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The Decline of Cartesianism in 
Mechanics: The Leibnizian- 

Cartesian Debates 
By Carolyn Iltis * 

I. INTRODUCTION 

T BHE DECLINE OF THE CARTESIAN WORLDVIEW in the early decades of the 
eighteenth century has been described from several vantage points.' As a meta- 

physical system it reflected the failure of the ontology of substance philosophy.2 The 
categories substance and modification were too limited in scope; the essences ex- 
tension and thought so different in kind as to forbid causal interaction. As a method- 
ological system it failed because certain knowledge of the temporal phenomenal world 
could not be deduced from its logical axioms.3 As a planetary explanation its vortical 
aethereal motions were shown by Newton to be inconsistent with Kepler's laws, while 
the gradual demise of these aethereal hypotheses has been recently documented by 
E. J. Aiton.4 

My purpose in this paper is to indicate the inadequacies of the Cartesian worldview 
in handling problems in terrestrial mechanics. I shall show that although Cartesian 
presuppositions were used in mechanical problems, the mathematical results sup- 
ported Leibnizian or Newtonian conclusions. Cartesianism was unable to maintain 
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its integrity as a system of nature because its scientific metaphysics could not produce a 
unique Cartesian mechanics. Descartes' followers in the early eighteenth century 
used his aether theories to support Leibnizian or Newtonian concepts of force. 
Thus the mechanical conclusions eventually undermined the metaphysical hypotheses. 

I shall deal with the Leibnizian-Cartesian debate as it was played out in the Paris 
Academy of Sciences during the 1720s. In an earlier article I discussed Leibniz' initial 
disagreements with Cartesians on the subject of vis viva.5 The metaphysical, physical, 
and socio-psychological aspects of the Newtonian-Leibnizian arguments in the 1720s 
are also described elsewhere.6 Aspects of a somewhat later phase of the vis viva con- 
troversy have been investigated by Thomas L. Hankins, L. L. Laudan, and myself.7 

The intellectual background for the Cartesian worldview in mechanics was pro- 
vided by Rene Descartes and his followers, two of the most important being Nicholas 
Malebranche and Jacques Rohault.8 Several aspects of Descartes' philosophy of nature 
were used by Cartesians in the 1720s in attacking mechanical problems. His theory of 
matter stated that the world was composed of three elements formed from primitive 
matter.9 The first element, which formed the material of the sun and stars, consisted 
of very subtle minute matter capable of moving at enormous speeds and of filling in the 
small spaces surrounding the other two denser forms of matter. The second element 
consisted of spherical particles formed from rotation of the original primitive matter. 
These spheres, the main constituent of celestial matter, moved in large vortices at high 
speeds and could transmit pressure instantaneously. The third element was coarser 
and slower and composed the earth and planets. 

The properties and action of the spherical aether particles were used by Cartesians 
in explaining the action of mechanical bodies. As the aether swirled in a centrifugal 
vortical motion around the earth it caused continual impulses on terrestrial objects. 10 
Since the subtle matter moved faster than terrestrial matter and exerted a force 
toward the center, bodies above the earth would fall toward the earth's center. 

A second important aspect of Descartes' worldview was his belief in God's initial 
and continued action in the universe. God initially created matter in motion and set 
the vortices rotating.11 His continued re-creation of the world from instant to instant 
guaranteed his presence in the creation. In the hands of the Cartesian Malebranche 
this concern for God's continual action became an occasionalist philosophy in which 
God acted at the moment of each collision to determine its outcome. The small 
aetherial spheres of subtle matter become little vortices rotating like miniature whirl- 
pools and occasionally rupturing during violent activities.12 

5Carolyn Iltis, "Leibniz and the Vis Viva 
Controversy," Isis, 1971, 62:21-35. 

6 Carolyn Iltis, "The Leibnizian-Newtonian 
Debates," Br. J. Hist. Sci. (in press). 

7Thomas L. Hankins, "Eighteenth-Century 
Attempts to Resolve the Vis viva Controversy," 
Isis, 1965, 56:281-297; L. L. Laudan, "The 
Vis viva Controversy, a Post-Mortem," Isis, 1968, 
59:131-143; Carolyn Iltis, "D'Alembert and the 
Vis Viva Controversy," Studies in History and 
Philosophy of Science, 1970, 1:135-144. 

8 Nicholas Malebranche, Oeuvres completes, 
ed. Andre Robinet (Paris:Vrin, 1962-1967). 

Jacques Rohault, Traite de physique (Paris, 1671; 
3rd ed., 1675). J. Rohaulte physica, trans. with 
notes by S. Clarke (London, 1697). 

9Aiton, Vortex Theory, pp. 43-47. Rene 
Descartes, Principia philosophiae, in Oeuvres de 
Descartes, ed. Charles Adam and Paul Tannery, 
13 vols. (Paris:Cerf, 1897-1913), Vol. VIII, 
Pt. 3, Prin. 49. 

10Aiton, Vortex Theory, pp. 55-58. 
11 Descartes, Principia, Pt. 2, Prin. 37. 
12 Hankins, "Malebranche," loc. cit., pp. 

198-199; Aiton, Vortex Theory, p. 71. 
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A third relevant Cartesian principle was the doctrine of matter in motion measured 
by the amount of matter m and its speed v. The quantity of motion m j v [was conserved 
in collisions between bodies.13 It was soon discovered that Descartes' rules of collision 
deduced logically from the laws of his mechanics were inconsistent with experience; 
accordingly, early adherents to Descartes' physical system of matter in motion did not 
claim allegiance to his seven rules of collision. Abbe Catelan, Denis Papin, Antoine 
Arnauld, and Malebranche brought forward other reasons for supporting the concept 
quantity of motion.'4 

I shall show that in the debates on the communication of motion sponsored by the 
Academy of Sciences in the 1720s French Cartesians used various presuppositions 
of the Cartesian worldview in order to argue that mv is the proper measure of the 
force of a body in motion. Thus Jean-Pierre de Crousaz appealed to Descartes' and 
Malebranche's concept of God's volition and the necessity of his active power in 
sustaining the natural world. Pierre Maziere used the "little vortices" of Malebranche 
as a basis for analyzing the action of elastic bodies. The Cartesian Jean Bernoulli, 
who supported the Leibnizian position in dynamics, used Descartes' conception of 
air and aetherial matter in supporting his concept of elastic bodies. Abbe Charles- 
Etienne Camus related the force of rising and falling bodies to Bernoulli's Leibnizian 
analysis of expanding springs. Jacques Eugene de Louville utilized the Cartesian im- 
pulsive aether in deriving a concept of impulsive force. Jean Jacques de Mairan tried to 
reduce cases of acceleration to uniform motion, thereby eliminating the concept of 
force, a viewpoint held by Malebranche. To the extent to which these men were 
successful in giving a mathematical description of mechanical problems, they sup- 
ported mechanical points made by Leibniz or Newton. While the scientific metaphysics 
of Descartes stimulated analysis of the physical world, it could not support a mech- 
anics built around the concept of quantity of motion. 

II. CARTESTANISM AND THE ACADEMY OF SCIENCES 

In the Cartesian-Leibnizian debates of the 1720s it was the Paris Academy of 
Sciences which provided a sounding board for the three prevailing systems of natural 
philosophy. In sponsoring contests on various controversial matters in the sciences 
the Academy was pursuing its self-image as a neutral arbitrator. It conceived of 
itself not as the proponent of any particular worldview such as Cartesianism or 
Newtonianism but as an official bureau for the publication of controversial and often 
contradictory opinions."5 It officially reserved judgment until it considered sufficient 
evidence had been gathered on a particular issue. To take a position on any one of the 
numerous uncertain controversial arguments of the early eighteenth century would 

13 Descartes, Principia, Pt. 2., Prin. 37. 
'4 Iltis, "Leibniz and the Vis Viva Controversy." 

Abbe Catelan, "Courte Remarque de M. I'Abbe 
D. C. oiu l'on montre a M. G. G. Leibnits le 
paralogisme contenu dans l'objection pre- 
cedente," Nouvelles de la Republique des Lettres, 
Sept. 1686, 8:1000-1005. Denis Papin, "De 
gravitatis causa et proprietatibus observationes," 
Acta Eruditorum, Apr. 1689, pp. 183-188. 
Antoine Arnauld, "Correspondence with 
Arnauld," in G. W. von Leibniz, Discourse on 

Metaphysics, Correspondence with Arnauld, and 
Monadology, trans. George R. Montgomery 
(La Salle, Ill.: Open Court, 1957), pp. 142-149. 
Nicholas Malebranche, "Extrait d'une lettre du 
P. M. ai M. l'Abbe D.C.," Nouv. Repub. Lett., 
1687, 9:448-450. 

15 See Roger Hahn, The Anatomy of a Scientific 
Institution: The Paris Academy of Sciences, 
1666-1803 (Berkeley: University of California 
Press, 1971), pp. 31-32. 
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have inhibited the progress of science. "In the Academy no system should dominate to 
the exclusion of others," said Bernard de Fontenelle.16 In sponsoring contests on new 
and debatable viewpoints it functioned admirably as an integrative device forcing the 
opposing parties to ponder and evaluate the validity of their own and their adversary's 
fundamental presuppositions. 

Yet ultimately the Academy displayed its Cartesian bias. Of three contests it 
sponsored on the question of motion and its transfer, the winners were Cartesians or 
supported the Cartesian measure mv. The winner of the 1720 contest on the nature and 
communication of motion was the Cartesian philosopher Crousaz. The essay of the 
Englishman Bishop Berkeley, published in 1721 as De motu, was rejected.17 The 
1724 contest on the laws of motion of hard bodies was won by the Newtonian Colin 
Maclaurin,18 whose conclusions supported the measure of force mv. Jean Bernoulli's 
Leibnizian analysis was disqualified from this contest because it rejected the concept 
of a hard body on logical grounds; his paper took only honorable mention in the 1726 
contest on elastic bodies which was won by the Cartesian Maziere. 

Bernoulli's paper, published in the prize volume, inspired the reactions of the 
Cartesians Camus, Louville, and Marain to his vis viva (mv2) argument based on the 
expansion of elastic springs. I shall first discuss the papers on collision mechanics 
and then those on elastic springs, showing how metaphysical presuppositions were 
related to mechanical results. 

Ill. THE OCCASIONALISM OF CROUSAZ 

The Cartesian measure of force mv was supported by the Swiss professor of philoso- 
phy and mathematics at Lausanne, Jean-Pierre de Crousaz. A vociferous opponent 
of Leibniz' philosophy, Crousaz had rebuked Leibniz for errors in his attacks on 
Descartes. In his paper "Discourse on the Principle, Nature and Communication of 
Motion," which won the prize of the Academy in 1720, he examined the nature and 
origin of motion. 19 

Crousaz followed Descartes in maintaining that extension was a substance. Since 
matter was indifferent to motion or rest, it could not change its state by any force of 
internal origin. Only an external cause could change the state of motion or rest of a 
particular body.20 The first motion in the universe derived from the power and will of 
God. Crousaz' conception of God was that of an eternal intelligence who could pro- 
duce motion voluntarily, continually, and with infinite ease. In the continual creation 
of new motion the collisions of bodies were merely occasions. 21 For Crousaz, as for 
Malebranche, matter was moved only bythe continual action of theCreator. Occasional 
causes are natural causes created anew and of which the collision of bodies is simply 
the occasion.22 

16 Quoted by Hahn, ibid., p. 31. 
17 George Berkeley, "De motu," in Berkeley's 

Philosophical Writings, ed. David M. Armstrong 
(London: Collier-Macmillan, 1965). 

18 Colin Maclaurin, "Demonstration des loix 
du choc des corps," Recueil des pi&es qui a 
remportei les prix de l'Academie Royale des 
Sciences (Paris, 1724), Vol. I, pp. 1-24, separate 
pagination. 

19 Jean-Pierre de Crousaz, "Discours sur le 

principe, la nature et la communication du 
mouvement," Recueil des pieces qui ont remporte 
les deux prix de l'Acaddmie Royale des Sciences 
(Paris, 1720), pp. 1-67. 

20 Ibid., pp. 16-17. 
21 Ibid., p. 56. 
22Ibid. On Malebranche's occasionalism see 

Beatrice K. Rome, The Philosophy of Male- 
branche (Chicago: University of Chicago Press, 
1963), pp. 226-228. 
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The laws of motion were expressions of God's volition which enabled bodies to act 
and to move. The initial motion was imparted to a universe perfectly at rest by the 
wish of the supreme intelligence.23 In particular collisions motion was merely the 
state of a body traversing a particular space. Quantity of motion was the product of 
the weight (pesanteur) and the velocity (vitesse); the force of motion was identical with 
this quantity of motion.24 Like other Cartesians, Crousaz accepted time as essential 
to the measure of motion. One must compare those distances traversed in equal times 
when comparing velocities of colliding bodies.25 Crousaz thus defined force as the 
measure mv, a kinematic rather than dynamic analysis of nature. 

IV. MAZIERE AND THE "LITTLE VORTICES" 

Whereas Crousaz' analysis of collisions derived from a voluntarist notion of God 
and the re-creation of motion from instant to instant, Pierre Maziere presented a 
mechanical analysis of collision based on the vortex theory of Descartes and Male- 
branche. The winner of the Academy's 1726 contest on elastic impact, Maziere dis- 
cussed "The Laws of Impact of Perfectly or Imperfectly Elastic Bodies, Deduced 
from a Probable Explanation of the Physical Cause of Elasticity."26 His essay, based 
on Cartesian presuppositions, won the contest over Jean Bernoulli's Leibnizian 
analysis. 

Maziere divided his memoir into two parts, the first containing a probable explana- 
tion of the physical cause of elasticity and the second deriving the laws of the collisions 
of elastic and semi-elastic bodies exemplified in problems. He attempted to explain 
the cause of the elastic virtue (vertu elastique) of bodies by use of the Cartesian- 
Malebranchean vortex theory. Soft bodies remain at rest after collision, as do perfectly 
hard inflexible bodies, since no new cause of motion occurs. Elastic bodies rebound 
because their elastic parts are pressed together during the moment of compression 
and restored during the moment of restitution by the action of tiny aetherial vortices- 
petit tourbillons. His explanation was sought in physical terms rather than as a resort to 
the immediacy of God's action on matter. This physical cause could not be found in 
matter itself, since rest is an essential property of matter. Nor could solid parts of 
matter cause motion, since they could not of themselves returnto their original position 
during the restitutive phase of the collision. 27 

The physical cause of elasticity was hypothesized to be the corpuscles of a subtle 
aether penetrating all bodies and having an infinite force given to it by the Creator. 
It could cause perfect rebounding by the restitution of the primitive forces of bodies 
after collision.28 As a perfectly elastic fluid, the aether could transmit the vibrations 
received by a solid body, causing its parts to change and re-establish their original 
positions in the smallest instants of times. It flowed through all bodies with extreme 
facilitity, leaving no void in the immense spaces that it occupied. It was so subtle that 
one corpuscle of air could contain a million corpuscles of subtle matter. The aetherial 

23 Crousaz, "Discours," p. 20. 
24 Ibid., p. 27. 
25 Ibid., pp. 48, 50. 
26 Pierre Maziere, "Les loix du choc des corps 

a ressort parfait ou imparfait, deduites d'une 

explication probable de la cause physique du 
ressort," Recueil des piees (Paris, 1727), Vol. I, 
pp. 1-108, separate pagination. 

27Ibid., pp. 6-8. 
28 Ibid., pp. 8-12. 
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corpuscles, although ordinarily spherical, could divide themselves into smaller parts 
in the manner of mercury particles when a change occurred in a gross body. The 
particles could incorporate themselves with other corpuscles or change their figures to 
ellipses.29 

Maziere's subtle aetherial matter was conceived to be infinitely compressible and 
responded to the force compressing it with an equal power. It was composed of an 
infinity of vortices (tourbillonis) whirling about their centers with extreme rapidity, 
counterbalancing each other as did the large vortices of Descartes. Both the large 
Cartesian and the small Malebranchean vortices counterbalanced each other by their 
centrifugal forces. This dynamic balance prevented them from moving away. Their 
centrifugal forces were inversely proportional to their diameters, increasing as their 
diameters decreased. The centrifugal force of the infinitely small vortices was therefore 
infinitely greater with respect to the infinitely large vortices. And thus, concluded 
Maziere, the centrifugal force of the smallest vortices was infinite. It was this property 
which was the physical cause of elasticity.30 

Using the theory of petit tourbillons Maziere defined an elastic body as one filled 
with an infinity of pores through which the subtle aether moves in circular motions. 
Each pore contained one or more little vortices, giving, by their centrifugal force, 
stability to solid bodies. The smaller the vortices the greater the elasticity of the body, 
because a greater centrifugal force repelled the external forces tending to separate the 
parts of the bodies. 

Suppose, argued Maziere, that two bodies hit each other directly with equal and 
opposite forces. In successive instants of time they use their primitive forces to 
mutually compress one another. The aetherial matter never resists motion and 
partially leaves the pores in the direction toward which it is pushed. Motion is com- 
municated successively through the first pores to the others: the pores are flattened, 
assuming elliptical configurations, and continue to be flattened up to the precise 
instant that the bodies have exhausted all their primitive force in mutual compression. 

The centrifugal forces of the vortices outside the two bodies remain the same as 
before the collision when the exterior and interior vortices were in equilibrium. But 
the centrifugal forces of the vortices remaining inside are augmented because their 
diameters are diminished. At the end of compression the interior vortices have in- 
creased their centrifugal forces, while those outside have not. The exterior vortices 
do not have centrifugal forces sufficient to stop the tendency of the interior vortices to 
enlarge the pores, and they continue to enlarge the pores until the point where the 
compressed parts have been re-established. Thus bodies having perfect elasticity ex- 
pand with velocities equal to those with which they were compressed, as a result of 
the infinite force of the little vortices.31 

If in a collision the force with which the elasticity is restored in two bodies is to that 
with which they were compressed e.g. 15 to 16, then in all other collisions of these two 
bodies, or of two others of the same nature, these two forces will always be as 15 to 16. 
That is why if one knows the elastic constant, r, and the force lost or gained by one of the 
two bodies during compression, one can obtain that force lost or gained in restoration, 
by multiplying the force lost during compression by the elastic constant r. This constant 

29 Ibid., pp. 13-15. 
30 Ibid, pp. 16-21. 

31 Ibid., pp. 22-25. 
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is equal to unity when the elasticity is perfect and less than unity when the elasticity is 
imperfect.32 

Maziere then proceeded to derive a general solution for elastic and semi-elastic 
collisions. His general formula for the laws of colliding bodies in terms of the velocity 
after collision was 

a' =a-B(r?+l)(a b)] and b'=zb+A (r +1)(Ba b)] 
LA + B JIA+ B ] 

where A and B are the masses of bodies A and B, a and b their velocities before 
collision, a' and b' the velocities after collision, and r the elastic constant. The velocity 
of a body after collision has two parts. The first is the primitive velocity a, which is 
always positive, or the primitive velocity b, which is positive when the movements are 
in the same direction and negative when they are in opposite directions. The second 
part is the total velocity that each body gains or loses by the compression and restora- 
tion in the two moments of collision. That of the attacking body is always negative; 
that of the body hit is positive.33 

When bodies have perfect elasticity the elastic constant is equal to unity, so that 
r + 1 = 2; thus 2 will appear in the general formula. When the bodies are not elastic 
and are supposedly perfectly soft, the elastic constant will be 0; hence r + 1 - 1. 
When the elastic constant is equal to the ratio of the mass of the attacking body to the 
body hit, one has r = A/B and consequently r + 1 -(A + B)/B. 

Maziere showed that special cases of collision substituted in the general equation 
checked with the previously known facts. When the elasticity is perfect and the masses 
A and B are equal, the general equations come down to a' = b, b' = a. Thus the 
bodies exchange their velocities. For the case of body B at rest before the collision one 
has for perfect elasticity 

a Aa - Ba and 2Aa 
a' =A+ B adb A + B 

For bodies without elasticity: 

a' = b -= Aa 

showing that the bodies stick together and proceed with a common velocity. 
When the body hit is at rest and the velocity of the attacking body is equal to the 

sum of the masses a -A + B, the formula becomes 
a'-A rB and b'=(r+1)A 

from which is deduced 

r+ 1 A' 

This gives an easy method of determining in experiments the value of r + 1 and 
consequently the proper value given to two bodies in a given experiment, or to two 
other bodies of the same nature. In the case for perfect elasticity, a' = A - B, b' = 2A; 
for no elasticity a' = A, b' - A. For the case of body B at rest and infinitely greater 
than body A attacking, one supposes A = 0. One obtains a' = - ra. This is the case 

32Ibid., pp. 28-29. 33Ibid., pp. 33-34. 
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of direct reflection, body A rebounding with its primitive velocity when elasticity is 
imperfect and with a velocity equal to its primitive velocity when the elasticity is 
perfect. 34 

Maziere thus presented a general solution for inelastic and elastic collisions in 
terms of force defined as mv. His explanation of the nature of matter, upon which the 
solution was based, was cast in terms of the Cartesian vortex theory and was sup- 
ported by the concept of centrifugal force. His equations were consistent with the 
Newtonian laws of impact and momentum conservation which took the sign of the 
velocity into consideration. In this way a Cartesian view of matter supported a 
physics which became known as Newtonian mechanics. The vortex theory of matter 
along with the vortex theory of planetary motions was soon to die out as a philosophy 
of nature. 

V. JEAN BERNOULLI'S ELASTIC MATTER 

Jean Bernoulli, whose analysis of planetary motions was based on the Cartesian 
vortex theory, supported the Leibnizian measure of force in dynamics, mV2. His 
"Discourse on the laws of the communication of motion," disqualified from the 
Academy's 1724 contest on hard bodies, was awarded honorable mention in the 
debate on elastic bodies of 1726.35 His analysis of the elasticity of matter which 
stemmed from both Cartesian and Leibnizian presuppositions supported a Leibnizian 
physics. 

Bernoulli followed Leibniz in his definitions of vis viva, or force vive, mV2, and 
vis mortua, orforce morte, mdv, as well as in the assumption that hard atoms could 
not exist in nature. He argued, as had Leibniz, that since hard-body collisions would 
violate the law of continuity, only perfectly elastic bodies are theoretically possible. 
Since every act occurs by infinitely small degrees and "nature does not operate 
through leaps," motion cannot pass suddenly into rest, or rest into motion as would be 
necessary in the collision of two hard bodies.36 Hard bodies being inflexible and un- 
breakable, they would not rebound after colliding; their speed would drop to zero 
without going through intermediate steps. If this were true, there would be no reason 
why nature would choose one state of motion or rest in preference to another. Having 
no liaison between the two states, rest to motion or motion to rest, no reason would 
determine the production of one over the other. 

Bernoulli rejected hardness taken in the common sense of perfectly solid atoms. 
Such atoms were only imaginary corpuscles existing in the minds of their champions.37 
Instead he argued that hardness existed only in the sense that bodies are like heavy 
"balloons filled with compressed air." The greater the pressure, the harder the surface, 
but likewise the more perfect the body's elasticity. If the density of the air in the 
balloon is increased to an immense degree of resistance such that an extremely 
powerful force is necessary to compress it, the balloon, although elastic, will differ 
in no essential aspect from a hard body. 

Bernoulli's concept of matter as essentially elastic stemmed from Decartes' analysis 

34 Ibid., pp. 35-38. 
35 Jean Bernoulli, "Discours sur les loix de la 

communication du mouvement," Recueil des 
pieces (Paris, 1727), Vol. II, pp. 1-108, separate 
pagination. 

36Ibid., p. 5. 
3 Ibid., pp. 6-9. See also Wilson L. Scott, 

The Conflict between Atomism and Conservation 
Theory 1644 to 1860 (London: MacDonald; 
New York: Elsevier, 1970), pp. 23-24. 
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of air and aether and Robert Hooke's elaboration of the theory. In the Principia 
philosophiae Descartes had set forth the notion that air particles were surrounded by a 
spherical space within which they moved, being confined to this space by the impacts 
of the surrounding aether: 

1) Air particles are of the third element, of all shapes, and are put into motion by the 
aether. 

2) Each particle retains for itself a "little spherical space" in whiclh it moves and from 
which it keeps other particles. 

3) This space is larger when the air is heated and the particles move faster, so that the air 
then expands. 

4) When this motion is forcibly compressed, the particles try to regain their previous 
space, and hence exert increased pressure.38 

Descartes did not assign elasticity to the air particles and held that they moved at 
random in the spherical space to which they were confined by the impulses of the 
aether. In expanding on Descartes' ideas Hooke had suggested that vibrating matter 
conveys pulses to neighboring particles through the subtle aether surrounding and 
penetrating them.39 Similar particles will vibrate together in harmony, whereas 
dissimilar ones will make differing vibrations and repercussions. Particles of matter 
have varieties of substance, figure, and bulk and are agitated by pulses or vibrations 
uniting or loosening the cohesions between them.40 Bernoulli did not mention Hooke's 
law for springing bodies, but this as well as the theory of an elastic vibrating matter 
underlay his own work on elastic springs. 

Bernoulli imagined an infinite number of small spheres full of extremely con- 
densed air in a common envelope. Each portion of this mass can be as small as 
desired and is enclosed in its own envelope. The small spheres represented elementary 
molecules, and the envelopes took the place of the Cartesian ambient fluid, or aether, 
which by its own activity pressed and compressed the entire mass and each particular 
part. If an immensely large degree of elasticity is given to the air contained in these 
balloons, their entire mass cannot be sensibly compressed by a 

... finite force as large as can be supposed: A body will conform to our idea of hardness 
when its sensible parts change their situation only with difficulty.... Elasticity is perfect 
when all the parts return to their original state; it is imperfect when some of the parts do 
not return.4' 

Bernoulli used the term "stiffness" (roideur) to mean perfect elasticity, whether 
infinite or finite. Infinitely stiff bodies do not exist in nature, but the term "hard body" 
referred to an actually infinite stiffness or perfect elasticity.42 To this concept of 
elasticity in matter Bernoulli applied Leibniz' concept of vis viva, and he developed a 
mathematical proof of the vis viva principle based on the expansion of elastic springs. 

Bernoulli was in close correspondence with Leibniz over the development of the 
ideas of the calculus and was one of those whom Leibniz consulted concerning the best 
mathematical notation by which the concepts might be expressed.43 Although Leibniz 

38 Descartes, Principia, Pt. IV, Prin. 45-47, 
quoted in Mary Hesse, "Hooke's Vibration 
Theory and the Isochrony of Springs," Isis, 
1966, 57:433-441, on p. 436. 

39 Hesse, "Hooke's Vibration Theory," p. 434. 
40Robert Hooke, Micrographia (London, 

1665; New York: Dover, 1961), pp. 15, 16. 
41 Bernoulli, "Discours," p. 9. 
42 Ibid. 
43 Carl B. Boyer, The History of the Calculus 

and its Conceptual Development (New York: 
Dover, 1949), p. 205. 
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did not make extensive use of his notation in his popular writings on living force, 
Bernoulli did apply this notation to the problem of expanding springs. He employed 
fpdx for the integral of the pressure of the spring over a distance increment and 
expressed his results in the form of an equation: vv fp dx. 44 

Bernoulli's concept of "force" was similar in its essential details to that of Leibniz. 
Force vive, or living force, is that which resides in a body when it is in uniform motion. 
Force morte, or dead force, is "that which a body not in motion receives, when 
solicited or pressed toward motion," or which moves it more or less fast when the 
body is already in motion.45 

If an obstacle prevents local motion from occurring in a body, the body has dead 
force. The force of gravity is an example. A body placed on a horizontal table makes a 
continual effort to descend: because of gravity, at each instant an infinitely small 
degree of velocity is created and immediately absorbed by the resistance of the obstacle. 
"These small degrees of velocity perish on creation and are reborn in perishing."46 

The nature of living force is totally different. Time is needed to produce living force 
and likewise to destroy it. Living force is produced successively in a body as the 
pressure applied to the body little by little produces increments of local motion. 
Motion which is acquired in increments becomes finite, eventually remaining uniform 
when the cause which produced it ceases to act on the body. Thus living force is 
equivalent to that part of the cause which is consumed in producing it.47 The living 
force of a body produced by the dilation of some elastic body or elastic spring is 
capable of compressing it again to its original state. The efficient cause and its effect 
are equal. 

Although Bernoulli considered himself the foremost champion of "living forces" 
since Leibniz' death, he did not find it necessary also to accept the role that "force" 
played in Leibniz' metaphysical system of monads. Leibniz postulated an inner 
"4force" of matter whose action caused it to move unless hindered by some obstacle. 
Bernoulli simply accepted this inherent force in the concept of vis mortua as pressure 
and vis viva as the force produced when the obstacle is removed. 

Because he believed that Leibniz' demonstration of 1686 was by itself unconvincing, 
he developed an argument for vis viva derived from elastic springs (see Fig. 1). He 
showed that the pressure of the expanding spring as it moved through a certain 
distance would give an mv2 to a body accelerated by it. He argued that a compressed 
spring has a certain pressure or dead force.48 This force turns out to be equivalent to 
the impressed force of Newtonian mechanics. Bernoulli compared springs having 
equal elastic constants but composed of an unequal number of units expanding 
against "equal" bodies. As the spring expands, the dead force is converted to living 
force mV2, imparted to a body set in motion by the spring's expansion. As the moving 
body accelerates, the increment of velocity dv in an increment of time dt depends 
on the pressure or force of the spring: dv - pdt. The velocity at any instant 
is v = dxldt; hence the increment of time dt is dx/v. By substitution Bernoulli arrived 
at the well-known result v dv = p dx, the integral of which he wrote as 1 V2 -,pdx.49 

44 Bernoulli, "Discours," p. 44. 
45 Ibid., p. 19. 
46Ibid., p. 32. 

47Ibid., p. 33. 
48Ibid., pp. 39-40. 
49 Ibid., pp. 41-45. 
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Figure 1. Jean Bernoulli, Recueil des pieces qui ont remport6 les deux prix 
de I'Acad6mie Royale des Sciences (Paris, 1727), plate 1. 

By use of proportions Bernoulli compared the vires vivae, mV2, imparted to accelerated 
bodies with the pressures exerted by compressed springs of different numbers of 
elastic units. 

Bernoulli's Leibnizian mechanics was thus derived from a philosophy of nature 
based on both Cartesian and Leibnizian presuppositions. Although he did not accept 
Leibniz' "monadology," he used the Leibnizian concepts of force and conservation 
along with a Cartesian aether theory to establish a fundamental Leibnizian point, the 
elasticity of matter. 

VI. CAMUS' LEIBNIZTAN MECHANICS 

Bernoulli's "Discourse" inspired a series of essays in the Memoirs of the Academy of 
Sciences examining his opinion concerning elastic springs. The writers included the 
French scientists Abbe Charles-ltienne Camus (1728), Jacques Eugene de Louville 
(1729), and Jean Jacques de Mairan (1728). Camus extended the Leibnizian analysis of 
the mechanics of springs. 
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Leibniz' 1686 demonstration of the vis viva principle had been given in terms of 
bodies of different weights falling from different heights. An attempt to further relate 
the free-fall problem to that of compressed springs was made in Camus' 1728 article 
"On Accelerated Motion due to Springs and the Forces Residing in Moving Bodies."50 
(See Fig. 2.) In discussing the vis viva of rising or falling bodies in relation to the 
force of compression or expansion of springs, Camus expanded on Bernoulli's 
argument. He showed that the forces producing these accelerated motions were 
proportional to the masses of bodies accelerated by gravity or pushed by compressed 
springs, and the squares of their velocities. Although stimulated by Bernoulli's 
physical ideas, Camus fell back on the older methods of geometry and proportions, 
choosing not to employ the newer concepts of the calculus. 

Camus defined an elastic spring as "a body which after having been compressed 
re-establishes itself nearly or exactly in the same state as before compression." 
A spring is perfectly elastic if "in re-establishing its state before compression, it 
returns to the distorting body the same velocity lost by that body."51 A spring is 
imperfectly elastic if it does not return all the velocity to the compressing body. Springs 
with similar elasticity (ressorts semblables) are those whose resistances or stiffnesses 
(roideur) are always similar for equal apertures. 

j Y~~~~~~~~~~~fe,n.de L?a. 172~ . P. . p~v.96. 
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Figure 2. Camus, M6moires de l'Academie Royale des Sciences, 1728. 
p. 196. 

In Camus' discussion of the varying resistances of these expanding springs he was 
essentially using a concept of the potential energy of a spring, Es = ks2. He argued 
that if two springs A and B are such that the resistance or stiffness of spring A when it 
is compressed is to the resistance or stiffness of spring B when it is compressed as the 
resistance or stiffness of spring A when it is open or held at an aperture of 15? is to the 
resistance or force of spring B when it is also open or retained at an aperture of 150, 
then springs A and B are similar.52 In modern terms these two springs would have 
equal ratios of potential energy when compressed and when partially expanded. 

,0 Charles-lEtienne Camus, "Du mouvement 
accelre par des ressorts et les forces qui r6sident 
dans les corps en mouvement," Mdmoires de 

I'Acaddmie Royale des Sciences, 1728, 159-196. 
61 Ibid., p. 159. 
52 Ibid. 
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Camus then derived the laws of motion pertaining to the compression and ex- 
pansion of these similar springs in contact with other bodies. He compared the re- 
sistance of a compressed spring to the resistance which gravity presents to a body 
ascending geometrical curves representing the variation in the "force" (i.e., potential 
energy) over the distance in compressing a spring. He argued that since the distribution 
of resistance along the curves representing the ascent and the compression of the 
spring are the same, a body m which rises along the curve will with the same velocity 
and in the same time compress the spring. A second body, u, compressing a similar 
spring (i.e., having the same coefficient of elasticity) will meet resistances in the same 
ratio as body m meets in compressing the first spring.53 

The laws of accelerated motion for bodies descending along the curves will be the 
same as those for bodies pushed by expanding springs. Camus derived four relations 
for expanding springs in the form of proportions :54 

Camus' notation Modern equivalents 
A. ftt,u = 00me Ft2 =ms 
B. fe,uvv= emuu Fs -mv2 
C. ftpzv -OOmu Ft =mv 
D. EUt = evO s = vt 

wheref, q, and Fare force; e, E, and s space; t and 0 time; m and , mass; and v and u 
velocity. Although Camus obtained proportions for both the vis viva and momentum 
relationships, he did not discuss the relation of momentum to compressed springs. 
Because he stated his relationships as proportions and did not use infinitesimals, the 
modern equivalents lack numerical constants and are valid relationships only for the 
initial and final values of the motions. Thus in the Cartesian Leibnizian debates within 
the Academy the Frenchman Camus supported a Leibnizian analysis of mechanics, 
helping to disseminate the vis viva viewpoint within the Cartesian stronghold. 

VII. LOUVILLE'S IMPULSIVE AETHER 
The French Cartesian Jacques Eugene de Louville attacked the problem of the 

momentum imparted to moving bodies by Bernoulli's elastic springs. In the vis viva 
controversy both the Cartesians and the Newtonians employed the measure mv 
for force, correcting Descartes' original estimate mlvl to consider the sign of the 
velocity. It is well known that Newton wrote his second law as "the change of motion 
is proportional to the motive force impressed," meaning by motive force the impetus 
F = mv.55 The contact forces which produce these changes in motion in elastic impacts 
are essentially instantaneous. For the action of continuous noncontact forces such as 
those found in gravity, magnetism, and centripetal force, Newton indicated that the 
accelerative quantity of the centripetal force was to be employed. The accelerative 
quantity is proportional to the velocity which it generates in a given time.56 In free-fall 
problems, the Newtonians employed as a measure of the continuous constant 
gravitational force the proportion F oc mv/t, that is, the impulse Ft. 

3 Ibid., pp. 159-162. 
54 Ibid., p. 169. 
55 I. Bernard Cohen, "Newton's Second Law 

and the Concept of Force in the Principia," 
Texas Quarterly, 1967, 10:127-157. 

66 Ibid., pp. 130-131. 
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In the expansion of elastic springs, however, the force is continual and nonconlstant 
over a finite time interval. Louville's problem was to apply the Newtonian-Cartesian 
concept mv to the variable force of an expanding spring. His 1729 essay, "On the 
Theory of Varying Motions, that is, Continually Accelerated or Retarded, With a 
Method of Estimating the Force of Bodies in Motion," defined concepts of force 
which he called instantaneous, actual, and virtual.57 At the root of his argument lay 
the concept that force was fundamentally impulsive and that forces were derived from 
the impulsions of a subtle fluid, a Cartesian aether pervading all space. The impulses 
of the aether determined acceleration in free fall, as well as in the expansion of elastic 
bodies. The impulses of expanding elastic bodies were like the impulses of expanding 
springs. In discussing the action of Bernoulli's springs he arrived at results equivalent 
to establishing the impulse of expanding springs and the momentum they impart to 
moving bodies. However, in so doing he considered himself to have refuted the 
validity of the vis viva concept. 

The relationship of the velocity to the "force" and mass is expressed as f = mv. 
The definition of force as mv has been disputed by clever geometers, said Louville, 
but he hoped in this memoir to establish it so firmly that no doubt would remain.58 
The equation f = mv shows that when the velocities of two bodies are in a ratio 
reciprocal to their masses these bodies have equal forces. In the case of gravitation the 
contact forces of the aether acted as impulses of short duration on a body. Each 
impulse impressed a small velocity and a small force in each time increment. In the 
intervals of time between impulses there would be no increase in force or in velocity. 
Nevertheless the space traversed was continually augmenting. It was because of the 
impulsive nature of the force causing the body's motion that this motion should be 
measured by the velocity rather than the space traversed. 59 

In material bodies the force of elasticity comes from the movement of this same 
subtle fluid. It does not act with its entire mass (masse) but only with sufficient and 
repeated impulses as will halt the motion of another body. Elastic bodies are similar in 
action to elastic springs. Louville criticized Bernoulli's elastic spring demonstration 
on the basis of his own concept of "force" as fundamentally impulsive. It is not 
sufficient to know the magnitude of the dead force or pressure; the number of im- 
pulsions in a given time interval must also be known. In all three cases, gravitation, 
elastic bodies, and elastic springs, the effect produced by the impulses of the aether or 
the spring will be proportional to the number and magnitude of the impulses in each 
time interval.60 

Louville defined force instantane'e as being equivalent to Bernoulli's force morte, 
or pressure. In describing the force of bodies in motion, however, one must use the 
concept of force actuelle, which is mv rather than force vive, Mv2.61 Force actuelle 
resembles our concept of impulse and is equal to mv. The purpose of his essay, he 
said, was to clarify the meaning of force actuelle. The force of each impulsion (Fi) 
communicated only in an instant is "instantaneous force."62 These are equivalent to 

17 Jacques Eug6ne de Louville, "Sur la theorie 
des mouvements vari6s, c'est a dire, qui sont 
continuellement acceleres ou continuellement 
retardes; avec la maniere d'estimer la force des 
corps en mouvement," Mem. Acad. Sci., Paris, 
1729, 154-184. 

58 Ibid., pp. 154-156. 
59 Ibid., p. 156. 
60Ibid., pp. 170-171. 
61 Ibid., p.170. 
62 Ibid., pp. 167,176. 
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Leibniz' dead forces, or pressures, and to Newton's impressed forces. "Actual force" 
is the product of the force of each impulsion (FI) by the number (sum) of impulsions 
(nFl) the moving body receives in equal times. 

In this essay Louville was struggling to define the impulse of a force which varies 
with time for the case of expanding springs. These are nonconstant forces; for a 
compressed spring the force starts at a maximum and decreases as the acceleration of 
the body starts at zero and increases to a maximum. The total number or sum of the 
elements of the instantaneous forces in equal units of time in modern notation is 
2i=U=F tt, or the integral of the impulses JtF dt. Louville used infinitesimals in parts 
of his essay but not to express his concept of "force." The total "force" which an 
expanding spring communicates to a body is Louville's force actuelle, equivalent to Ft 
and mv. Louville considered this to be the correct measure of what Leibniz called 
living force. Actually he was defining a different concept: the impulse of the force 
which is equal to the momentum. 

Louville also defined a third meaning for force. "Virtual force" (force virtuelle) 
is the force or potential energy of a compressed spring.63 It pertains chiefly to the 
accelerations of similar elastic springs, composed of a different number of parts. 
Each of these units can produce an acceleration during its total expansion. Those 
springs composed of a great number of parts equally compressed will follow the 
moving body which it accelerates over a longer time and path than a spring of a lesser 
number of parts. 

Louville's analysis of the vis viva controversy was based on a particular concept of 
force: the nature of force was basically impulse. Using this concept he succeeded in 
showing that moving bodies acquire a momentum (mv) from the expansion of the 
compressed springs, but he did not successfully demonstrate that they do not also 
acquire vis viva. This was because he confused Leibniz' and Bernoulli's living force 
mv2 with the concept he had defined-impulse-which is equivalent to the change in a 
body's momentum. Although he employed ideas which were later rendered exact by 
the calculus, he did not employ its mathematical notation. It remained for Leonhard 
Euler to express the differential form of Newton's second law in the notation of the 
calculus.64 

VI. MAIRAN AND THE ELIMINATION OF FORCE 

The third paper in the series of Academy responses to Bernoulli's essay was that of 
the Cartesian Jean Jacques de Mairan, secretary of the Academy. His 1728 "Disserta- 
tion on the Estimation and Measure of the Moving Forces of Bodies" depended on a 
concept of "force" defined as the uniform motion of matter.65 It was primarily an 
attempt to reduce cases of accelerated and retarded motion, where the vis viva principle 
appeared to hold, to cases of uniform motion where quantity of motion mv is valid. 
In Mairan's analysis "force" produces uniform motion rather than acceleration. 

Mairan's approach is consistent with another of Descartes' principles: the world is 
to be described by matter in uniform motion. It also shows the influence of Male- 

63 Ibid., pp. 172-173, 177. 
64 See C. Truesdell, "Reactions of Late Ba- 

roque Mechanics to Success, Conjecture, Error, 
and Failure in Newton's Principia," Texas Q., 

1967, 10:238-258, p. 247. 
65 Jean Jacques de Mairan, "Dissertation sur 

1'estimation et la mesure des forces motrices des 
corps," Mem. Acad. Sci., Paris, 1728, 1-49. 
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branche's rejection of the concept force.66 At the basis of both Newtonian and 
Leibnizian mechanics lay the concept of force; to demonstrate that accelerated 
motions could be described without the concept of force would strike a blow at these 
systems of natural philosophy competing with Cartesianism. 

Mairan's paper was later hailed by the Academy as having settled the issue, per- 
haps because he was the Academy's secretary. It was this paper, however, which 
touched off a renewed debate in the 1740s when it was attacked by Madame du 
Chatelet and as a consequence reprinted. 

Mairan presupposed that in most phenomena nature behaved in a perfectly 
uniform manner with regard to the "forces" of moving bodies.67 He argued for the 
importance of using uniform motion in measuring "force." If a "force" does not 
impede movement, it will produce it. Movement can be uniform or nonuniform, 
which in turn can be accelerated or retarded. In uniform motion the effect is that of 
equal spaces traversed in equal times; uniform motion or velocity itself is the space 
divided by the time. Quantity of motion is measured by the mass times its velocity; 
that is, by uniform motion. If two bodies A and B of the same mass move uniformly 

with the same "force" and with the same velocity, but 
one moves for 1 hour and the other for 2 hours, they have 
two different quantities of motion, in the ratio of 1 to 
2. Those bodies whose movement is not uniform do not 
represent nature as it is. n D Collisions between bodies which produce changes 
in the world of Descartes' mechanical philosophy do 
not alter the uniformity of the body's motion, since 

3 *C the collision is essentially instantaneous. Although the 
magnitude and direction of the motion is altered, the 
progress remains uniform. Descartes had not dealt 
specifically with the problem of accelerated and re- 
tarded motion which Newton soon after explained 
by the action of a force. But it was in just such cases- 
for example, free fall and elastic springs-that vis viva 

.M proponents had advanced their most successful argu- 
ments. Mairan tried to return to the Cartesian de- 

. . scription of matter in uniform motion by reducing ac- 

A i ] ; 
celerated and retarded motion to uniform motion. 
And whereas Newton had shown that a change in 
motion requires a force F=Jmv, Mairan defined force 

Figure 3. Mairane Memoires as mv, the uniform motion of a body. 

Sciences, 1728, p. 30. For the case of free fall Mairan reduced accelerated 
motion to uniform motion by the following technique 

(see Fig. 3). Imagine the ascent of two equal bodies to be possible with uniform 
motion. Let B travel 2 toises in the first instant; A, having double the velocity, will 
then travel 4 in the first instant.68 However, under motion retarded by gravity, B, 
having a velocity of 1, will rise only 1 toise by Galileo's relation between average and 

66 Hankins, "Influence of Malebranche," pp. 
205-207. 

67Mairan, "Dissertation," sec. 3. 
68 Ibid., sec. 39. 
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accelerated motion. The distance not traveled, which would be under uniform motion, 
is 2 - 1 1. Body A, having a velocity of 2, will rise in retarded motion to a total 
height of 4, 3 units of which will be traversed in the first instant and 1 in the second 
instant. Therefore, for body A the distance not traveled in the first instant is the 
uniform motion of A minus its retarded motion, or 4 - 3 1. In the second instant 
of retarded motion A rises 1 unit, but it would have traveled 2 under uniform motion. 
The distance not traveled in the second instant is again 1.69 The spaces not traversed 
in each instant represent the force lost or consumed in each instant or the effort of the 
contrary force which destroys or consumes it. But the sum of all the lost forces or of 
the contrary forces is equal to the total force, or mv, of the body.70 

For the case of springs Mairan showed how retarded motion could be reduced to 
uniform motion and the space traversed in this uniform motion used to measure 
"force" (see Fig. 4). He conceived his springs to be little elastic bands: 

For example let there be impulsions, obstacles, or any resistances whatever repeated 
and placed on the path AF of moving body A. [These can be] for example particles of 
matter 1, 2, 3, 4, etc., or elastic strips (lames de ressort) to be displaced, knocked down 
lifted, or bent.7' 

These elastic bands were similar to the impulsions of gravity in that they offered 
resistance to an object moving against them.72 
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Figure 4. Mairan, M6moires de I'Acad6mie Royale des Sciences, 1728, 
p. 31. 

Mairan argued that the momentum of a moving body could be retarded by degrees 
by these little bands placed at equal intervals in its path. Each one of these bands 
would offer a resistance equal to that of a body of mass 1 moving with velocity 1. 
As a body with some initial quantity of motion brushes past these strips it loses mv. 
Mairan calculated the mv lost by the body in successive instants by the number of bent 
strips, and he also calculated the number passed by a body in uniform motion in the 
same time. He then measured the total mv of the body by the difference or total 
number of strips not lifted.73 He concluded that the portions of matter not displaced in 
retarded motion-the elastic bands not lifted, or bent, the objects not flattened, and in 

69 Ibid. 
70 Ibid., sec. 43. 
71 Ibid., sec. 41. 

72 Ibid., secs.40-41. 
73 Ibid. 
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general the obstacles not overcome which would be under uniform motion-are 
proportional to the forces or simple velocities. The obstacles not overcome represent 
the effect of a contrary force exercising itself against the original force. The sum of the 
contrary efforts is equal to the total force of the body. Thus by considering the re- 
sistance of these various obstacles to be equivalent to momentum he reinterpreted 
the problem of moving bodies and springs. He analyzed events which did not occur 
rather than those which did; he appealed to nature, not as it was, but as it was not. 

Mairan's elimination of force was one of the unsuccessful attempts to rescue a 
Cartesian mechanics based on matter in motion. It illustrated the great lengths to 
which Cartesians were willing to go in order to save their science. The inadequacy of 
Cartesianism in the face of Newtonian and Leibnizian mechanics was nowhere more 
apparent. 

In the foregoing analysis I have tried to indicate in what way the Cartesian natural 
philosophy influenced the mechanics of contributors to the publications of the Paris 
Academy of Sciences during the 1720s. To the extent to which their mechanical 
points were valid the results became united with Newtonian or Leibnizian mechanics. 
Thus Maziere and Louville used aspects of the Cartesian worldview to make Newton- 
ian points; Bernoulli and Camus strengthened Leibnizian concepts. However, 
Crousaz and Mairan, working within the traditional Cartesian framework, un- 
successfully attempted to retain a Cartesian kinematics. In this manner the Cartesian 
worldview declined in mechanics, for it could not produce a unique and adequate 
physics of the terrestrial world. 
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