ENVIRONMENTAL PHILOSOPHY

From Animal Rights to Radical Ecology

Michael E. Zimmerman · J. Baird Callicott
George Sessions · Karen J. Warren · John Clark
Environmental Philosophy

FROM ANIMAL RIGHTS TO RADICAL ECOLOGY

General Editor

Michael E. Zimmerman
Tulane University

Associate Editors

J. Baird Callicott
University of Wisconsin–Stevens Point

George Sessions
Sierra College

Karen J. Warren
Macalester College

John Clark
Loyola University of the South

Prentice Hall, Englewood Cliffs, New Jersey 07632
Environmental philosophy: from animal rights to radical ecology / general editor, Michael E. Zimmerman; associate editors, J. Baird Callicott . . . [et al.].

Includes bibliographical references.
GF21.E56 1993
179'.1—dc20
92-32188
CIP

Acquisitions editor: Ted Bolen
Editorial/production supervision: Bridget Mooney
Interior design: Peggy Gordon
Copy editor: Durae Johaneke
Cover design: Bruce Kensaears
Prepress buyer: Herb Klein
Manufacturing buyer: Patrice Fraccio

© 1993 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore

PART ONE: ENVIRONMENTAL

Introduction 3
J. Baird Callicott
Is There a Need for a New Ethic? 12
Richard Sylvan (ii)

INDIVIDUALISTIC APPROACHES

Animal Liberation 2:
Peter Singer
Animal Rights, Human and Nonhuman
Tom Regan
On Being Morally Consistent
Kenneth E. Goodpaster
The Ethics of Respect for Animals
Paul W. Taylor

HOLISTIC APPROACHES

Animal Liberation, Environmental Ethics, and Dignity
Mark Sagoff
The Land Ethic
Aldo Leopold
The Conceptual Foundation of Environmental Ethics
J. Baird Callicott
Challenges in Environmental Philosophy
Holmes Rolston, III
PART TWO: DEEP ECOLOGY 159
Introduction 161
 George Sessions
The Viable Human 171
 Thomas Berry
Simple in Means, Rich in Ends 182
 Arne Naess
The Deep Ecological Movement: Some Philosophical
 Aspects 193
 Arne Naess
The Deep Ecology-Ecofeminism Debate and Its Parallels 213
 Warwick Fox
Deep Ecology and Global Ecosystem Protection 233
 George Sessions

PART THREE: ECOFEMINISM 251
Introduction 253
 Karen J. Warren
The Death of Nature 268
 Carolyn Merchant
Nature, Self, and Gender: Feminism, Environmental
 Philosophy, and the Critique of Rationalism 284
 Val Plumwood
Working with Nature: Reciprocity or Control 310
 Ariel Salleh
The Power and the Promise of Ecological Feminism 320
 Karen J. Warren

PART FOUR: SOCIAL ECOLOGY 343
Introduction 345
 John Clark
What Is Social Ecology? 354
 Murray Bookchin
Dialectics in the Ethics of Social Ecology 374
 Janet Biehl
Marx's Inorganic Body 390
 John Clark
The Marriage of Radical Ecologies 406
 Joel Kovel
Toward a Deep Social Ecology 418
 George Bradford

In the past two decades, concerned about the po
tional industrial civilization, the
loss of species diversity, and the source of these problems
'progress.' This concept
were so inspired by dev
market economies that the
by eliminat
and technological innova
alization effects of indust
the twentieth century, it
committed to the model
potentially devastating eco

During the late 1960
'cultural' movement began
society in order to save b
geological consequences o
argued that the same tech
munity improvements in me
munication also enabled p
destroying life on the pla

INTRODUCTION: WOMEN AS NATURE

Women and nature have an age-old association—an affiliation that has persisted throughout culture, language, and history. Their ancient interconnections have been dramatized by the simultaneity of two recent social movements—women's liberation, symbolized in its controversial infancy by Betty Friedan's *Feminine Mystique* (1963), and the ecology movement, which built up during the 1960s and finally captured national attention on Earth Day, 1970. Common to both is an egalitarian perspective. Women are struggling to free themselves from cultural and economic constraints that have kept them subordinate to men in American society. Environmentalists, warning us of the irreversible consequences of continuing environmental exploitation, are developing an ecological ethic emphasizing the interconnectedness between people and nature. Juxtaposing the goals of the two movements can suggest new values and social structures, based not on the domination of women and nature as resources but on the full expression of both male and female talent and on the maintenance of environmental integrity.

New social concerns generate new intellectual and historical prob-

NATURE AS FEMALE

The world we have lost was a world in which species, human beings have lived, the natural order for their survival, was still structured for by close-knit, cooperative organism. As a projection of t

Thus it is not surprising the metaphor binding together the organism. As a projection of t

The idea of nature as a liv

Nature

The ancient identity of nature as a nurturing mother links women’s history with the history of the environment and ecological change. The female earth was central to the organic cosmology that was undermined by the Scientific Revolution and the rise of a market-oriented culture in early modern Europe. The ecology movement has reawakened interest in the values and concepts associated historically with the premodern organic world. The ecological model and its associated ethics make possible a fresh and critical interpretation of the rise of modern science in the crucial period when our cosmos ceased to be viewed as an organism and became instead a machine.

In investigating the roots of our current environmental dilemma and its connections to science, technology, and the economy, we must reexamine the formation of a world view and a science that, by reconceptualizing reality as a machine rather than a living organism, sanctioned the domination of both nature and women.

NATURE AS FEMALE

The world we have lost was organic. From the obscure origins of our species, human beings have lived in daily, immediate, organic relation with the natural order for their sustenance. In 1500, the daily interaction with nature was still structured for most Europeans, as it was for other peoples, by close-knit, cooperative, organic communities.

Thus it is not surprising that for sixteenth-century Europeans the root metaphor binding together the self, society, and the cosmos was that of an organism. As a projection of the way people experienced daily life, organismic theory emphasized interdependence among the parts of the human body, subordination of individual to communal purposes in family, community, and state, and vital life permeating the cosmos to the lowest stone.

The idea of nature as a living organism had philosophical antecedents in ancient systems of thought, variations of which formed the prevailing ideological framework of the sixteenth century. The organismic metaphor, however, was immensely flexible and adaptable to varying contexts, depending on which of its presuppositions was emphasized. A spectrum of
philosophical and political possibilities existed, all of which could be subsumed under the general rubric of organic.

Central to the organic theory was the identification of nature, especially the earth, with a nurturing mother: A kindly beneficent female who provided for the needs of mankind in an ordered, planned universe. But another opposing image of nature as female was also prevalent: wild and uncontrollable nature that could render violence, storms, droughts, and general chaos. Both were identified with the female sex and were projections of human perceptions onto the external world. The metaphor of the earth as a nurturing mother was gradually to vanish as a dominant image as the Scientific Revolution proceeded to mechanize and to rationalize the world view. The second image, nature as disorder, called forth an important modern idea, that of power over nature. Two new ideas, those of mechanism and of the domination and mastery of nature, became core concepts of the modern world. An organically oriented mentality in which female principles played an important role was undermined and replaced by a mechanically oriented mentality that either eliminated or used female principles in an exploitative manner. As Western culture became increasingly mechanized in the 1600s, the female earth and virgin earth spirit were subdued by the machine.¹

The change in controlling imagery was directly related to changes in human attitudes and behavior toward the earth. Whereas the nurturing earth image can be viewed as a cultural constraint restricting the types of socially and morally sanctioned human actions allowable with respect to the earth, the new images of mastery and domination functioned as cultural sanctions for the demudation of nature. Society needed these new images as it continued the processes of commercialism and industrialization, which depended on activities directly altering the earth—mining, drainage, deforestation, and assarting (grubbing up stumps to clear fields). The new activities utilized new technologies—lift and force pumps, cranes, windmills, geared wheels, flap valves, chains, pistons, treadmills, under-and overshot watermills, fulling mills, flywheels, bellows, excavators, bucket chains, rollers, geared and wheeled bridges, cranks, elaborate block and tackle systems, worm, spur, crown, and lantern gears, cams and eccentrics, ratchets, wrenches, presses, and screws in magnificent variation and combination.

These technological and commercial changes did not take place quickly; they developed gradually over the ancient and medieval eras, as did the accompanying environmental deterioration. Slowly over many centuries early Mediterranean and Greek civilization had mined and quarried the mountainsides, altered the forested landscape, and overgrazed the hills. Nevertheless, technologies were low level, people considered themselves parts of a finite cosmos, and animism and fertility cults that treated nature as sacred were numerous. Roman civilization was more pragmatic, secular, and commercial than Kornan writers such as Clev openly deplored mining as disintegration of feudalism worlds and markets, commerce impact on the natural environment, the tension between action and the controlling and the old activities.

Both the nurturing anc ology, religion, and literature in Greek philosophy and CI Greek and other pagan phils and the Scientific Revolution spread beyond the religious and political spheres as a normative associations can philosophy, and science.

The image of the earth served as a cultural constraint does not readily slay a moth body, although commercial earth was considered to be breach of human ethical be. For most traditional culture the Earth Mother, mines were the human hastening of the of the furnace—an abortion time. Miners offered propititation world, performed ceremonies sexual abstinence, and fasts to earth by sinking a mine. Si precipitating the metal's birth hammer and anvil; they wer rituals and their tools were t.

The Renaissance imag subtle ethical controls and literature can play a normative operate as ethical restraints "ought-nots." Thus as the change, a behavioral restraint in the image and description the Scientific Revolution.
The Death of Nature

Roman writers such as Ovid, Seneque, Pliny, and the Stoic philosophers openly deployed cruelty and exploitation in nature, and made the world more tolerable for the human race. Yet, the disintegration of feudalism and the expansion of European society into new worlds and new markets, commercial society began to have an accelerated impact on the natural world. The tension between technological development and the controlling organic images in the world of the mind became too great. The old structures were incompatible with the new activities.

Both the nurturing and domination metaphors had existed in philosophy, religion, and literature. The idea of dominion over the earth, which spread beyond the religious spheres and assumed secondary in the social, political, and religious spheres as well. These two competing images and their normative associations can be found in sixteenth-century literature, art, and science. The image of the earth as a living organism and nurturing mother had served as a cultural construct for the actions of human beings. As long as the body was considered to be alive and sensitive, it could be considered a symbol of human life. By the sixteenth century, the understanding of the natural world had become too great. The old structures were incompatible with the new activities.

The idea of dominion over the earth, which spread beyond the religious spheres and assumed secondary in the social, political, and religious spheres as well. These two competing images and their normative associations can be found in sixteenth-century literature, art, and science. The image of the earth as a living organism and nurturing mother had served as a cultural construct for the actions of human beings. As long as the body was considered to be alive and sensitive, it could be considered a symbol of human life. By the sixteenth century, the understanding of the natural world had become too great. The old structures were incompatible with the new activities.
DOMINION OVER NATURE: FRANCIS BACON'S
PHILOSOPHY

Francis Bacon (1561–1626), a celebrated "father of modern science," transformed tendencies already extant in his own society into a total program advocating the control of nature for human benefit. Melding together a new philosophy based on natural magic as a technique for manipulating nature, the technologies of mining and metallurgy, the emerging concept of progress and a patriarchal structure of family and state, Bacon fashioned a new ethic sanctioning the exploitation of nature.

Bacon has been eulogized as the originator of the concept of the modern research institute, a philosopher of industrial science, the inspiration behind the Royal Society (1660), and as the founder of the inductive method by which all people can verify for themselves the truths of science by the reading of nature's book. But from the perspective of nature, women, and the lower orders of society emerges a less favorable image of Bacon and a critique of his program as ultimately benefiting the middle-class male entrepreneur. Bacon, of course, was not responsible for subsequent uses of his philosophy. But, because he was in an extremely influential social position and in touch with the important developments of his time, his language, style, nuance, and metaphor become a mirror reflecting his class perspective.

Sensitive to the same social transformations that had already begun to reduce women to psychic and reproductive resources, Bacon developed the power of language as political instrument in reducing female nature to a resource for economic production. Female imagery became a tool in adapting scientific knowledge and method to a new form of human power over nature. The "controversy over women" and the inquisition of witches—both present in Bacon's social milieu—permeated his description of nature and his metaphorical style and were instrumental in his transformation of the earth as a nurturing mother and womb of life into a source of secrets to be extracted for economic advance.

Much of the imagery Bacon used in delineating his new scientific objectives and methods derives from the courtroom, and, because it treats nature as a female to be tortured through mechanical inventions, strongly suggests the interrogations of the witch trials and the mechanical devices used to torture witches.

The new man of science must not think that the "inquisition of nature is in any part interdicted or forbidden." Nature must be "bound into service" and made a "slave," put "in constraint" and "molded" by the mechanical arts. The "searchers and spies of nature" are to discover her plots and secrets.3

This method, so readily applicable when nature is denoted by the female gender, degraded and made possible the exploitation of the natural environment. As woman's womb was wrested from her grasp for use in science, nature's womb harbored many secrets that were not to be treated carelessly by the new man of science.

There is therefore much to be learned from nature, but nature is not to be treated carelessly. Bacon argued that the (technology) a mere "assistant in nature's work" and that nature has begun to assert itself against human endeavor.

Bacon transformed the human order of nature—he was bringing down the heavenly body and beginning to explore the possibilities of cohabiting with God. Bacon the power over nature lost paradise.

Due to the Fall from the woman), the human race lost paradise, there was no need for power to be made sovereign over all others was "like unto God." While the medieval strictures against the natural dominion were further into the mine of nature, the universe" could be stretched.

Although a female's in his God-given dominion, the natural order, could be used to restructure Time, "I am come in very time to bind her to your service and she asserted, "to expect man taken by the forelock, beir permit one only to clutch her."7

Nature existed in three
ON'S

her of modern science," transformed society into a total program benefit. Molding together a new sique for manipulating nature, the emerging concept of progl state, Bacon fashioned a new ginator of the concept of the industrial science, the inspira: the founder of the inductive emselves the truths of science perspective of nature, women, favorable image of Bacon and efiting the middle-class male nsible for subsequent uses of extremely influential social developments of his time, his a mirror reflecting his class tions that had already begun e resources, Bacon developed in reducing female nature to te imagery became a tool in "a new form of human power en" and the inquisition of a—permeated his description instrumental in his transform-womb of life into a source of slineating his new scientific stroom, and, because it treat mechanical inventions, strongly and the mechanical devices that the "inquisition of nature must be "bound into saint" and "molded" by the 'nature" are to discover her on nature is denoted by the exploitation of the natural environment. As woman's womb had symbolically yielded to the forceps, so nature's womb harbored secrets that through technology could be wrested from her grasp for use in the improvement of the human condition:

There is therefore much ground for hoping that there are still laid up in the womb of nature many secrets of excellent use having no affinity or parallelism with anything that is now known. . . only by the method which we are now treating can they be speedily and suddenly and simultaneously presented and anticipated. 4

Bacon transformed the magical tradition by calling on the need to dominate nature not for the sole benefit of the individual magician but for the good of the entire human race. Through vivid metaphor, he transformed the magus from nature's servant to its exploiter, and nature from a teacher to a slave. Bacon argued that it was the magician's error to consider art (technology) a mere "assistant to nature having the power to finish what nature has begun" and therefore to despair of ever "changing, transmuting, or fundamentally altering nature." 5

The natural magician saw himself as operating within the organic order of nature—he was a manipulator of parts within that system, bringing down the heavenly powers to the earthly shrine. Agrippa . . . had begun to explore the possibility of ascending the hierarchy to the point of cohabiting with God. Bacon extended this idea to include the recovery of the power over nature lost when Adam and Eve were expelled from paradise.

Due to the Fall from the Garden of Eden (caused by the temptation of a woman), the human race lost its "dominion over creation." Before the Fall, there was no need for power or dominion, because Adam and Eve had been made sovereign over all other creatures. In this state of dominion, mankind was "like unto God." While some, accepting God's punishment, had obeyed the medieval strictures against searching too deeply into God's secrets, Bacon turned the constraints into sanctions. Only by "digging further and further into the mine of natural knowledge" could mankind recover that lost dominion. In this way, "the narrow limits of man's dominion over the universe" could be stretched "to their promised bounds." 6

Although a female's inquisitiveness may have caused man's fall from his God-given dominion, the relentless interrogation of another female, nature, could be used to regain it. As he argued in The Masculine Birth of Time, "I am come in very truth leading you to nature with all her children to bind her to your service and make her your slave." "We have no right," he asserted, "to expect nature to come to us." Instead, "Nature must be taken by the forelock, being bald behind." Delay and subtle argument "permit one only to clutch at nature, never to lay hold of her and capture her." 7

Nature existed in three states—at liberty, in error, or in bondage.
She is either free and follows her ordinary course of development as in the heavens, in the animal and vegetable creation, and in the general array of the universe; or she is driven out of her ordinary course by the perverseness, insolence, and forwardness of matter and violence of impediments, as in the case of monsters; or lastly, she is put in constraint, molded, and made as it were new by art and the hand of man; as in things artificial.\(^9\)

The first instance was the view of nature as immanent self-development, the nature naturing herself of the Aristotelians. This was the organic view of nature as a living, growing, self-actualizing being. The second state was necessary to explain the malfunctions and monstrosities that frequently appeared and that could not have been caused by God or another higher power acting on his instruction. Since monstrosities could not be explained by the action of form or spirit, they had to be the result of matter acting perversely. Matter in Plato’s \textit{Timaeus} was recalcitrant and had to be forcefully shaped by the demiurge. Bacon frequently described matter in female imagery, as a “common harlot.” “Matter is not devoid of an appetite and inclination to dissolve the world and fall back into the old Chaos.” It therefore must be “restrained and kept in order by the prevailing concord of things.” “The vexations of art are certainly as the bonds and handcuffs of Proteus, which betray the ultimate struggles and efforts of matter.”\(^9\)

The third instance was the case of art (technē)—man operating on nature to create something new and artificial. Here “nature takes orders from man and works under his authority.” Miners and smiths should become the model for the new class of natural philosophers who would interrogate and alter nature. They had developed the two most important methods of wresting nature’s secrets from her, “the one searching into the bowels of nature, the other shaping nature as on an anvil.” “Why should we not divide natural philosophy into two parts, the mine and the furnace?” For “the truth of nature lies hid in certain deep mines and caves,” within the earth’s bosom. Bacon, like some of the practically minded alchemists, would “advise the studious to sell their books and build furnaces” and, “forsaking Minerva and the Muses as barren virgins, to rely upon Vulcan.”\(^9\)

The new method of interrogation was not through abstract notions, but through the instruction of the understanding “that it may in very truth dissect nature.” The instruments of the mind supply suggestions, those of the hand give motion and aid the work. “By art and the hand of man,” nature can then be “forced out of her natural state and squeezed and molded.” In this way, “human knowledge and human power meet as one.”\(^11\)

Here, in bold sexual imagery, is the key feature of the modern experimental method—constraint of nature in the laboratory, dissection by hand and mind, and the penetration of hidden secrets—language still used today in praising a scientist’s “hard facts,” “penetrating mind,” or the “thrust of his argument.” The constraints against penetration in Natura’s lament over her torn garments of mode that legitimates the exploi

Scientific method, to create a “new organon,” a edge with material power, and the magnet of “help us to think about things that do not, like the old, mere pow they have the power to foundations.” Under the fully...than when in enjo Mechanics, which ge that is, in “the uniting or darts that altered the mater dying, the manufacture of paper, and the like.” But strained to operate within “not be commanded excep tion, and observation of re by acting as the interpreter Of the three grades of hum to endeavor to establish a race itself over the universe that right over nature which

The interrogation of nature, the courtroom as mechanical devices as a mental to the scientific a helped to structure the nat a new form of knowledge devoid of cultural and pol

Human dominion on program, was to be achi nature’s secrets.” Seventeeth attitudes toward nature, s the earth. Descartes wrote knowing the crafts of the a ourselves the masters an English philosopher who... 1668, asserted that the knowledge by observation it may be mastered, mana achieve this objective, a “searching out the begin
course of development as in the on, and in the general array of the nary course by the perverseness, violence of impediments, as in the restraint, molded, and made as it things artificial.

immanent self-development, ns. This was the organic view of being. The second state was monstrosities that frequently sed by God or another higher realities could not be explained be the result of matter acting recalcitrant and had to be frequently described matter in er is not devoid of an appetite back into the old Chaos." It der by the prevailing concord y as the bonds and handcuffs es and efforts of matter."

(technē)—man operating on al. Here "nature takes orders " Miners and smiths should ral philosophers who would oped the two most important r, "the one searching into the s on an anvil." "Why should parts, the mine and the fur rain deep mines and caves," e of the practically minded sell their books and build uses as barren virgins, to rely not through abstract notions, ing "that it may in very truth supply suggestions, those of and the hand of man," nature id squeezed and molded." In ner meet as one." feature of the modern exper- laboratory, dissection by hand ts—language still used today ting mind," or the "thrust of ation in Nature's lament over

her torn garments of modesty have been turned into sanctions in language that legitimates the exploitation and "rape" of nature for human good.

Scientific method, combined with mechanical technology, would create a "new organon," a now system of investigation, that unified knowledge with material power. The technological discoveries of printing, gunpowder, and the magnet in the fields of learning, warfare, and navigation "help us to think about the secrets still locked in nature's bosom." "They do not, like the old, merely exert a gentle guidance over nature's course; they have the power to conquer and subdue her, to shake her to her foundations." Under the mechanical arts, "nature betrays her secrets more fully... than when in enjoyment of her natural liberty."12

Mechanics, which gave man power over nature, consisted in motion; that is, in "the uniting or disuniting of natural bodies." Most useful were the arts that altered the materials of things—"agriculture, cookery, chemistry, dying, the manufacture of glass, enamel, sugar, gunpowder, artificial fires, paper, and the like." But in performing these operations, one was con strained to operate within the chain of causal connections; nature could "not be commanded except by being obeyed." Only by the study, interpretation, and observation of nature could these possibilities be uncovered; only by acting as the interpreter of nature could knowledge be turned into power. Of the three grades of human ambition, the most wholesome and noble was "to endeavor to establish and extend the power and dominion of the human race itself over the universe." In this way "the human race [could] recover that right over nature which belongs to it by divine bequest."13

The interrogation of witches as a symbol for the interrogation of nature, the courtroom as a model for its inquisition, and torture through mechanical devices as a tool for the subjugation of disorder were fundamental to the scientific method as power. For Bacon..., sexual politics helped to structure the nature of the empirical method that would produce a new form of knowledge and a new ideology of objectivity seemingly devoid of cultural and political assumptions.

Human dominion over nature, an integral element of the Baconian program, was to be achieved through the experimental "disclosure of nature's secrets." Seventeenth-century scientists, reinforcing aggressive attitudes toward nature, spoke out in favor of "mastering" and "managing" the earth. Descartes wrote in his Discourse on Method (1636) that through knowing the crafts of the artisans and the forces of bodies we could "render ourselves the masters and possessors of nature."14 Joseph Glanvill, the English philosopher who defended the Baconian program in his Plus Ultra of 1668, asserted that the objective of natural philosophy was to "enlarge knowledge by observation and experiment... so that nature being known, it may be mastered, managed, and used in the services of humane life." To achieve this objective, arts and instruments should be developed for "searching out the beginnings and depths of things and discovering the
intrigues of remoter nature."" The most useful of the arts were chemistry, anatomy, and mathematics; the best instruments included the microscope, telescope, thermometer, barometer, and air pump.

The new image of nature as a female to be controlled and dissected through experiment legitimated the exploitation of natural resources. Although the image of the nurturing earth popular in the Renaissance did not vanish, it was superseded by new controlling imagery. The constraints against penetration associated with the earth-mother image were transformed into sanctions for denudation. After the Scientific Revolution, *Natura* no longer complains that her garments of modesty are being torn by the wrongful thrusts of man. She is portrayed in statues by the French sculptor Louis-Ernest Barrias (1841–1905) cooly removing her own veil and exposing herself to science. From an active teacher and parent, she has become a mindless, submissive body. Not only did this new image function as a sanction, but the new conceptual framework of the Scientific Revolution—mechanism—carried with it norms quite different from the norms of organicism. The new mechanical order and its associated values of power and control would mandate the death of nature.

THE MECHANICAL ORDER

The fundamental social and intellectual problem for the seventeenth century was the problem of order. The perception of disorder, so important to the Baconian doctrine of dominion over nature, was also crucial to the rise of mechanism as a rational antidote to the disintegration of the organic cosmos. The new mechanical philosophy of the mid-seventeenth century achieved a reunification of the cosmos, society, and the self in terms of a new metaphor—the machine. Developed by the French thinkers Mersenne, Gassendi, and Descartes in the 1620s and 1630s and elaborated by a group of English emigrés to Paris in the 1640s and 1650s, the new mechanical theories emphasized and reinforced elements in human experience developing slowly since the late Middle Ages, but accelerating in the sixteenth century.

New forms of order and power provided a remedy for the disorder perceived to be spreading throughout culture. In the organic world, order meant the function of each part within the larger whole, as determined by its nature, while power was diffused from the top downward through the social or cosmic hierarchies. In the mechanical world, order was redefined to mean the predictable behavior of each part within a rationally determined system of laws, while power derived from active and immediate intervention in a secularized world. Order and power together constituted control. Rational control over nature, society, and the self was achieved by redefining reality itself through the new machine metaphor.

As the unifying model permeated and reconstruc
ted we scarcely question its valid
compised of interchangeable
placed from outside. The "tec
ition, new human beings repla
dustry and bureaucracy
fresh heart for worn-out, dis

The mechanical view of
is accepted without question
or is made up of atoms, col
differing lengths, bodies obey
of our solar system. None of
century counterparts. The re
thinking by a new and "uni
behaving—did not occur with
by the machine engaged
fraught with anxiety, confusi
social spheres.

The removal of animis
constituted the death of natu
fific Revolution. Because nat
particles moved by external
framework itself could legitim
a conceptual framework, the
framework of values based or
taken by commercial capitai

The mechanistic view o
natural philosophers and
going back to Plato, is still do
that nature can be divided in
to create other species of being
from the environmental conte
based on logical and mather
tested and verified by resubn
their validity. Mathematical fo
and certainty, nature the crite
rejection of the theory.

The work of historians a
it is widely assumed by the s
objective, value-free, and con
the extent to which the sci
mathematical model, the moi
As the unifying model for science and society, the machine has permeated and reconstructed human consciousness so totally that today we scarcely question its validity. Nature, society, and the human body are composed of interchangeable atomized parts that can be repaired or replaced from outside. The "technological fix" mends an ecological malfunction, new human beings replace the old to maintain the smooth functioning of industry and bureaucracy, and interventionist medicine exchanges a fresh heart for worn-out, diseased one.

The mechanical view of nature now taught in most Western schools is accepted without question as our everyday, common sense reality—matter is made up of atoms, colors occur by the reflection of light waves of differing lengths, bodies obey the law of inertia, and the sun is in the center of our solar system. None of this was common sense to our seventeenth-century counterparts. The replacement of the older, "natural" ways of thinking by a new and "unnatural" form of life—seeing, thinking, and behaving—did not occur without struggle. The submergence of the organism by the machine engaged the best minds of the times during a period fraught with anxiety, confusion, and instability in both the intellectual and social spheres.

The removal of animistic, organic assumptions about the cosmos constituted the death of nature—the most far-reaching effect of the Scientific Revolution. Because nature was now viewed as a system of dead, inert particles moved by external, rather than inherent forces, the mechanical framework itself could legitimate the manipulation of nature. Moreover, as a conceptual framework, the mechanical order had associated with it a framework of values based on power, fully compatible with the directions taken by commercial capitalism.

The mechanistic view of nature, developed by the seventeenth-century natural philosophers and based on a Western mathematical tradition going back to Plato, is still dominant in science today. This view assumes that nature can be divided into parts and that the parts can be rearranged to create other species of being. "Facts" or information bits can be extracted from the environmental context and rearranged according to a set of rules based on logical and mathematical operations. The results can then be tested and verified by resubmitting them to nature, the ultimate judge of their validity. Mathematical formalism provides the criterion for rationality and certainty, nature the criterion for empirical validity and acceptance or rejection of the theory.

The work of historians and philosophers of science notwithstanding, it is widely assumed by the scientific community that modern science is objective, value-free, and context-free knowledge of the external world. To the extent to which the sciences can be reduced to this mechanistic mathematical model, the more legitimate they become as sciences. Thus
the reductionist hierarchy of the validity of the sciences first proposed in the nineteenth century by French positivist philosopher August Comte is still widely assumed by intellectuals, the most mathematical and highly theoretical sciences occupying the most revered position.

The mechanistic approach to nature is as fundamental to the twentieth-century revolution in physics as it was to classical Newtonian science, culminating in the nineteenth-century unification of mechanics, thermodynamics, and electromagnetic theory. Twentieth-century physics still views the world in terms of fundamental particles—electrons, protons, neutrons, mesons, muons, pions, taus, thetas, sigmas, pis, and so on. The search for the ultimate unifying particle, the quark, continues to engage the efforts of the best theoretical physicists.

Mathematical formalism isolates the elements of a given quantum mechanical problem, places them in a latticelike matrix, and rearranges them through a mathematical function called an operator. Systems theory extracts possibly relevant information bits from the environmental context and stores them in a computer memory for later use. But since it cannot store an infinite number of “facts,” it must select a finite number of potentially relevant pieces of data according to a theory or set of rules governing the selection process. For any given solution, this mechanistic approach very likely excludes some potentially relevant factors.

Systems theorists claim for themselves a holistic outlook, because they believe that they are taking into account the ways in which all the parts in a given system affect the whole. Yet the formalism of the calculus of probabilities excludes the possibility of mathematizing the gestalt—that is, the ways in which each part at any given instant take their meaning from the whole. The more open, adaptive, organic, and complex the system, the less successful is the formalism. It is most successful when applied to closed, artificial, precisely defined, relatively simple systems. Mechanistic assumptions about nature push us increasingly in the direction of artificial environments, mechanized control over more and more aspects of human life, and a loss of the quality of life itself.

HOLISM

Holism was proposed as a philosophical alternative to mechanism by J. C. Smuts in his book Holism and Evolution (1926), in which he attempted to define the essential characteristics of holism and to differentiate it from nineteenth-century mechanism. He attempts to show that

Taking a plant or animal as a type of whole, we notice the fundamental holistic characters as a unity of parts which is so close and intense as to be more than a sum of its parts; which not only gives a particular conformation or structure to the parts but so relates functions are altered; they function toward the recprocally influence and merge their individual chi

Smuts saw a continuum of re mixtures and chemical comp unity among parts was affect a process of creative syn dynamic, evolutionary, creati not be purely mechanical; a place and justification only i

The most important ec science of ecology. Although ophy of nature, holism, is no na have been assumed by in living in equilibrium wit processes, of the interconnec nature is active and alive are: No element of an interlockin of the cycle. The parts themes: Each particular part is define cycle itself is a dynamic inten is a dialectical relation betwe consider the complexities an simplified systems that can b tion distorts the whole.

External forces and stres or man made, can make some own natural oscillations. Dep bance, the metabolic and repr the cycle, and the complexity absorb the stresses without ca lizations which have put too have caused long-term or irre

CONCLUSION

By pointing up the essential r part is removed the system i moved in the direction of t contributes equal value to the
The sciences first proposed in philosopher August Comte is most mathematical and highly red position.

as fundamental to the twenti-classical Newtonian science,

ation of mechanics, thermo-

nieth-century physics still articles—electrons, protons, sigmas, pis, and so on. The mark, continues to engage the

ments of a given quantum elike matrix, and rearranges an operator. Systems theory in the environmental context later use. But since it cannot t select a finite number of to a theory or set of rules n solution, this mechanistic ly relevant factors.

a holistic outlook, because t the ways in which all the formalism of the calculus homatizing the gestalt—that tant take their meaning from and complex the system, the successful when applied to simple systems. Mechanistic n in the direction of artificial and more aspects of human
to the parts but so relates and determines them in their synthesis that their functions are altered; the synthesis affects and determines the parts so that they function toward the “whole”; and the whole and the parts therefore reciprocally influence and determine each other and appear more or less to merge their individual characters. Smuts saw a continuum of relationships among parts from simple physical mixtures and chemical compounds to organisms and minds in which the unity among parts was affected and changed by the synthesis. “Holism is a process of creative synthesis; the resulting wholes are not static, but dynamic, evolutionary, creative...The explanation of nature can therefore not be purely mechanical; and the mechanistic concept of nature has its place and justification only in the wider setting of holism.”

The most important example of holism today is provided by the science of ecology. Although ecology is a relatively new science, its philosophy of nature, holism, is not. Historically, holistic presuppositions about nature have been assumed by communities of people who have succeeded in living in equilibrium with their environments. The idea of cyclical processes, of the interconnectedness of all things, and the assumption that nature is active and alive are fundamental to the history of human thought. No element of an interlocking cycle can be removed without the collapse of the cycle. The parts themselves thus take their meaning from the whole. Each particular part is defined by and dependent on the total context. The cycle itself is a dynamic interactive relationship of all its parts, and process is a dialectical relation between parts and whole. Ecology necessarily must consider the complexities and the totality. It cannot isolate the parts into simplified systems that can be studied in a laboratory because such isolation distorts the whole.

External forces and stresses on a balanced ecosystem, whether natural or man made, can make some parts of the cycle act faster than the systems' own natural oscillations. Depending on the strength of the external disturbance, the metabolic and reproductive reaction rates of the slowest parts of the cycle, and the complexity of the system, it may or may not be able to absorb the stresses without collapsing. At various times in history, civilizations which have put too much external stress on their environments have caused long-term or irrevocable alterations.

CONCLUSION

By pointing up the essential role of every part of an ecosystem, that if one part is removed the system is weakened and loses stability, ecology has moved in the direction of the leveling of value hierarchies. Each part contributes equal value to the healthy functioning of the whole. All living
things, as integral parts of a viable ecosystem, thus have rights. The necessity of protecting the ecosystem from collapse due to the extinction of vital members was one argument for the passage of the Endangered Species Act of 1973. The movement toward egalitarianism manifested in the democratic revolutions of the eighteenth century, the extension of citizens' rights to blacks, and finally, voting rights to women was thus carried a step further. Endangered species became equal to the Army Corps of Engineers: the snail darter had to have a legal hearing before the Tellico Dam could be approved, the Furbish housewort could block construction of the Dickey-Lincoln Dam in Maine, the red-cockaded woodpecker must be considered in Texas timber management, and the El Segundo Blue Butterfly in California airport expansion.

The conjunction of conservation and ecology movements with women's rights and liberation has moved in the direction of reversing both the subjugation of nature and women. In the late nineteenth and early twentieth centuries, the strong feminist movement in the United States began in 1842 pressed for women's suffrage first in the individual states and then in the nation. Women activists also formed conservation committees in the many women's organizations that were part of the Federation of Women's Clubs established in 1890. They supported the preservationist movement for national, state, and city parks and wilderness areas led by John Muir and Frederick Law Olmsted, eventually splitting away from the managerial wing headed by Gifford Pinchot and Theodore Roosevelt.18

Today the conjunction of the women's movement with the ecology movement again brings the issue of liberation into focus. Mainstream women's groups such as the League of Women Voters took an early lead in studying and pressing for clean air and water legislation. Socialist-feminist and “science for the people” groups worked toward revolutionizing economic structures in a direction that would equalize female and male work options and reform a capitalist system that creates profits at the expense of nature and working people.

The March 1979 accident at the Three-Mile Island nuclear reactor near Harrisburg, Pennsylvania, epitomized the problems of the “death of nature” that have become apparent since the Scientific Revolution. The manipulation of nuclear processes in an effort to control and harness nature through technology backfired into disaster. The long-range economic interests and public image of the power company and the reactor's designer were set above the immediate safety of the people and the health of the earth. The hidden effects of radioactive emissions, which by concentrating in the food chain could lead to an increase in cancers over the next several years, were initially downplayed by those charged with responsibility for regulating atomic power.

Three-Mile Island is a recent symbol of the earth's sickness caused by radioactive wastes, pesticides, and carbon emissions. The pollution "to the Scientific Revolution of interchangeability at "penetrating" into her inn putified," can probably even reverse the mainstream val this sense, the world must

As natural resources will become essential to adopting new social styles, Decentralization, nonhierarchies, wastes, simpler living styles and labor-intensive rather possibilities only beginning energy and resources amon tion of human and natural may be crucial if people an

NOTES

2. For examples, see Modern Science (Gra Derrick, The Delicate Crock Greenwich, Conn.: Devi niores and in metallurgy, see Stephan Corrin (New York) On the divergence between see Yi-Fu Tuan, "Our Trea American Scientist (May-1968); Lisa Jardine, From Mag 1668); Lisa Jardine, Fran (Cambridge, England: C Farrington, Francis Bacon)
system, thus have rights. The collapse due to the extinction passage of the Endangered egalitarianism manifested in 19th century, the extension of ng rights to women was thus came equal to the Army Corpsegal hearing before the Tellico wort could block construction d-cockaded woodpecker must, and the El Segundo Blue id ecology movements with the direction of reversing both the late nineteenth and early ovement in the United States e first in the individual states formed conservation committ were part of the Federation of supported the preservationist is and wilderness areas led by actually splitting away from the rford Pinchot and Theodore's movement with the ecology ation into focus. Mainstream Voters took an early lead in legislation. Socialist-feminist d toward revolutionizing eco-equalize female and male work creates profits at the expense of Mile Island nuclear reactor near problems of the “death of nature” ific Revolution. The manipula-rol and harness nature through g-range economic interests and the reactor's designer were set health of the earth. The rich by concentrating in the food ver the next several years, were th responsibility for regulating of the earth’s sickness caused by radioactive wastes, pesticides, plastics, photochemical smog, and fluorocarbons. The pollution “of her purest streams” has been supported since the Scientific Revolution by an ideology of “power over nature,” an ontology of interchangeable atomic and human parts, and a methodology of “penetration” into her innermost secrets. The sick earth, “yea dead, yea putrified,” can probably in the long run be restored to health only by a reversal of mainstream values and a revolution in economic priorities. In this sense, the world must once again be turned upside down.

As natural resources and energy supplies diminish in the future, it will become essential to examine alternatives of all kinds so that, by adopting new social styles, the quality of the environment can be sustained. Decentralization, nonhierarchical forms of organization, recycling of wastes, simpler living styles involving less-polluting “soft” technologies, and labor-intensive rather than capital-intensive economic methods are possibilities only beginning to be explored. The future distribution of energy and resources among communities should be based on the integration of human and natural ecosystems. Such a restructuring of priorities may be crucial if people and nature are to survive.

NOTES

2. Treatments of Francis Bacon's contributions to science include Paolo Rossi, Francis Bacon: From Magic To Science (London: Routledge & Kegan Paul, 1969); Lisa Jardine, Francis Bacon: Discovery and the Art of Discourse (Cambridge, England: Cambridge University Press, 1974); Benjamin Farrington, Francis Bacon, Philosopher of Industrial Science (New York:
Ecofeminism

5. Rossi, p. 21; Leib, p. 56; Bacon, Works, vol. 4, p. 294; Henry Cornelius Agrippa, De Occulta Philosophia Libri Tres (Antwerp, 1531): "No one has such powers but he who has cohabited with the elements, vanquished nature, mounted higher than the heavens, elevating himself above the angels to the archetype itself, with whom he then becomes cooperater and can do all things," as quoted in Frances A. Yates, Giordano Bruno and the Hermetic Tradition (New York: Vintage Books, 1964), p. 136.

The Death of Nature

Royal Society: Concept and Creation

in 1620. Works, vol. 4, p. 20; “The Benjamin Farrington, in The Philar-

of Science,” in Leonard M. Marsak, M-
tion to Society (London: Collier-Mac-

ks, vol. 4, p. 294; Henry Cornelius

Tes (Antwerp, 1531): “No one has
ith the elements, vanquished nature,
ing himself above the angels to the
omes cooperator and can do all
Giordano Bruno and the Hermetic:
p. 136.

orks, vol. 4, p. 247; “Valerius Termi-
e Masculine Birth of Time,” trans.

id “The Refutation of Philosophies,”
. 294; see also Bacon, “Aphorisms,”
. 325; Plato, “The Timaeus,” in The
York: Random House, 1937), vol. 2,
p. 257.

, 287, 343, 393.
p. 4, p. 246; “The Great Instauration,”
the interpretation of Nature or A
rrington, The Philosophy of Francis

pp. 294; “Parasceve,” Works, vol. 4,

Part 4, in E. S. Haldane and G. R. T.

Fla.: Scholar’s Facsimile Reprints,
pp. 9, 87, 13, 56, 104, 10.
Arthur Koestler, “Beyond Holism
on,” in Beyond Reductionism: New
Koestler and J. R. Smythies (Boston:

r, The Closing Circle: Nature, Man,
is, 1971), Chap. 2.

pel of Efficiency: The Progressive
bridge, Mass.: Harvard University

ional Thought,” in Post-Sectar
y, 1971), pp. 57–82, and M. Book-