1. AR Intensity Scaling. This graph illustrates the strength of atmospheric rivers based on their duration, 

typically ranging from 24 to 72 hours, and the volume of moisture they transport, measured in kilograms per meter 

per second along the vertical axis (Ralph et al. 2019). 
 


