ESPM 111: Ecosystem Ecology Whendee Silver/Dennis Baldocchi Spring 2007

Syllabus

Course description

This course will develop the principles of ecosystems ecology, with an emphasis on their application to terrestrial ecosystems. Ecosystem ecology involves the study of energy and material flows through both the living (plants, animals, microbes) and non-living (soils, atmosphere) components of ecological systems. We will study the major element cycles (carbon, nitrogen, phosphorus) and patterns of energy flow through ecosystems, including how those fluxes and their controls differ for different ecosystems. Our goal is to develop a solid understanding of the links between ecosystem structure and function. Thus we will focus on the logical connections among ideas so that complex processes can be understood from some basic concepts.

Course grade

In order to provide some experience in ecosystem analysis, five problem sets are required. Assignments will include a mix of data reduction and interpretation. These problem sets along with the case studies and explorations (typically presented in Fridays' lecture) will form the topics for the discussion section. **It is imperative that you actively participate in discussion sections.** To learn ecosystem ecology, you need to practice the specific application of concepts described in lecture. Assignments are due in class on Friday, one week from the date assigned. Late assignments will be accepted the following Monday in class for a maximum of 50% credit. No late assignments will be accepted past Monday. Graded assignments will be returned to students during section.

There will be a Midterm and Final exam. Grades will be calculated as follows:

Homework assignments: Midterm: Final:	30% 35% 35%
Instructors Whendee Silver 319 Hilgard Hall wsilver@nature.berkeley.edu 643-3074	Office Hours: TBA
Dennis Baldocchi 345 Hilgard Hall <u>baldocchi@nature.berkeley.edu</u> 642-2874	Office Hours: TBA
GSI Aric Newton 235 Hilgard Hall	Office Hours: TBA

agnewton@berkeley.edu

643-9951

Lecture Outline: Before Spring Break

Week	Date	Lecture Topic	lead	Reading
1	W Jan 17	L1 Introduction: overview and course mechanics	WS/DDB	Chapin et al. 1996
	F Jan 19	L2 The ecosystem concept/scaling	DDB	Chapter 1; Brown et
				al 2002
2	M Jan 22	L3 History of ecosystem ecology	WS	Chapter 1
	W Jan 24	L4 Climate and Atmosphere	DDB	Chapter 2
	F Jan 26	L5 Ecosystem-Climate Interactions	DDB	Chapter 2
3	M Jan 29	L6 Geology and Soil Development	WS	Chapter 3
	W Jan 31	L7 Soils	WS	Chapter 3
	F Feb 2	L8 State factor analysis of ecosystems: a virtual hike	WS	
		through the ecological staircase		
4	M Feb 5	L9 Ecosystem Structure and Function	DDB	Chapter 4
	W Feb 7	L10 Energy	DDB	Chapter 4
	F Feb 9	L11 Water & Ecohydrology	DDB	Chapter 4
5	M Feb 12	L12 Soil Biology (Mary Firestone)	WS	
	W Feb 14	L13 Carbon I, Principles of Carbon cycle	DDB	Chapter 6/Ch 15
	F Feb 16	L14 Carbon II, Ecophysiology of leaves	DDB	Chapter 5
6	M Feb 19	No Class (Holiday)		
	W Feb 21	L15 Respiration and Decomposition	WS	Chapters 7
	F Feb 23	L16 Decomposition II	WS	
7	M Feb 26	L 17 Production and carbon balance of plant stands	DDB	Chapter 6
	W Feb 28	L18 Review for Midterm #1	WS/DB	
	F Mar 2	L19 Midterm #1		
8	M Mar 5	L20 Remote Sensing of Ecosystem Ecology, on towards	DDB	Running et al, 2004
		Global Ecology		
	W Mar 7	L21 Nutrient Cycling I	WS	Chapters 8 and 9
	F Mar 9	L22 Nutrient Cycling II	WS	Chapters 8 and 9
9	M Mar 12	L23 Nutrient Use Efficiency	WS	Chapter 9
	W Mar 14	L24 Nitrogen and Phosphorus	WS	Chapter 9
	F Mar 16	L25 Case study: Nutrient limitation to terrestrial	WS	Aber and Melillo
		ecosystems: examples from Hawaii		Chapter 22
10	M Mar 19	L26 Nitrogen II	WS	Chapter 9
	W Mar 21	L27 Nitrogen III	WS	
	F Mar 23	L28 Case Study: Nitrogen Deposition	WS	Aber, et al. 1998

Lecture Outline: After spring break

Week	Date	Lecture topic		Reading
11	M Mar 26	Spring Break		
	W Mar 28	Spring Break		
	F Mar 30	Spring Break		
12	M Apr 2	L29 Ecosystem development during Primary and Secondary succession	DDB	Chapter 13
	W Apr 4	L30 Ecosystem Dynamics	DDB	Chapter 13
	F Apr 6	L31 Case study oak Savanna (Dennis Baldocchi)	DDB	
13	M Apr 9	L32 Biodiversity I: Meaning and measures of biodiversity	WS	Chapter 12
	W Apr 11	L33 Biodiversity II: Consequences for ecosystem function	WS	Chapter 12
	F Apr 13	L34 Impacts of disturbance on ecosystems	WS	
14	M Apr 16	L35 Landscape patterns in ecosystem structure and	DDB	Chapter 14
		function: Resource gradients		
	W Apr 18	L36 Modeling as an integrative Ecosystem Tool	DDB	
	F Apr 20	L37 Global biogeochemical cycles	WS	Chapter 15
15	M Apr 23	L38 Global climate change	DDB	IPCC 2007
	W. A		DDD	Summary
	w Apr 25	L39 Ecosystems and Environmental Change	DDB	
		Effects of $1, CO_2$, ppt, O on ecosystem function and vegetation dynamics part 1		
	F April 27	L40 Ecosystems and Environmental Change	DDB	
		Shifts in ecosystem function and vegetation dynamics.	222	
		part 2		
16	M April 29	L41 Restoration Ecology	WS	
	W May 2	L42 Summary: Ecosystem sustainability and the future:	DDB/WS	
		Human as THE keystone species		
	F May 4	L43 Review for Midterm #2		
17	M May 7	L44 Midterm #2		

Readings: Texts

Chapters without authors refer to chapters in the textbook: Chapin, F. S. III, P.A. Matson, and H. A. Mooney, 2002. Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York

Aber, J. and J. Melillo. 2001. Terrestrial Ecosystems. 2nd edition..

Brady, N.C. 1990. The Nature and Property of Soils. 10th edition. MacMillan Publishing, New York and London.

Schlesinger, W.H. 1997. Biogeochemistry. Academic Press. San Diego and London.

Readings: Journal Articles

Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Kamakea, M., McNulty, S., Burrie, W., Rustad, L., and Fernandez, I., 1998, Nitrogen Saturation in Temperate Forest Ecosystems. Bioscience, 48 (11): 921-934.

- Barford, C. C., S. C. Wofsy, M. L. Goulden, J. W. Munger, E. H. Pyle, S. P. Urbanski, L. Hutyra, S. R. Saleska, D. Fitzjarrald, and K. Moore. 2001. Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294:1688-1691.
- Brown JH, Gupta VK, Li BL, *et al.* (2002) The fractal nature of nature: power laws, ecological complexity and biodiversity. *Philosophical Transactions of the Royal Society of London Series B-Biological Sciences* **357**, 619-626.
- Chapin, F. S. I., M. S. Torn, and M. Tateno. 1996. Principles of ecosystem sustainability. American Naturalist **148**:1016-1037.
- Clark, D. A., S. Brown, D. W. Kicklighter, J. Q. Chambers, J. R. Thomlinson, and J. Ni. 2001. Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11:356-370.
- Hairston, N. G., F. E. Smith, and L. B. Slobodkin. 1960. Community structure, population control, and competition. American Naturalist 94: 421-425.
- Huston, M. A. 1997. Hidden treatments in ecological experiments: Re-evaluating the ecosystem function of biodiversity. Oecologia, Berlin **110**:449-460.
- IPCC, 2007, Climate Change 2007: The Physical Science Basis, Summary for Policymakers.
- Parton, W., Silver, W., Burke, I.C., Gassens, L., Harmon, M.E., Currie, W.S., King, J.Y., Adair, E.C., Brandt, L.A., Hart, S.C., and Fasth, B., 2007, Global-Scale Similarities in Nitrogen Release Patterns During Long-Term Decomposition, *Science*, **315**: 361-364.
- Ryan, M. G., Phillips, N., and Bond, B.J., 2006. The Hydraulic Limitation Hypothesis Revisited, *Plant, Cell and Environment* **29**:367-381.
- Running S, Nemani R, Heinsch F, *et al.*, 2004, A continuous satellite-derived measure of global terrestrial primary production. *BioScience* **54**, 547-560.
- Stephenson, N. L. 1990. Climatic Control of Vegetation Distribution the Role of the Water Balance. American Naturalist **135**:649-670.

Tilman, D., and J. A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367:363-365.

Course Website

http://espm.berkeley.edu/classes/espm-111/