QUESTIONING TECHNOLOGY

Tool, Toy or Tyrant?

Edited by
John Zerzan & Alice Carnes

New Society Publishers
Philadelphia, PA Santa Cruz, CA
Gabriola Island, BC
ACKNOWLEDGEMENTS FROM THE EDITORS:
Our thanks to Bob Brubaker for help in formulating the questions that organize this book and to Howard Besser and David Watson for their help in finding the excerpts to answer those questions.

Copyright © 1991 John Zerzan and Alice Cames
The copyright for each individual piece is held by the original author or publisher, as indicated in the contents. The first edition of this collection was published in Great Britain by Freedom Press; this edition is in cooperation with Freedom Press.

Inquires regarding requests to reprint all or part of Questioning Technology: Tool, Toy or Tyrant? should be addressed to:
New Society Publishers
4527 Springfield Avenue
Philadelphia, PA 19143

ISBN 0-86571-204-2 Hardcover
ISBN 0-86571-205-0 Paperback
ISBN Canadian 1-55092-148-7 Hardcover
ISBN Canadian 1-55092-149-5 Paperback

Printed in the United States of America on partially recycled paper by McNaughton & Gunn, Saline, MI.

Cover design by Tina Birky

To order directly from the publisher, add $1.75 to the price of the first copy, 50¢ each additional and send your check or money order to either:
New Society Publishers New Society Publishers
PO Box 582 PO Box 189
Santa Cruz, CA 95061 Gabriola Island, BC V0R 1X0

CONTENTS

PART ONE
TECHNOLOGY: ITS HISTORY AND OUR FUTURE

INTRODUCTION 9

1. How has technology developed — or encroached? Are the computer, nuclear power, and recombinant DNA comparable to the wheel, the printing press and gunpowder — or do they represent a new order? 11
 LEWIS MUMFORD
 Authoritarian and Democratic Technics 13
 (Technology and Culture, Vol. 5, No. 1, pp. 1-8)
 JOSEPH WEIZENBAUM
 Computer Power and Human Reason 22
 MICHAEL SHALLIS
 The Silicon Idol 26
 (New York: Schoken, 1984, pp. 78-94)

2. Was there a point in history when technology came to dominate the individual? How could this have happened? 32
 STANLEY DIAMOND
 In Search of the Primitive 33
 CAROLYN MERCHANT
 The Death of Nature 36
 JACQUES ELLUL
 The Technological Society 41

3. How has industrial technology adversely affected individuals, societies, and the planet as a whole? 46
 GEORGE BRADFORD
 We All Live in Bhopal 47
 (Fifth Estate, Winter 1985, pp. 1, 7)
ENTS

ONE
HISTORY AND OUR JRE

—or encroached? Are the abounding DNA comparable to the wider — or do they represent a

Technics 13
1, pp. 1-8)

Reason 22
v., 1976, pp. ix, 249-252, 200-201)

technology came to dominate happened? 32

1974, pp. 206-209)

pp. 192-193, 290-292, 294-295)

7-79, 84-85)

versely affected individuals, 46

LENNY SIEGEL and JOHN MARKOFF
The High Cost of High Tech: The Dark Side of the Chip 54
(Clinton Quarterly, Fall 1985, pp. 8-9)

MORRIS BERMAN
The Recanishment of the World 60

4. What is the future of human culture with respect to technology?
Is there a solution to the reality of being diminished by high tech? 69

T. FULANO
Civilization is Like a Jetliner 69
(Fifth Estate, Fall 1983, p. 1)

RUSSELL MEANS
Fighting Words on the Future of the Earth 71
(Mother Jones, December 1980, pp. 24-38)

SALLY GEARHART
An End to Technology 83
in Machina Ex Deo: Feminist Perspectives on Technology, ed. Joan Rothchild

MORRIS BERMAN
The Recanishment of the World 86
(pp. 276-280)

PART TWO
COMPUTERS AND THE INFORMED INDIVIDUAL

5. Are computers a force for increased individual autonomy — or a route to a new totalitarianism? 91

DAVID BURNHAM
The Rise of the Computer State 93

ABBE MOWOSHOWITZ
The Conquest of Will: Information Processing in Human Affairs 99
(Reading, Mass: Addison Wesley, 1976, pp. 312-314)

JOAN HOWE
Housebound 102
(Whole Earth Review, January 1985, p. 21)

CRAIG BROD
Technostress 104
(Reading, Mass: Addison Wesley, 1984, pp. 26-30)
6. Some in the artificial intelligence field claim that soon computers will not only think but also feel and possess consciousness. What are the implications of such staggering claims? 108

PATRICK HUGGHE
OFTwo Minds 109

GEOFF SIMONS
The Biology of Computer Life 119
(New York: Birkhauser, 1985, pp. 174, 176-182)

HUBERT L. DREYFUS
What Computers Can’t Do 125

7. What does one learn from interaction with a computer? How does it affect relationships with people? 128

GREGG EASTERBROOK
The Heart of a New Machine
(The Washington Monthly, March 1983, pp. 13-20)

CRAIG BROD
Technostress 139
(pp. 127-131)

ROBERT J. SARDELLO
The Technological Threat to Education 142
(Technology College Record, Summer 1984, pp. 631-639)

JAMES GORMAN
Man, Bytes, Dog 153
(The New Yorker, 2 July 1984, p. 33)

PART THREE
TECHNOLOGY: THE WEB OF LIFE?

8. Contemporary society can be described in phrases like “Information Age” and “global communications network”. What do the “information” and “communications” consist of? 157

JEAN BAUDRILLARD
The Implosion of Meaning in the Media and the Implosion of the Social in the Masses 158

LANGDON WINNER
Mythinformation 163
(Whole Earth Review, January 1985, pp. 22-28)
field claim that soon computers
possess consciousness. What are
claims? 108

119
176-182)
25
145-145)

ion with a computer? How
x? 128

, pp. 13-20)

location 142
, pp. 631-639)

REE
WEB OF LIFE?

bed in phrases like
communications network". What do
ms" consist of? 157

Media and the Implosion of

Woodward (Madison, WI: Coda
22-28)

HERBERT I. SCHILLER
Who Knows: Information in the Age of Fortune 500 170

9. How — and how effectively — is the technological outcome of
science regulated? Is there some research and development that
should be off-limits? 176

EUGENE S. SCHWARTZ
Overskill: The Decline of Technology in Modern
Civilization 177
(Chicago: Quadrangle Books, 1971, pp. 3-13)

GREGORY H. DAVIS
Technology — Humanism or Nihilism 185

LEONARD A. COLE
Politics and the Restraint of Science 191

T. FULANO
Saturn and Scientism 195
(Fifth Estate, March 1981, p. 5)

10. Is technology "neutral"? 198

JOHN and PAULA ZERZAN
Industrialization and Domestication 199
(Seattle: Black Eye Press, 1980, pp. 3-13)

JERRY MANDER
Four Arguments for the Elimination of Television 208

IAN REINECKE
Electronic Illusions: A Skeptic's View of
Our High Tech Future 211
(New York: Penguin, 1984, pp. 23-29)

JACQUES ELLUL
The Technological Society 216
(p. 134)

BIBLIOGRAPHICAL NOTE 217

INDEX 219
And, outside the glass wall of his utopian city which had arisen out of the ruin of the "final" war between the country and the city is a green wilderness in which primitive rebels live off the land, alive to their humanity, and seek to free the ultimately urbanized brother within.

The Death of Nature
CAROLYN MERCHANT

The fundamental social and intellectual problem for the seventeenth century was the problem of order. The perception of disorder, so important to the Baconian doctrine of dominion over nature, was also crucial to the rise of mechanism as a rational antidote to the disintegration of the organic cosmos. The new mechanical philosophy of the mid-seventeenth century achieved a reunification of the cosmos, society, and the self in terms of a new metaphor — the machine. Developed by the French thinkers Mersenne, Gassendi, and Descartes in the 1620s and 1630s and elaborated by a group of English emigrés to Paris in the 1640s and 1650s, the new mechanical theories emphasized and reinforced elements in human experience developing slowly since the late Middle Ages, but accelerating in the sixteenth century.

New forms of order and power provided a remedy for the disorder perceived to be spreading throughout culture. In the organic world, order meant the function of each part within the larger whole, as determined by its nature, while power was diffused from the top downward through the social or cosmic hierarchies. In the mechanical world, order was redefined to mean the predictable behavior of each part within a rationally determined system of laws, while power derived from active and immediate intervention in a secularized world. Order and power together constituted control. Rational control over nature, society, and the self was achieved by redefining reality itself through the new machine metaphor.
As the unifying model for science and society, the machine has permeated and reconstructed human consciousness so totally that today we scarcely question its validity. Nature, society, and the human body are composed of interchangeable atomized parts that can be repaired or replaced from outside. The "technological fix" mends an ecological malfunction, new human beings replace the old to maintain the smooth functioning of industry and bureaucracy, and interventionist medicine exchanges a fresh heart for a worn-out, diseased one.

The removal of animistic, organic assumptions about the cosmos constituted the death of nature — the most far-reaching effect of the Scientific Revolution. Because nature was now viewed as a system of dead, inert particles moved by external, rather than inherent forces, the mechanical framework itself could legitimate the manipulation of nature. Moreover, as a conceptual framework, the mechanical order had associated with it a framework of values based on power, fully compatible with the directions taken by commercial capitalism.

The mechanistic view of nature, developed by the seventeenth-century natural philosophers and based on a Western mathematical tradition going back to Plato, is still dominant in science today. This view assumes that nature can be divided into parts and that the parts can be rearranged to create other species of being. "Facts" or information bits can be extracted from the environmental context and rearranged according to a set of rules based on logical and mathematical operations. The results can then be tested and verified by resubmitting them to nature, the ultimate judge of their validity. Mathematical formalism provides the criterion for rationality and certainty, nature the criterion for empirical validity and acceptance or rejection of the theory.

The work of historians and philosophers of science notwithstanding, it is widely assumed by the scientific community that modern science is objective, value-free, and context-free knowledge of the external world. To the extent to which the sciences can be reduced to this mechanistic mathematical model, the more legitimate they become as sciences. Thus the reductionist hierarchy of the validity of the sciences first proposed in the nineteenth century by French positivist philosopher August Comte is still widely assumed by intellectuals, the most mathematical and highly theoretical sciences occupying the most revered position.
The mechanistic approach to nature is as fundamental to the twentieth-century revolution in physics as it was to classical Newtonian science, culminating in the nineteenth-century unification of mechanics, thermodynamics, and electromagnetic theory. Twentieth-century physics still views the world in terms of fundamental particles — electrons, protons, neutrons, mesons, muons, pions, taus, thetas, sigmas, pis, and so on. The search for the ultimate unifying particle, the quark, continues to engage the efforts of the best theoretical physicists.

Mathematical formalism isolates the elements of a given quantum mechanical problem, places them in a latticelike matrix, and rearranges them through a mathematical function called an operator. Systems theory extracts possibly relevant information bits from the environmental context and stores them in a computer memory for later use. But since it cannot store an infinite number of "facts", it must select a finite number of potentially relevant pieces of data according to a theory or set of rules governing the selection process. For any given solution, this mechanistic approach very likely excludes some potentially relevant factors.

Systems theorists claim for themselves a holistic outlook, because they believe that they are taking into account the ways in which all the parts in a given system affect the whole. Yet the formalism of the calculus of probabilities excludes the possibility of mathematizing the gestalt — that is, the ways in which each part at any given instant take their meaning from the whole. The more open, adaptive, organic, and complex the system, the less successful is the formalism. It is most successful when applied to closed, artificial, precisely defined, relatively simple systems. Mechanistic assumptions about nature push us increasingly in the direction of artificial environments, mechanized control over more and more aspects of human life, and a loss of the quality of life itself.

In the social sphere, the mechanistic model helps to guide technological and industrial development. In The Technological Society, Jacques Ellul discussed the techniques of economics and the mechanistic organization of specialties inherent in and entailed by the machines and mathematical methods themselves. The calculating machine, punch card machine, microfilm, and computer transform statistical methods and administrative organization into specialized agencies centered around one or more statistical categories.

Econometric models and stochastics are used to operate on
structure is as fundamental to the physics as it was to classical the nineteenth-century unificatons, and electromagnetic theory. iews the world in terms of s, protons, neutrons, mesons, ds, and so on. The search for the continues to engage the efforts he elements of a given quantum in a latticelike matrix, and ical function called an operator, evant information bits from the e in a computer memory for n infinite number of “facts”, it initially relevant pieces of data governing the selection process. hanistic approach very likely actors. ves a holistic outlook, because account the ways in which all whole. Yet the formalism of the possibility of mathematizing which each part at any given the whole. The more open, system, the less successful is the applied to closed, artificial, systems. Mechanistic assump gly in the direction of artificial over more and more aspects of of life itself. hanistic model helps to guide opment. In The Technological techniques of economics and the inherent in and entailed by methods themselves. The cine, microfilm, and computer iministrative organization into one or more statistical stics are used to operate on statistical data in order to analyze, compare, and predict. In social applications, attempts to predict public reaction through the calculus of probabilities may make a public informed of its confirmation to a trend act in the inverse manner.

But the public, by so reacting falls under the influence of a new prediction which is completely determinable It must be assumed, however, that one remains within the framework of rational behavior. The system works all the better when it deals with people who are better integrated into the mass whose consciousness is partially paralyzed, who lend themselves willingly to statistical observations and systematization.

Such attempts to reduce human behavior to statistical probabilities and to condition it by such psychological techniques as those developed by B. F. Skinner are manifestations of the pervasiveness of the mechanistic mode of thought developed by the seventeenth century scientists

The March 1979 accident at the Three-Mile Island nuclear reactor near Harrisburg, Pennsylvania, epitomized the problems of the “death of nature” that have become apparent since the Scientific Revolution. The manipulation of nuclear processes in an effort to control and harness nature through technology backfired into disaster. The long-range economic interests and public image of the power company and the reactor’s designer were set above the immediate safety of the people and the health of the earth. The hidden effects of radioactive emissions, which by concentrating in the food chain could lead to an increase in cancers over the next several years, were initially downplayed by those charged with responsibility for regulating atomic power.

Three-Mile Island is a recent symbol of the earth’s sickness caused by radioactive wastes, pesticides, plastics, photochemical smog, and fluorocarbons. The pollution “of her purest streams” has been supported since the Scientific Revolution by an ideology of “power over nature”, an ontology of interchangeable atomic and human parts, and a methodology of “penetration” into her innermost secrets. The sick earth, “yea dead, yea putrified”, can probably in the long run be restored to health only by a reversal of mainstream values and a revolution in economic priorities. In this sense, the world must once again be turned upside down.

As natural resources and energy supplies diminish in the future, it
will become essential to examine alternatives of all kinds so that, by adopting new social styles, the quality of the environment can be sustained. Decentralization, nonhierarchical forms of organization, recycling of wastes, simpler living styles involving less-polluting “soft” technologies, and labor-intensive rather than capital-intensive economic methods are possibilities only beginning to be explored. The future distribution of energy and resources among communities should be based on the integration of human and natural ecosystems. Such a restructuring of priorities may be crucial if people and nature are to survive.