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Abstract Animals emit visual signals that involve
simultaneous, sequential movements of appendages that
unfold with varying dynamics in time and space. Algo-
rithms have been recently reported (e.g. Peters et al. in
Anim Behav 64:131–146, 2002) that enable quantitative
characterization of movements as optical flow patterns.
For decades, acoustical signals have been rendered by
techniques that decompose sound into amplitude, time,
and spectral components. Using an optic-flow algorithm
we examined visual courtship behaviours of jumping
spiders and depict their complex visual signals as ‘‘speed
waveform’’, ‘‘speed surface’’, and ‘‘speed waterfall’’
plots analogous to acoustic waveforms, spectrograms,
and waterfall plots, respectively. In addition, these
‘‘speed profiles’’ are compatible with analytical tech-
niques developed for auditory analysis. Using examples
from the jumping spider Habronattus pugillis we show
that we can statistically differentiate displays of different
‘‘sky island’’ populations supporting previous work on
diversification. We also examined visual displays from
the jumping spider Habronattus dossenus and show that
distinct seismic components of vibratory displays are
produced concurrently with statistically distinct motion
signals. Given that dynamic visual signals are common,

from insects to birds to mammals, we propose that
optical-flow algorithms and the analyses described here
will be useful for many researchers.

Keywords Motion displays Æ Multimodal
communication Æ Courtship behaviour Æ
Motion analysis

Introduction

Studying animal behaviour often means the analysis of
movements in time and space. While techniques are
readily available for static visual patterns and ornaments
(Endler 1990), this is less so with dynamic sequences of
visual signals (motion displays) (but see Zanker and Zeil
2001).

An extensive literature exists on the study of motion
as it pertains to neural processing, navigation and the
extraction of motion information from visual scenes
(reviewed in Barron et al. 1994; Zanker and Zeil 2001).
In neurobiology in particular, techniques have been
motivated by the need to accurately describe biologi-
cally relevant features of motion as an animal moves
through its environment to identify coding strategies in
the processing of visual information (Zanker 1996; Zeil
and Zanker 1997; Zanker and Zeil 2001; Eckert and
Zeil 2001; Tammero and Dickinson 2002). While these
studies have been integral to an examination of visual
processing, such techniques have limited application in
studies of behavioural ecology and communication as
they do not provide simple, intuitive depictions of
motion for quantification and comparison. Another
extensive body of literature on the analysis of motion
exists in the study of biomechanics, particularly in the
kinematics of limb motion (Tammero and Dickinson
2002; Jindrich and Full 2002; Nauen and Lauder 2002;
Vogel 2003; Fry et al. 2003; Alexander 2003; Hedrick
et al. 2004). Such techniques could, in principle,
provide extensive information on motion signals but
these computationally intensive approaches may not
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efficiently capture aspects of visual motion signals that
are most relevant in the context of communication
signals. In addition, both techniques present the
experimenter with large data sets and it is often
desirable to reduce the data in order to glean relevant
information.

In particular, Peters et al.(2002) (Peters and Evans
2003a, b) have provided a significant advance in the
analysis of motion signals in communication. Peters
et al. (2002) described powerful techniques for the
analysis of visual motion as optical flow patterns in an
attempt to demonstrate that signals are conspicuous
against background motion noise (Peters et al. 2002;
Peters and Evans 2003a, b). Here we build upon these
pioneering techniques by making use of these previous
algorithms to develop another depiction of visual signals
and use these to analyse courtship displays of jumping
spiders from the genus Habronattus. In addition, we
show that optical flow approaches are suitable for
quantification and classification by methods equivalent
to audio analysis (Cortopassi and Bradbury 2000).

Male Habronattus court females by performing an
elaborate sequence of temporally complex motions of
multiple colourful body parts and appendages (Peck-
ham and Peckham 1889, 1890; Crane 1949; Forster
1982b; Jackson 1982; Maddison and McMahon 2000;
Elias et al. 2003). Habronattus has recently been used
as a model to study species diversification (Masta
2000; Maddison and McMahon 2000; Masta and
Maddison 2002; Maddison and Hedin 2003; Hebets
and Maddison 2005) and multicomponent signalling
(Maddison and Stratton 1988; Elias et al. 2003, 2004,
2005). In these studies there has been an implicit
assumption that qualitative differences in dynamic visual
courtship displays can reliably distinguish among
species (Richman 1982), populations (Maddison 1996;
Maddison and McMahon 2000; Masta and Maddison
2002; Maddison and Hedin 2003; Hebets and Maddi-
son 2005), and seismic signalling components (Elias
et al. 2003, 2004, 2005). It has yet to be determined,
however, whether such qualitative differences can stand
up to rigorous statistical comparisons (Walker 1974;
Higgins and Waugaman 2004). To test hypotheses on
signal evolution and function it is crucial to under-
stand the signals in question. Thus it is necessary to
test whether qualitative signal categories are consis-
tently different.

Our method reduces the dimensionality of visual
motion signals by integrating over spatial dimensions to
derive patterns of motion speed as a function of time.
This method may not be adequate for some classes of
signal (e.g. which differ solely in position or direction of
motion components). Our results demonstrate, however,
that for many signals this technique allows objective
quantitative comparisons of complex visual motion
signals. This will potentially provide a wide range of
useful behavioural measures to a variety of disciplines
from systematics and behavioural ecology to neurobi-
ology and psychology.

Methods

Spiders

Male and female H. pugillis and H. dossenus were field
collected from different mountain ranges in Arizona
(Atascosa—H. dossenus and H. pugillis; Santa Cata-
lina—H. pugillis; Santa Rita—H. pugillis; Galiuro—H.
pugillis). Animals were housed individually and kept in
the lab on a 12:12 light:dark cycle. Once a week, spiders
were fed fruit flies (Drosophila melanogaster) and juve-
nile crickets (Acheta domesticus).

Recording procedures

Recording procedures were similar to a previous study
(Elias et al. 2003). We anaesthetized female jumping
spiders with CO2 and tethered them to a wire from the
dorsum of the cephalothorax with low melting point
wax. We held females in place with a micromanipulator
on a substrate of stretched nylon fabric (25·30 cm). This
allowed us to videotape male courtship from a predict-
able position, as males approach and court females in
their line of sight. Males were dropped 15 cm from the
female and allowed to court freely. Females were awake
during courtship recordings. Recordings commenced
when males approached females. ForH. pugillis, we used
standard video taping of courtship behaviour (30 fps,
Navitar Zoom 7000 lens, Panasonic GP-KR222, Sony
DVCAM DSR-20 digital VCR) and then digitized the
footage to computer using Adobe Premiere (San Jose,
CA, USA) with a Cinepak codec. Video files were stored
as *.avi files. For H. dossenus, we used digital high-speed
video (500 fps, RedLake Motionscope PCI 1000, San
Diego, CA, USA) acquired using Midas software (Xci-
tex, Cambridge, MA, USA). We selected suitable video
clips of courtship behaviour based on camera steadiness
and length of behavioural displays (<350 frames). For
the H. pugillis analysis, courtship segments from several
individuals were used (Santa Catalina, N=5; Galiuro,
N=8; Santa Rita, N=6; Atascosa, N=4). The camera
was positioned approximately 30� from a zero azimuth
position (‘‘head-on’’) (azimuthal range 10�–70�). For the
H. dossenus analysis, different signal components from
different individuals (N=5) were analysed. The camera
was positioned approximately 90� from a zero azimuth
position (azimuthal range 75�–95�). It was difficult to
predict precisely the final courtship position of the ani-
mals since males sometimes did not court the female
‘‘head-on’’, so we included a wide range of camera angles
in the analysis. All further analysis was conducted using
Matlab (The Mathworks, Natick, MA, USA).

Motion analysis

The mathematical methods used for motion analysis
are explained in the next few paragraphs. Full Matlab
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programs for each analysis step are available at
http://www.nbb.cornell.edu/neurobio/land/PROJECTS/
MotionDamian/

Cropping/intensity normalization

Video sequences were shot at either 30 (H. pugillis) or
500 fps (H. dossenus). High-speed sequences (500 fps)
were reduced to 250 fps for analysis and the intensity of
each frame normalized because the high-speed camera
automatic gain control tended to oscillate slightly.
Normalization (PN) was achieved by the following
equation:

PN = PO
PAvg

PFAvg

� �0.75
;

where PN is the normalized pixel intensity, PO is the
original individual pixel intensity, PAvg is the mean pixel
value for the whole video sequence, and PFAvg is the
mean pixel intensity value in the individual frame.
Frames were cropped so that the animal was completely
within and spanned nearly the entirety (>75%) of the
frame.

Optical flow calculation

The details of this algorithm are published elsewhere
(Barron et al. 1994; Zeil and Zanker 1997; Peters et al.
2002). Briefly, we used a simple gradient optical flow
scheme to estimate motion. If a 2-dimensional (2D)
video scene includes edges, intensity gradients, or
textures, motion in the video scene (as an object sweeps
past a given pixel location) can be represented as
changing intensity at that pixel. Intensity changes can
thus be used to summarize motion from video segments.
Such motion calculations are widely used in robotics and
machine vision to analyse video sequences (e.g. http://
www.ifi.unizh.ch/groups/ailab/projects/sahabot/).

Our video data were converted into an N·M·T
matrix where N is the number of pixels in the horizontal
direction, M is the number of pixels in the vertical
direction, and T is the number of video frames. The 3D
matrix was smoothed with a 5·5·5 Gaussian convolu-
tion kernel with a standard deviation of one pixel
(Barron et al. 1994). Derivatives in all three directions
were computed using a second-order (centred, 3-point)
algorithm. This motion estimate is based on the
assumption that pixel intensities only change from
frame-to-frame because of motion of objects passing by
the pixels. The local speed estimate (vg) was calculated as
follows:

vg ¼ �
ðrIÞ ðdI=dtÞ
jjðrIÞjj2

;

where vg is the local object velocity estimate in the
direction of the spatial intensity gradient, I is an array of

intensities of pixels, t is the frame number, and || is the
magnitude operator (Barron et al. 1994). The local speed
estimate is defined as the magnitude of vg.

Speed profile plots

The speed waveform is a simple average of the local
speed estimates (vg) for objects over all pixels in the
frame (Peters and Evans 2003a). We also defined a speed
surface (analogous to a spectrogram). The speed surface
is a 2D plot with frame number on the x-axis, pixel
speed bins on the y-axis, and the colour in each bin
related to the log of the number of pixels moving at that
speed. In other words, at each frame, we plotted a his-
togram of the number of pixels showing movement at a
particular speed range. Both of these plots represented
the complete speed profiles of each video clip. We also
constructed a speed ‘‘waterfall’’ plot which represents
the speed surface as a 3-dimensional (3D) plot, with the
z-axis showing the log of the number of pixels associated
with a speed bin in any given frame.

Maximum cross-correlation of 1D and 2D signals

Similarity between speed profiles was computed by
normalized cross-correlation of pairs of sample plots
(with periodic wrapping of samples). Waveforms being
compared were padded with the mean of the sequence,
so that the shorter one became the same length as the
longer one. Both speed waveforms and speed surfaces
were analysed, using a 1-dimensional (1D) correlation
for the speed waveforms and a 2D correlation (with
shifts only along time) for the speed surfaces. For the
next stage of the analysis, we used a measure of
dissimilarity (1.0 minus the maximum correlation) as a
distance measure to construct a matrix of distances
between all pairs of signals.

Multidimensional scaling (MDS)

The distance (dissimilarity) matrix was used as input for
a MDS analysis (Cox and Cox 2001). MDS provides an
unbiased, low dimensional representation of the struc-
ture within a distance matrix. A good fit will preserve the
rank order of distances between data points and give a
low value of stress, a measure of the distance distortion.
MDS analysis normally starts with a 1D fit and increases
the dimensionality until the stress levels plateau at a low
value. A Matlab subroutine was used (Steyvers, M.,
http://www.psiexp.ss.uci. edu/research/ software.htm) to
perform the MDS. We used an information theoretic
analysis on the entropy of clustering (Victor and Pur-
pura 1997) on both the 1D and 2D correlations and
determined that more information was contained in the
1D correlation (data not shown); hence, all further
analyses were performed on the 1D correlation matrices.
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We fitted our data from one to five dimensions. Most of
the stress reduction (S1) occurred at either two or three
dimensions (H. pugillis: 1st dimension, S1=0.38,
R=0.68; 2nd dimension, S1=0.23, R=0.78; 3rd
dimension, S1=0.15, R=0.84; 4th dimension, S1=0.12,
R=0.88; 5th dimension, S1=0.09, R=0.89; H. dossenus:
1st dimension, S1=0.32, R=0.69; 2nd dimension,
S1=0.19, R=0.81; 3rd dimension, S1=0.12, R=0.88;
4th dimension, S1=0.09, R=0.92; 5th dimension,
S1=0.07, R=0.93), hence all further analysis was per-
formed on 3D fits. Plots of the various signals in MDS-
space showed strong clustering. The axes on the MDS
analysis reflect the structure of the data; we therefore
performed a one-way ANOVA along different dimen-
sions to calculate statistical significance of the clustering.
A Tukey post hoc test was then applied to compare
different populations (H. pugillis) and signal compo-
nents (H. dossenus). All statistical analyses were per-
formed using Matlab.

Results

Motion algorithm calibration

In order to test the performance of the motion algorithm
against a predictable and controllable set of motion
signals, we simulated rotation of a rectangular bar
against a uniform background using Matlab. Texture
was added to the bar in the form of four nonparallel
stripes (Fig. 1a). We programmed the bar to pivot
around one end using sinusoidal motion. We then sys-
tematically varied the width (w) and length (l) of the bar,
as well as the frequency (F) and amplitude (A) of the
motion (Fig. 1a).

The three examples in Fig. 1 show the effect of a step-
change in frequency (F), amplitude (A) and bar length
(l), respectively (Fig. 1b–d). In each case, the analysis
depicts the temporal structure of the simulated move-
ment very well (Fig. 1). As frequency, amplitude, or bar
length increase, the computed average speed increases
predictably (see below). The speed waveform and sur-
face plots show that more pixels ‘‘move’’ at higher
speeds after the step increase. This detailed shape is
depicted particularly well in the surface plot.

The amplitude of the average motion of the simulated
bar is related to the amplitude of the input wave and its
frequency by a square law. [Fig. 1b(iv), c(iv)]. Detailed
examination of the image sequence suggests that at
higher speeds, the motion in a video clip ‘‘skips pixels’’
between frames, hence this square law is a result of the
product of the speed measured at each pixel (which is
linear) multiplied by the greater number of pixels aver-
aged into the motion at higher speeds. The amplitude of
the average motion of the simulated bar is related to bar
length by a cube law. [Fig. 1d(iv)]. This results from the
aforementioned square law increased by another linear
factor, i.e. the number of pixels covered by the edge of
the bar. Both bar width and texture change average

motion amplitude only weakly (data not shown). This
small change in average motion can be attributed to the
increase in the total length of edge contours.

We also modelled amplitude (AM) and frequency
(FM) modulated movement by animating a rotating bar
at a fixed carrier frequency and either AM or FM
modulating the carrier. The carrier and modulating
frequencies are clearly discernable for both AM
(Fig. 2a) and FM (Fig. 2b) movements in all the speed
profiles. AM and FM movements are also easily dis-
tinguishable from one another. Both simple (sinusoidal)
and complex (modulated) motions are thus faithfully
and accurately reflected in the analysis.

Habronattus pugillis populations

H. pugillis is found in the Sonoran desert and local
populations on different mountain ranges (‘‘sky
islands’’) have different ornaments, morphologies,
and courtship displays (Masta 2000; Maddison and
McMahon 2000; Masta and Maddison 2002). Courtship
displays from four different populations of H. pugillis
are plotted in Fig. 3. Several repeating patterns are
apparent, especially in Galiuro (Fig. 3a), Atascosa
(Fig. 3c), and Santa Catalina (Fig. 3d) populations. By
comparing videos of courtship behaviour with their
corresponding speed profiles, we verified that features in
the speed profiles corresponded to qualitatively identi-
fiable components of the motion display. For example,
in the Atascosa speed profiles (Fig. 3c), high amplitude
‘‘pulses’’ (e.g. frames 130–150) correspond to single
leg flicks and lower amplitude ‘‘pulses’’ (e.g. frames
150–200) correspond to pedipalp and abdominal move-
ments. Speed profiles also reveal more subtle features of
motion displays. For example, animals from the Santa
Rita mountains make circular movements with their
pedipalps during courtship (Maddison and McMahon
2000). It is evident from the speed surface (Fig. 3b,
frames 0–200) that this behaviour does not occur in a
smooth motion, but rather as a sequence of brief
punctuated, jerky movements (Fig. 3b).

Different populations of H. pugillis vary in behavio-
ural and morphological characters (Maddison and
McMahon 2000). We evaluated two populations that
include unique movement display characters [Galiuro—
First leg wavy circle, Santa Rita—Palp motion (circling)]
and two that have similar courtship display characters
[Atascosa and Santa Catalina—Late-display leg flick
(single)] (Maddison and McMahon 2000). Santa Catalina
spiders include the rare Body shake motion character, but
this was not analysed (Maddison and McMahon 2000).
Using MDS, all four groups can be discriminated from
each other by the speed profiles (Fig. 4). Clustering was
strong for all population classes. In order to evaluate the
significance of each cluster we performed a one-way
ANOVA on dimension 1 (F3,19=25.61, P=6.9·10�7) and
saw that the Santa Catalina population was significantly
different from the Galiuro (P<0.001) and Santa Rita
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Fig. 1 Simulated movements. a A bar of fixed length (l), width (w)
and starting angle (h) was simulated and rotated sinusoidally at a
fixed peak-to-peak amplitude of A and frequency (F). The
frequency (b), amplitude (c), and bar length (d) were then
systematically changed. The time-course of the corresponding

stimulus parameters are shown in panel i. Panels ii–iv show the
resulting analysis of the simulated movement and step changes: 2D
‘‘speed waveform’’ plots (ii), 3D ‘‘speed surface’’ plots (iii) and 3D
‘‘speed waterfall plots’’ (iv); and summary of simulated motion
amplitude as different parameters are changed (v)
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(P<0.05) populations but not from the Atascosa popu-
lation (P>0.05) [Fig. 4a(ii)]. Also, the Galiuro population
was significantly different from the Santa Rita (P<0.01)

and Atascosa (P<0.001) populations and the Santa Rita
population was significantly different from the Atascosa
population (P<0.05) [Fig. 4a(ii)]. Performing the same
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AM and FM motion is easily distinguishable in the analysis
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analysis on dimension 3 (F3,19=3.68, P=0.0303), the
Santa Catalina and Atascosa populations are significantly
different (P<0.05) [Fig. 4b(ii)]. No other differences can
be observed along dimension 3 (P>0.05, Fig. 4b). Hence,
all population classes are statistically distinguishable in at
least one of the dimensions used in the analysis.

Habronattus dossenus signals

Courtship displays from five different individuals were
selected and the visual component of different seismic
signals recorded (scrape, N=5; thump, N=10; buzz,
N=5) for each individual spider (Elias et al. 2003). Two
classes of thumps, distinguishable by their seismic
component, were selected for each individual but were
not distinguishable based on their speed profiles, hence
they were combined into one class (Elias et al. 2003).
First we plotted the speed profiles for each of the signal
classes (Fig. 5). Speed surfaces capture relatively subtle
details of movements. For example, during individual
scrape signals the forelegs first come down followed by
abdominal movement upward (Elias et al. 2003)
(Fig. 5a). Individual scrapes produce a rocking motion
that can be observed clearly in the speed surface as
a characteristic double peak (e.g. 1–3 in Fig. 5a).
Furthermore, individual abdominal oscillations are
resolved in the buzz speed surface (Fig. 5c).

To test whether this technique could distinguish
among the three qualitative signal classes, we applied the
same analysis described above. Clustering was strong for
all signal classes. A one-way ANOVA on dimension 1
(F2,18=20.66, P=2.2·10�5) showed that scrapes are
significantly different from thumps (P<0.001) and buzzes
(P<0.05) (Fig. 6) and thumps are significantly different
from buzzes (P<0.05) (Fig. 6). Hence, all signal classes
are statistically distinguishable in the full analysis.

Spatial information

Our analysis technique extracts temporal patterns and
integrates over spatial dimensions. For comparison, we
derived summaries of spatial patterns of image motion,
integrated over time, for representative signals (Fig. 7).
Although we did not carry out quantitative analyses on
spatial data, some general features are apparent. There
are clear differences between the signal examples in the
location of motion within the video frame (Fig. 7 left
panels), although some features are obscured in displays
where leg flick motions are superimposed on the move-
ment of the entire animals (Fig. 7b). Summaries of the
motion orientation are more difficult to interpret (Fig. 7
centre panels). This is most likely due to the fact that
many of the movements are cyclical (rotation or back-
and-forth movement). Speed isoform plots are 3D plots
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that (Fig. 7 right panels) show location of motion within
the video frame with time on the z-axis. These plots
parallel the speed surface plots used in the analyses
above, but whereas speed surface plots depict the dis-
tribution of motion speed (amplitude) as a function of
time, speed isoform plots depict the location of image
motion as a function of time. These could, in principle,
be analysed similarly to the speed profiles above.

Discussion

Jumping spiders communicate using a complex reper-
toire of visual ornaments and dynamic visual (motion)
signals (Jackson 1982; Forster 1982b). Here we use
optical flow techniques for the depiction and quantifi-
cation of motion signals and use the technique as the
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basis of a statistical analysis to assess motion signals in
jumping spiders.

Quantitative analysis of courtship signals

‘‘Sky island’’ populations

We examined variation in the courtship displays of
different ‘‘sky island’’ populations of H. pugillis
(Maddison and McMahon 2000; Masta 2000; Masta
and Maddison 2002). By calculating the differences
between the speed profiles of displays from different
populations, we were able to show that courtship
displays were different between all of the populations
studied. We could easily distinguish between popula-
tions with unique display elements [Galiuro—First leg
wavy circle, Santa Rita—Palp motion (circling)]
(Maddison and McMahon 2000). Importantly, we could
also discriminate the Santa Catalina and Atascosa
populations that had qualitatively similar late stage
visual displays (Late-display leg flick) (Fig. 4b). Maddi-
son and McMahon (2000) in their initial descriptions
and analysis of courtship coded this display as being the
same between spiders from the Santa Catalina and
Atascosa Mountains. Masta and Maddison (2002)
demonstrated that fixation rates between neutral (mito-
chondrial genes) and male phenotypic traits (morpho-
logical and behavioural characters) were different and
used this as evidence to suggest that sexual selection was
driving diversification in H. pugillis. This study not only
supports those previous studies, but also suggests that
male courtship phenotypes are fixed to an even greater
extent than previously demonstrated.

Multicomponent signals

Elias et al. (2003) showed that males in the jumping
spider H. dossenus produced at least three different

seismic signals all coordinated with motion signals.
Given the strict coordination of seismic and motion
signals, the authors suggested that the signal components
in different modalities are functionally linked (Elias et al.
2003). If emergent properties of the multimodal signal
(seismic and visual) are important, one would predict
that unique seismic components would have unique
motion components. Similar predictions can be made if
unique motion displays serve to focus attention on
corresponding seismic components (Hasson 1991). Dis-
tinct motion signals would function to prevent habitu-
ation and ensure attention to seismic components (Hall
and Channel 1985; Dill and Heisenberg 1995; Post and
von der Emde 1999; Busse et al. 2005). We measured
different motion signals and found that distinct seismic
signals occurred with specific motion signals suggesting
inter-signal interactions either to focus attention or to
construct integrative signals (Partan and Marler 1999,
2005; Hebets and Papaj 2005). While this is not a con-
clusive test on whether there exist inter-signal interac-
tions, it is suggestive that selection has worked on the
integrated multicomponent, multimodal signal.

Overall implications and limitations

In general, there are many potential applications of this
technique for measuring motion signals. Any aspect of
the repeated motion patterns can be measured (i.e.
intervals between patterns, duration of patterns, maxi-
mum and minimum motion of patterns, etc.) for use in
subsequent analysis, and multiple aspects of the speed
profiles can be treated simultaneously in multivariate
analyses.

Rigorous classification techniques are desirable in
many disciplines particularly in studies of animal com-
munication. For example, at the level of entire courtship
displays, this could be used to identify motion parame-
ters as characters for phylogenetic analyses. At the level
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of individual signals, this is potentially useful in evalu-
ating natural variation in signals (Ryan and Rand 2003)
and as a way to measure signal complexity (e.g. how
many categories of visual signals can be objectively
discriminated). These techniques could also be valuable
in comparative studies. For example, closely related
species that signal in different visual environments could
be compared to investigate the effect of the visual envi-
ronment on the design of motion displays (Endler 1991,
1992; Peters et al. 2002; Peters and Evans 2003a, b).

This method of constructing speed profiles severely
reduces the information present in the original video-
tapes. Optic flow analyses reduce video data to essen-
tially five dimensions (speed, speed spatial distribution,
orientation, orientation spatial distribution, and time)
(Zeil and Zanker 1997; Zanker and Zeil 2001; Peters
et al. 2002). Some of these other motion parameters have
been used in other systems (Peters et al. 2002; Peters and
Evans 2003a, b). We chose to concentrate on speed and
time since jumping spider displays can be very complex
and often include the movement of various body parts
(forelegs, third leg patella, pedipalps) superimposed
upon the movement of the entire spider (Fig. 7). Any of
these dimensions however can be plotted for jumping
spider displays (Fig. 7). Speed and time parameters may
be especially important in jumping spiders due to the
structure of their visual system. Jumping spiders have
two categories of eyes: primary eyes which have a

small field of view and are specialized for fine spatial
resolution, and secondary eyes which have a large field
of view are specialized for motion detection (Land 1969,
1985; Land and Nilsson 2002). Motion signals would
most likely stimulate secondary eyes and therefore tim-
ing and not spatial location is likely to be important
since secondary eyes integrate over a wide field of view
(Forster 1982a, b; Land 1985). This hypothesis remains
to be tested and it is possible that jumping spiders are
reducing the visual field into timing information (input
from the secondary eyes) and spatial information (input
from the primary eyes) independently. In this scenario,
our use of speed and timing parameters would match
‘‘data reductions’’ performed by secondary eyes. This
underlines the importance of picking the correct data
reduction strategy based on insights from sensory
physiology and behaviour. Combining both spatial and
temporal analyses with an analysis on the primary and
secondary eye fields of view could give insights into how
information is channelled into the nervous system
(Strausfeld et al. 1993). Complex motion signals in dif-
ferent communication systems may be specialized for
different dimensions. By combining our technique with
alternative analyses that focus on spatial rather than
temporal motion patterns, it may be possible to develop
a battery of analytical approaches to identify and
analyse the salient parameters of a wide range of
complex visual motion displays.
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Regardless of this data reduction, distinct signal
categories can still be discriminated using average speed
and time parameters. The sheer complexity of motion
displays makes data reduction attractive and we feel that
this method reduces the data while constructing accurate,
intuitive depictions of the structure and timing of motion
displays in a way that may be biologically meaningful to
the organism in question. While other parameters are no
doubt important, we feel that using speed parameters and
time allows one to easily observe repeating patterns in a
way that is difficult in other parameter spaces (Fig. 7).

One potential limitation in this technique is the con-
founding effect of the number of edges on total motion.
For example, if a moving appendage differed between
two species solely in the number of stripe patterns, then
for equivalent leg movements, our analysis would record
a higher motion signal for the animal with more stripes.
Such a difference in recorded motion signals due to
ornaments could, however, reflect true differences in the
perceived signal at the receiver. Neural processing of
motion in animal brains is based on the movement of
edges defined by luminance contrast and not edges de-
fined by chromatic contrast. Edges defined by chromatic
contrast are usually not perceived by animals; thus, total
edge motion is total motion (Borst and Egelhaaf 1993).
Therefore our algorithm analyses motion in a biological
way.

By expanding the technique developed by Peters et al.
(2002), we have developed a novel way to visualize
motion data analogous to spectrogram representations
of auditory data as well as demonstrating statistical
techniques for analysing motion data. This study dem-
onstrates the utility of using optic flow techniques to
reduce and analyse motion in a variety of contexts (Zeil
and Zanker 1997; Zanker and Zeil 2001; Peters et al.
2002; Peters and Evans 2003a,b).

Acknowledgements We would like to thank M.C.B. Andrade, C.
Botero, C. Gilbert, J. Bradbury, B. Brennen, M.E. Arnegard, E.A.
Hebets, W.P. Maddison, M. Lowder, Cornell’s Neuroethology
Journal Club, an anonymous reviewer, and members of the Hoy
lab for helpful comments, suggestions, and assistance. Spider
illustrations were generously provided by Margy Nelson. Funding
was provided by NIH and HHMI to RRH (N1DCR01 DC00103),
NSERC to ACM (238882 241419), NIH to BRL, and a HHMI Pre-
Doctoral Fellowship to DOE. These experiments complied with
‘‘Principles of animal care’’, publication no. 86–23, revised 1985 of
the National Institute of Health, and also with the current laws of
the country (USA and Canada) in which the experiments were
performed.

References

Alexander RM (2003) Principles of animal locomotion. Princeton
University Press, Princeton

Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optic
flow techniques. IJCV 12:43–77

Borst A, Egelhaaf M (1993) Detecting visual motion: theory and
models. Rev Oculomot Res 5:3–27

Busse L, Roberts KC, Crist RE, Weissman DH, Woldorff MG
(2005) The spread of attention across modalities and space in a
multisensory object. PNAS 102:18751–18756

Cortopassi KA, Bradbury JW (2000) The comparison of har-
monically rich sounds using spectrographic cross-correlation
and principal coordinates analysis. Bioacoustics 11:89–127

Cox TF, Cox MAA (2001) Multidimensional scaling. Chapman
and Hall, Boca Raton

Crane J (1949) Comparative biology of salticid spiders at Rancho
Grande, Venezuela. Part IV an analysis of display. Zoologica
34:159–214

Dill M, Heisenberg M (1995) Visual pattern memory without
shape recognition. Philos Trans R Soc Lond Ser B Biol Sci
349:143–152

Eckert MP, Zeil J (2001) Towards an ecology of motion vision. In:
Zanker JM, Zeil J (eds) Motion vision: computational, neural,
and ecological constraints. Springer, Berlin Heidelberg New
York, pp 333–369

Elias DO, Mason AC, Maddison WP, Hoy RR (2003) Seismic
signals in a courting male jumping spider (Araneae: Salticidae).
J Exp Biol 206:4029–4039

Elias DO, Mason AC, Hoy RR (2004) The effect of substrate on
the efficacy of seismic courtship signal transmission in the
jumping spider Habronattus dossenus (Araneae: Salticidae).
J Exp Biol 207:4105–4110

Elias DO, Hebets EA, Hoy RR, Mason AC (2005) Seismic signals
are crucial for male mating success in a visual specialist jumping
spider (Araneae:Salticidae). Anim Behav 69:931–938

Endler JA (1990) On the measurement and classification of color in
studies of animal color patterns. Biol J Linnean Soc 41:315–352

Endler JA (1991) Variation in the appearance of guppy color
patterns to guppies and their predators under different visual
conditions. Vision Res 31:587–608

Endler JA (1992) Signals, signal conditions, and the direction of
evolution. Am Nat 139:S125–S153

Forster L (1982a) Vision and prey-catching strategies in jumping
spiders. Am Sci 70:165–175

Forster L (1982b) Visual communication in jumping spiders
(Salticidae). In: Witt PN Rovner JS (eds) Spider communica-
tion: mechanisms and ecological significance. Princeton
University Press, Princeton, pp 161–212

Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of
free-flight maneuvers in Drosophila. Science 300:495–498

Hall G, Channel S (1985) Differential effects of contextual change
on latent inhibition and on the habituation of an orientating
response. J Exp Psychol Anim Behav Process 11:470–481

Hasson O (1991) Sexual displays as amplifiers: practical examples
with an emphasis on feather decorations. Behav Ecol 2:189–197

Hebets EA, Maddison WP (2005) Xenophilic mating preferences
among populations of the jumping spider Habronattus pugillis
Griswold. Behav Ecol 16:981–988

Hebets EA, Papaj DR (2005) Complex signal function: developing
a framework of testable hypotheses. Behav Ecol Sociobiol
57:197–214

Hedrick TL, Usherwood JR, Biewener AA (2004) Wing inertia and
whole-body acceleration: an analysis of instantaneous aerody-
namic force production in cockatiels (Nymphicus hollandicus)
flying across a range of speeds. J Exp Biol 207:1689–1702

Higgins LA, Waugaman RD (2004) Sexual selection and variation:
a multivariate approach to species-specific calls and preferences.
Anim Behav 68:1139–1153

Jackson RR (1982) The behavior of communicating in jumping
spiders (Salticidae). In: Witt PN, Rovner JS (eds) Spider com-
munication: mechanisms and ecological significance. Princeton
University Press, Princeton, pp 213–247

Jindrich DL, Full RJ (2002) Dynamic stabilization of rapid hexa-
pedal locomotion. J Exp Biol 205:2803–2823

Land MF (1969) Structure of retinae of principal eyes of jumping
spiders (Salticidae : Dendryphantinae) in relation to visual
optics. J Exp Biol 51:443–470

Land MF (1985) The morphology and optics of spider eyes. In:
Barth FG (ed) Neurobiology of arachnids. Springer, Berlin
Heidelberg New York, pp 53–78

Land MF, Nilsson DE (2002) Animal eyes. Oxford University
Press, Oxford

796



Maddison WP (1996) Pelegrina franganillo and other jumping
spiders formerly placed in the genus Metaphidippus (Araneae:
Salticidae). Bull Mus Comp Zool Harvard Univ 154:215–368

Maddison W, Hedin M (2003) Phylogeny of Habronattus jumping
spiders (Araneae : Salticidae), with consideration of genital and
courtship evolution. Syst Entomol 28:1–21

Maddison W, McMahon M (2000) Divergence and reticulation
among montane populations of a jumping spider (Habronattus
pugillis Griswold). Syst Biol 49:400–421

Maddison WP, Stratton GE (1988) Sound production and associ-
ated morphology in male jumping spiders of the Habronattus
agilis species group (Araneae, Salticidae). J Arachnol 16:199–211

Masta SE (2000) Phylogeography of the jumping spider Habro-
nattus pugillis (Araneae: Salticidae): recent variance of sky is-
land populations? Evolution 54:1699–1711

Masta SE, Maddison WP (2002) Sexual selection driving diversi-
fication in jumping spiders. PNAS 99:4442–4447

Nauen JC, Lauder GV (2002) Quantification of the wake of rain-
bow trout (Oncorhynchus mykiss) using three-dimensional ste-
reoscopic digital particle image velocimetry. J Exp Biol
205:3271–3279

Partan SR, Marler P (1999) Communication goes multimodal.
Science 283:1272–1273

Partan SR, Marler P (2005) Issues in the classification of multi-
modal communication signals. Am Nat 166:231–245

Peckham GW, Peckham EG (1889) Observations on sexual selec-
tion in spiders of the family Attidae. Occas Pap Wisconsin Nat
Hist Soc 1:3–60

Peckham GW, Peckham EG (1890) Additional observations on
sexual selection in spiders of the family Attidae, with some re-
marks on Mr. Wallace’s theory of sexual ornamentation. Occas
Pap Wisconsin Nat Hist Soc 1:117–151

Peters RA, Evans CS (2003a) Design of the Jacky dragon visual
display: signal and noise characteristics in a complex moving
environment. J Comp Physiol A 189:447–459

Peters RA, Evans CS (2003b) Introductory tail-flick of the Jacky
dragon visual display: signal efficacy depends upon duration.
J Exp Biol 206:4293–4307

Peters RA, Clifford CWG, Evans CS (2002) Measuring the struc-
ture of dynamic visual signals. Anim Behav 64:131–146

Post N, von der Emde G (1999) The ‘‘novelty response’’ in an
electric fish: response properties and habituation. Physiol Behav
68:115–128

Richman DB (1982) Epigamic display in jumping spiders (Araneae,
Salticidae) and its use in systematics. J Arachnol 10:47–67

Ryan MJ, Rand AS (2003) Sexual selection in female perceptual
space: how female tungara frogs perceive and respond to
complex population variation in acoustic mating signals. Evo-
lution 57:2608–2618

Strausfeld NJ, Weltzien P, Barth FG (1993) Two visual systems in
one brain: neuropils serving the principle eyes of the spider
Cupiennius salei. J Comp Neurol 328:63–72

Tammero LF, Dickinson MH (2002) The influence of visual
landscape on the free flight behavior of the fruit fly Drosophila
melanogaster. J Exp Biol 205:327–343

Victor JD, Purpura KP (1997) Metric-space analysis of spike
trains: theory, algorithms and application. Netw Comp Neural
8:127–164

Vogel S (2003) Comparative biomechanics: life’s physical world.
Princeton University Press, Princeton

Walker TJ (1974) Character displacement and acoustic insects. Am
Zool 14:1137–1150

Zanker JM (1996) Looking at the output of two-dimensional mo-
tion detector arrays. IOVS 37:743

Zanker JM, Zeil J (2001) Motion vision: computational, neural,
and ecological constraints. Springer, Berlin, Heidelberg, New
York

Zeil J, Zanker JM (1997) A glimpse into crabworld. Vision Res
37:3417–3426

797


	Measuring and quantifying dynamic visual signals in jumping spiders
	Abstract
	Introduction
	Methods
	Spiders
	Recording procedures
	Motion analysis
	Cropping/intensity normalization
	Optical flow calculation
	Speed profile plots
	Maximum cross-correlation of 1D and 2D signals
	Multidimensional scaling \(MDS\)
	Results
	Motion algorithm calibration
	Habronattus pugillis populations
	Fig1
	Fig2
	Fig3
	Habronattus dossenus signals
	Spatial information
	Fig4
	Discussion
	Fig5
	Quantitative analysis of courtship signals
	 ldquo Sky island rdquo  populations
	Multicomponent signals
	Overall implications and limitations
	Fig6
	Fig7
	Acknowledgements
	References
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54

