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Abstract

Classic explanations of variation in mating systems critically depend on variation in

demography. Here, we emphasize how understanding dynamic links between fluctuating

population structure and mating tactics, life history, morphology, and sensory capabil-

ities may be advanced using spiders as models. The impressively diverse range of mating

systems and tactics among spiders, coupled with unique and manipulable aspects of their

biology, may yield important insights into mating system evolution.
1 Introduction

Temporal variation in demography between or within populations has long

been known to play a crucial role in evolutionary processes (Emlen and Oring,

1977; Stamps et al., 1997). One particular aspect of demography that has

recently become a focus in ecological, evolutionary, and behavioural research

is spatio-temporal variation in population structure (i.e. density and age distri-

bution) within and between breeding seasons. Understanding how population

structure varies is important as empirical studies demonstrate that fluctuations

in the density of males and females in the environment (Kasumovic et al.,
2008; Punzalan et al., 2010) and the age structure of the population (Dreiss

et al., 2010) affect small-scale variation in the intensity and direction of sexual

selection encountered by individuals. These effects can shape variation in

phenotypic distributions and ultimately evolutionary trajectories (Kasumovic

and Andrade, 2006, 2009a,b). The relative importance of such small-scale

variation will depend on the natural history of the species under study and

variation in microhabitat features such as resource availability, as this has the

potential to accentuate or dampen effects of interactions between individuals

(Gwynne, 1985; Gwynne et al., 1998; Jann et al., 2000; Petersen et al., 2010).
We suggest that understanding the scale of fluctuations in population structure

relative to the life history of the organism under study can provide important

insights into the evolution of the variety of mating systems and mating

strategies we see in nature. We believe that these links may be especially

transparent in spiders as the life history and reproductive biology of spiders

can result in rapid shifts in the social environment and population structure,

and therefore, selection. In spiders, several variables that are critically impor-

tant to the intensity of selection show broad fluctuations of the type we

highlight here. These include the tertiary sex ratio (sex ratio of individuals

that reach sexual maturity), the density of males (i.e. intensity of sexual

competition), the density of reproductively available females, and the absolute

and relative timing of maturation for males and females (Table 1). Here, we

argue that rapid fluctuations in sexual selection as a function of demography

has led to the evolution of an amazing diversity of adaptations and behaviours

in spiders.



TABLE 1

Spider mating systems

Species Family Sperm priority Mate guarding Protandry Density

Maturation

synchrony

bias References

Agelena limbata Agelinidae Last (0.63) None Yes n/a None Masumoto (1991, 1993)

Agelenopsis
aperta

Agelinidae n/a None n/a Dispersed n/a Becker et al. (2005), Papke et al.
(2001), Riechert and Singer

(1995), Singer et al. (2000),
and Singer and Riechert (1994,

1995)

Dolomedes
triton

Pisauridae n/a Pre-copulatory Yes Patchy Female Johnson (personal

communication) and Johnson

(2001

Frontinella
communis

Linyphiidae First

(P2¼ 0.05)

Both Yes Patchy None Suter (personal communication),

Suter (1985), Suter and Keiley

(1984), and Suter and Renkes

(1982, 1984)

Holocnemus
pluchei

Pholcidae Last

(P2¼ 0.74)

Postcopulatory No Patchy None Jakob (personal communication),

Calbacho-Rosa et al. (2010),
Huber (1999), and Kaster and

Jakob (1997)

Latrodectus
hasselti

Theridiidae First

(P2¼ 0.11)

Pre-copulatory Yes Patchy None Andrade (1996, 2003), Andrade

and Banta (2002), Forster

(1995), Kasumovic and

Andrade (2006), Snow and

Andrade (2005), and Stoltz

et al. (2008)

(continues)
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TABLE 1 (Continued)

Species Family Sperm priority Mate guarding Protandry Density

Maturation

synchrony

bias References

Latrodectus
hespersus

Theridiidae First Postcopulatory Yes Patchy None Macleod (personal

communication)

Linyphia
triangularis

Linyphiidae First

(P2¼ 0.20)

Pre-copulatory Yes n/a n/a Toft (1989) and Weldingh et al.
(2011)

Misumena vatia Thomisidae n/a Pre-copulatory Yes Dispersed Female Morse (personal communication),

Anderson and Morse (2001),

Holdsworth and Morse (2000),

Legrand and Morse (2000),

Morse and Fritz (1982), Morse

(2010), and Morse and Hu

(2004)

Misumenoides
formosipes

Thomisidae n/a Pre-copulatory Yes Patchy Female Dodson (personal

communication), Dodson and

Beck (1993), Dodson and

Schwaab (2001), Hoefler

(2002), and Stellwag and

Dodson (2010)

Nephila clavipes Nephilidae First

(P2¼ 0.18)

None No Patchy None Christenson et al. (1985), Linn
(2001), Moore (1977),

Rittschof (2010), Rittschof and

Ruggles (2010), and Vincent

and Lailvaux (2006)

Nephila edulis Nephilidae Last

(P2¼ 0.66)

None No Dispersed None Schneider et al. (2000a) and Uhl

and Vollrath (1998)

Author's personal copy



Nephila
plumipes

Nephilidae Mixing None No Patchy None Elgar and Fahey (1996),

Kasumovic et al. (2007a,b,
2008), Schneider et al. (2008),
andSchneider and Elgar (2001,

2002)

Neriene litigiosa Linyphiidae First

(P2¼ 0.35)

Pre-copulatory Yes High Male Watson (personal

communcation), Keil and

Watson (2010), and Watson

(1986, 1990, 1991, 1998)

Pardosa milvina Lycosidae n/a None n/a Patchy None Rypstra (personal

communication), Hoefler et al.
(2008, 2009), Marshall et al.
(2002), Marshall and Rypstra

(1999), Rypstra et al. (2003,
2009), Schmidt and Rypstra

(2010), and Wilder and

Rypstra (2008a)

Phidippus clarus Salticidae n/a Pre-copulatory Yes High Female Elias et al. (2008, 2010b), Hoefler
(2007, 2008), and Kasumovic

et al. (2009b, 2010)
Phidippus

johnsoni
Salticidae Mixing Pre-copulatory Yes Patchy Female Jackson (personal

communication) and Jackson

(1977, 1978a,b, 1980a,b, 1981,

1986b)

Pholcus
phalangioides

Pholcidae Last

(P2¼ 0.82)

Both No High None Uhl (personal communication),

Hoefler et al. (2010), Schäfer
and Uhl (2002), Uhl (1994,

1998), and Uhl et al. (2004,
2005)

(continues)

Author's personal copy



TABLE 1 (Continued)

Species Family Sperm priority Mate guarding Protandry Density

Maturation

synchrony

bias References

Physocyclus
globosus

Pholcidae Mixing Both No n/a None Eberhard (personal

communication), Eberhard

(1992), Huber (1995), and

Huber and Eberhard (1997)

Schizocosa
ocreata

Lycosidae n/a None Yes High Female Hebets (personal

communication), Miller et al.
(1998), Stratton (1983, 2005),

and Uetz and Denterlein

(1979)

Schizocosa
rovneri

Lycosidae n/a None Yes High Female Hebets (personal

communication), Stratton and

Uetz (1986), and Uetz and

Denterlein (1979)

Stegodyphus
lineatus

Eresidae Mixing None No Patchy None Lubin and Schneider (personal

communication), Erez et al.
(2005), Maklakov et al.
(2004), Schneider (1997,

1999), and Schneider and

Lubin (1996, 1997)

Tetragnatha
extensa

Tetragnathidae Last

(P2¼ 0.7)

None No Dispersed None Toft (personal communication)

and West and Toft (1999)

Author's personal copy



DYNAMIC POPULATION STRUCTURE AND MATING SYSTEMS 71

Author's personal copy
Spiders provide excellent systems for studying variation in demography and

its results on mating systems for three key reasons. First, all spiders produce

silk, and silk can provide reliable, short-lived cues about demographic variables

in the local environment. Cues on silk, or the silk itself, could be used to

estimate current or predict future competitive environments. As such cues are

often separate from the spider after they are deposited; there is also the oppor-

tunity for manipulation of information by competitors. Second, the genitalic

morphology of most spider groups favours intense post-copulatory sexual

selection and sexual conflict and can generate wide variance in reproductive

success in many groups. Male monogamy and female polyandry have been

observed in several spider systems (Elgar, 1991b, 1998; Fromhage et al., 2005,
2008; Schneider and Andrade, 2011). Further, the overall structure of the

genitalic morphology in many species allows males to manipulate female

sperm use patterns through the use of mating plugs (Uhl, 2002; Uhl et al.,
2010). Third, spiders are solitary and cannibalistic resulting in mating opportu-

nities that may be rare and dangerous for males (Elgar, 1992, 1998; Elgar and

Fahey, 1996), and sometimes for females (Aisenberg et al., 2009; Cross et al.,
2007). This has resulted in the evolution of diverse male mating strategies tuned

to the possibility that only one or a few mating opportunities may be secured.

Changes in the availability of receptive, unplugged females and density of

surviving males will result in rapid spatio-temporal shifts in selective pressures.

The resulting variation in the competitive environment spiders will encounter at

maturity may nevertheless be detected by individuals via silk cues. The inter-

play between these forces has led to some of the most exceptional mating

system adaptations known in nature.

In recent years, spiders have received increasing attention as models in the

study of behavioural ecology and neuroethology (Barth, 2002; Elgar, 1992,

1998; Elias and Mason, 2011; Huber, 2005; Schneider and Andrade, 2011;

Uetz and Roberts, 2002; Uetz and Stratton, 1982; Uhl and Elias, 2011; Uhl

et al., 2010). In particular, the three common features of the Order Araneae

outlined above have been the focus of many excellent reviews (e.g. Eberhard

and Huber, 2010; Elgar, 1992; Elgar and Fahey, 1996; Herberstein and Tso,

2011; Huber, 2005; Schneider and Andrade, 2011; Thery and Casas, 2009; Uhl

et al., 2010). This review is unique in emphasizing how these traits make

spiders excellent models for studying demographic and environmental effects

on behaviour and mating system evolution. We review these traits, in turn,

focusing on several key characteristics that set the stage for adaptations to

demographic variation. We then discuss how spider systems may be particu-

larly sensitive to variation in demographic structure and discuss possible

adaptations seen in spider systems. With this review, we hope to trigger more

studies on how demographic and environmental fluctuations can shape beha-

vioural and life-history adaptation and to highlight the utility of spider models

for this work.
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2 Spider reproductive and life-history traits

2.1 SILK AND CHEMICAL CUES

All spiders possess silk glands and silk is used in a variety of contexts from

lining burrows and foraging through the use of webs, to the production of egg

sacs and sperm webs for reproduction, to the use of draglines for locomotion

(Foelix, 1996). In addition to these functions, chemicals on the silk provide

information on location (Aisenberg et al., 2010; Baruffaldi and Costa, 2010;

Clark and Jackson, 1995; Cross and Jackson, 2010; Kasumovic and Andrade,

2004; Papke et al., 2001; Taylor, 1998; Xiao et al., 2010; Yoshida and Suzuki,

1981), species identity (Kasumovic and Andrade, 2004), reproductive state

(Baruffaldi and Costa, 2010; Gaskett et al., 2004; Koh et al., 2009; Miyashita

and Hayashi, 1996; Riechert and Singer, 1995; Roberts and Uetz, 2005; Rypstra

et al., 2003; Searcy et al., 1999; Stoltz et al., 2007), size/fecundity/age (Hoefler,
2007; Jackson, 1986b), competitive environment (De Meester and Bonte, 2010;

Kasumovic and Andrade, 2006; Nessler et al., 2009b; Trabalon and Assi-

Bessekon, 2008), and predation pressures (Folz et al., 2006; Holler and

Persons, 2009; Li, 2002a; Persons and Rypstra, 2000; Persons et al., 2002;
Storm and Lima, 2010; Taylor et al., 2005). In some instances, it is unknown

whether these cues are released through glands found on the spider’s body

(Miyashita and Hayashi, 1996; Riechert and Singer, 1995) or whether they are

solely properties of the silk itself (Gaskett, 2007). Regardless, spiders leave

behind ‘‘traces’’ of information which are short lived and potentially contain

reliable information about recent events (Andrade and Kasumovic, 2005;

Baruffaldi et al., 2010; Gaskett, 2007; Miyashita and Hayashi, 1996). This

information may be used by individuals to make mating or foraging decisions.

The relative importance of silk cues in the evolution of mating systems and

behaviour in spiders will depend on the life history of the spiders under study.

Spiders can be divided into two general groups based on lifestyle: wandering

and web-building spiders. Wandering spiders do not use webs to forage and

instead either actively hunt prey (e.g. jumping spiders, Salticidae) or find

suitable foraging sites where they use ‘‘sit and wait’’ predatory strategies (e.g.

crab spiders, Thomisidae). Wandering spiders often have well-developed sen-

sory systems across a range of modalities (chemical, vibratory, visual), and

males may locate females using silken draglines left by foraging females. In

general, wandering spider males can discriminate between conspecific males

and females using these draglines (Clark and Jackson, 1995; Cross and Jackson,

2009) based on the physical structure of the silk alone (Anderson and Morse,

2001) but more commonly based on pheromones (Gaskett, 2007). For example,

in the jumping spider Carrhotus xanthogramma, males that detect the presence

of female silk slow down their movement to more efficiently search for hidden

females (Yoshida and Suzuki, 1981). In a crab spider, Misumena vatia, males
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respond to mechanical cues of silk alone and follow draglines indiscriminately

(Anderson and Morse, 2001). Anderson and Morse (2001) suggested that

following draglines to large concentrations of silk would likely maximize the

number of females encountered. Wandering males may also search for rela-

tively sedentary females using web-based pheromones as seen in wolf spiders

(Baruffaldi et al., 2010; Fernandez-Montraveta and Ruano-Bellido, 2000;

Searcy et al., 1999). The opposite occurs in the sex role-reversed wolf spider

species Allocosa brasiliensis and Allocosa alticeps, where males build burrows

and emit a pheromone that females use to locate them (Aisenberg et al., 2010).
Unlike wandering spiders, web-building spiders use webs as hunting snares

and spend most of their lives on or near their web constructions. While web

structures vary widely across groups (Barth, 2002; Foelix, 1996), most web-

builders are dependent on web vibrations for detecting prey and conspecifics

(Barth, 1998, 2002). These spiders are thus very sensitive to vibratory as well as

chemical stimuli but tend to have poor vision (Foelix, 1982). Themain exception

to the sedentary lifestyle of the web-builder arises when males become sexually

mature and begin searching for potential mates. During mate searching, males

often cease foraging and devote all their resources to locating mates (Elgar,

1998). In most species, long-distance chemical signals emitted from webs

(pheromones) are used to locate females (Kasumovic and Andrade, 2004;

Papke et al., 2001; Searcy et al., 1999).
In addition to the importance of silk for mate location, in many species, silk-

based cues are used for distinguishing among potential mates. Males are able to

detect female age based purely on silk cues and often exhibit male mate choice

for females that are closer to maturation (Hoefler, 2007). The moulting hor-

mone, ecdysone, accumulates in the haemolymph several days prior to moulting

(Bonaric and Dereggi, 1977) and could be detected via cues deposited in silk or

faeces that adhere to the silk. In many species of spiders, virgin females are

more receptive than mated females (Christenson et al., 1985; Jackson, 1981;
Schäfer and Uhl, 2005; Schneider and Lesmono, 2009; Sivalinghem et al.,
2010) and males can detect differences between mated and virgin females

through body and silk-borne chemical cues (Andrade and Kasumovic, 2005;

Baruffaldi and Costa, 2010; Bukowski et al., 2001; Gaskett et al., 2004;

Jackson, 1986b; Roberts and Uetz, 2005). Virgin females are often courted for

longer durations suggesting higher investment by males. For example, in the orb

weaver Argiope keyserlingi, virgin males prefer the silk of virgin females and

preferentially venture onto those webs (Herberstein et al., 2002). In some

species, however, particularly ones with last male sperm precedence, males

are attracted to mated females and silk may also mediate this preference (Klein

et al., 2005). Females can also use silk-based chemical cues to assess mating

status. For example, in the spitting spider Scytodes sp., females are less attracted

to, and more likely to kill mated rather than virgin males even in the absence of

courtship displays, suggesting chemical assessment via silken cues (Koh et al.,
2009). In this species, Koh and colleagues (2009) suggested that females
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modulate their reproductive investment based on odour cues as they laid more

and heavier eggs after mating with preferred (virgin) males.

Silk may also reliably indicate the nature or intensity of future competitive

(see below) and predatory environments. For example, spiderlings of Erigone
atra that encounter more draglines from conspecifics are more likely to disperse

for long distances than those that encounter few (De Meester and Bonte, 2010).

De Meester and Bonte (2010) suggested that long distance dispersal served as a

mechanism to avoid competition from conspecifics. In the subsocial spider

Coelotes terrestris, silken cues mediate spatial distribution and potentially

serve to reduce competition (Trabalon and Assi-Bessekon, 2008). Cues in silk

also contain information about predatory environments. For example, female

Gryllus pennsylvanicus crickets that experience silken cues from the spider

Hogna helluo have offspring that are more immobile than the offspring of

females not exposed to such cues. This maternal effect increases the survival

offspring in the presence ofHogna predators (Storm and Lima, 2010).H. helluo,
however, are attracted to silk cues deposited by Pardosa milvina spiders, a

common prey item (Persons and Rypstra, 2000). P. milvina can also detect

differences in silk between Hogna that have fed on P. milvina versus other prey
and respond accordingly (Persons et al., 2001). The possibility of maternal

effects on offspring, comparable to that seen in crickets (Storm and Lima,

2010), has not been investigated in spiders.

2.2 GENITALIA

Males store sperm independently in paired, anterior appendages known as

pedipalps. Sperm is ejaculated from the gonads on to a ‘‘sperm web’’ prior to

copulation, and males collect the sperm within their pedipalps (pedipalp charg-

ing). Pedipalps are used as intromittent organs and are usually inserted indepen-

dently through the female’s epigynum (Foelix, 1996). The most anterior portion

of the palp is the embolus—a sclerotized structure used to deliver sperm to the

female. Different species have very different pedipalp morphology and many

have peculiar embolus structures that may be adaptations for sperm competition

or sexual conflict (Miller, 2007; Uhl, 2002; Uhl et al., 2010; see Uhl and

Vollrath, 1998). In some species, the embolus breaks off inside the female,

serving as a plug that prevents mating or successful insemination of the sperm

storage organs (Uhl et al., 2010). In one species Harpactea sadistica, the
embolus has evolved a needle-like point that is used to puncture the female’s

exoskeleton, allowing males to bypass the traditional means of inseminating the

spermatheca to directly fertilize eggs (Řezáč, 2009). For a recent review on

structures and functions of male genitalia, see Eberhard and Huber (2010).

The genitalia of female spiders are also complex with variable arrangements

and structures. In his seminal review, Austad (1984) hypothesized a connection

between female genital morphology and sperm priority patterns in the two main

Araenomorph groups, the Haplogynae and the Entelgynae. Haplogyne spiders
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were predicted to exhibit last male sperm precedence, as the last sperm to enter

their ‘‘cul-de-sac’’-type spermathecae lies closest to a single combined fertili-

zation/insemination duct (assuming no sperm mixing, Austad, 1984). In con-

trast, entelegyne spiders have separate insemination and fertilization ducts and

were described as having ‘‘conduit’’ spermathecae. For these spiders, Austad

(1984) predicted first male sperm precedence (Austad, 1984; Snow and

Andrade, 2005; Uhl, 2000; Uhl et al., 2010), as the last sperm to enter would

lie most distal to the fertilization duct (Austad, 1984).

These predictions have been met in some species and not in others (Uhl,

2002). The details of gross morphology deviate from expected patterns in most

of the cases under investigation (Uhl, 2002; see Burger, 2009; Burger and

Kropf, 2007; Burger and Michalik 2010; Burger et al., 2010; Eberhard and

Huber, 2010; Huber and Eberhard, 1997; Coddington and Levi, 1991). In

Nephila edulis, for example, the fertilization and seminal ducts are so close

together that a ‘‘cul-de-dac’’ pattern is suggested (Uhl and Vollrath, 1998);

consistent with this, a last male sperm precedence pattern has been documented

(Schneider et al., 2000b).
Although the phylogenetic categorization of Austad (1984) is apparently too

broad, spermathecal morphology nevertheless has important implications to

spider mating systems, and in the following sections, we review some of the

literature on sperm competition, sperm priority patterns, and genitalic adapta-

tions. Much more work is needed to understand this important topic, and

research in this area suggests a strong diversity in sperm utilization patterns,

post-copulatory (cryptic) female choice mechanisms, and antagonistic co-evo-

lution of male and female reproductive traits across spider species. For recent

reviews on female genital morphology and sperm priority patterns, see Uhl

(2002, 2010) and Schneider and Andrade (2011). For ease of reference in this

review, we will refer to the ‘‘haplogyne type’’ as instances where there is a

single spermathecal duct and the ‘‘entelegyne type’’ as instances where sper-

mathecae have separate insemination and fertilization ducts, after Uhl (2002).

2.3 HAPLOGYNE-TYPE GENITALIA

Relative to studies on entelegyne-type species, few studies exist on haplogyne-

type species. In the only major study on a haplogyne, experiments demonstrated

that in matings with two male Pholcus phalangioides, 88% of offspring are sired

by the last male to copulate (Schäfer and Uhl, 2002). There was, however,

considerable variation in the second male’s paternity, and evidence suggests

that this variation is controlled by female behaviour after mating (Schäfer et al.,
2008). Interestingly, while female P. phalangioides nearly always mate with the

first male they encounter, 20–30% of females never remate (Schäfer and Uhl,

2002). Currently, these studies suggest that last male sperm priority may be

augmented by mechanisms promoting sperm removal by males and sperm

dumping by females (Schäfer and Uhl, 2002). Sperm dumping and selective
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dumping of male ejaculates may also be important in other haplogynes (Burger,

2007, 2010; Burger et al., 2006). Last sperm priority would predict mated

females would be more choosy closer to egg laying and males would engage

in post-copulatory mate guarding in order to safeguard their paternity (Alcock,

1994). Males of the Oonopid Orchestina genus show post-copulatory mate

guarding (Burger et al., 2010). Males of the Pholcid spider Holocnemus pluchei
also showed pronounced mate guarding for 14 h after mating, which corre-

sponds to the period during which females are likely to remate (Calbacho-Rosa

et al., 2010). Second-mating males that copulated within 6 h of the first male

showed elevated levels of paternity (70% last male sperm precedence; Kaster

and Jakob, 1997).

2.4 ENTELEGYNE-TYPE GENITALIA

Multiple sperm storage organs and/or selective sperm use set the stage for

intense sperm competition (Elgar, 1998). In most entelegynes for which

sperm use patterns have been documented, paired genital morphology in both

males and females leads to unusual mating pattern possibilities. For example, at

any encounter with a potential mate, one or both of the male’s palps may have

been previously used, and females may have one or both spermathecae previ-

ously inseminated. Each individual spermathecae can be fertilized by a different

male (or combination of males), and evidence exists that males can detect the

presence of previously inseminated spermathecae (Snow et al., 2006) and

release sperm differentially to virgin and previously inseminated spermathecae

(Bukowski and Christenson, 2000; Bukowski et al., 2001; Morse, 2010). These

patterns have been used experimentally to successfully disentangle sources of

variation in sperm use patterns (see Schneider and Lesmono, 2009; Snow and

Andrade, 2004, 2005), and evidence exists that females may exercise choice by

killing males after a single insemination (Stoltz et al., 2008, 2009) or that males

may strategically use different palps on different females (Fromhage et al.,
2005, 2008; Herberstein et al., 2005a). Of the studies on sperm priority in

species with entelegyne-type genitalia, only 4 of 10 species showed first male

sperm priority (reviewed in Elgar, 1998; Schneider and Andrade, 2011; Uhl,

2002). For some of these species, cryptic female choice is a likely explanation

for observed sperm priority patterns. For example, in Argiope bruennichi, if
males perform costly courtship displays, paternity increases dramatically from

50% to 80% (Schneider and Lesmono, 2009).

Whether first male sperm precedence is common in entelegyne spiders is not

yet clear, as relatively few species have been studied (Schneider and Andrade,

2011). However, if there is first male sperm precedence, males mating with

virgin females will have more favourable paternity outcomes than males mating

with previously mated females. This predicts the evolution of protandry (males

maturing first) as early-maturing males will find valuable virgin females before

competitors (Simmons, 2001; Thornhill and Alcock, 1983). In this scenario,
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pre-copulatory mate guarding of immature females will be favoured assuming

that females are receptive after maturation. Protandry and pre-copulatory mate

guarding have been found in a wide variety of spider groups (Table 1), although

sperm use patterns are unknown for most of these. Even a slight paternity bias

may be sufficient to favour these patterns. For example, in the Linyphid,

Neriene litigiosa, the first male’s paternity is 61% (61% first male paternity;

Watson, 1991) and protandrous males find immature females and defend them

against intruding males (cohabitation) (Keil and Watson, 2010). Contests are

more likely to escalate in the presence of females and are most often won by

larger males (Keil and Watson, 2010; Watson, 1990).

The presence of separate copulatory and fertilization ducts in entelegyne-type

spiders makes it possible for males to block subsequent fertilization attempts

using plugs (Miller, 2007; Uhl et al., 2010). Mating plugs (reviewed in Uhl

et al., 2010) can consist of secretions produced by the male (Jackson, 1980a;

Suhm et al., 1996; Uhl et al., 2010), parts of the male genitalia broken off inside

the female reproductive tract (Kuntner et al., 2009b; Miller, 2007; Uhl et al.,
2010), the entire male palp (Knoflach and van Harten, 2001), and in some cases,

the carcass of the dead male (Foellmer and Fairbairn, 2003; Knoflach and

Benjamin, 2003; Knoflach and Van Harten, 2000). Evidence suggests that the

efficacy of mating plugs can be extremely variable and subject to selection. In

Latrodectus hasselti, males use the tip of their embolus as mating plugs and plug

efficacy was strongly location dependent as only plugs deposited at the entrance

to the spermathecae were successful at securing paternity for the plugging male

(Snow et al., 2006). Males that spent a longer time in copula were better able to

position the mating plug (Snow et al., 2006). In some species, it appears that

females contribute to the formation of plugs (Aisenberg and Eberhard, 2009;

Eberhard, 2004), suggesting the deterrence of subsequent mating attempts may

be beneficial for females. In the spider Leucauge mariana, successful plugs are
only formed when the female adds her own chemical substance to a substance

transferred by the male during copulation (Mendez, 2002 cited in Eberhard,

2004). Copulatory courtship by the male increases the likelihood that the

females will cooperate in plug formation (Aisenberg and Eberhard, 2009).

Further, in many species, it is evident that females can easily remove mating

plugs (Jackson, 1980a; Uhl, 2002; Uhl et al., 2010).

2.5 SOLITARY BEHAVIOUR AND CANNIBALISM

Spiders live under constant threat of predation from conspecifics, and evidence

exists that population size and age distribution are strongly influenced by

cannibalism (Rabaneda-Bueno et al., 2008). While the prevalence of cannibal-

ism during mating in spiders is often overstated, the majority of spiders are

fiercely solitary (Elgar, 1998), with a few notable exceptions (i.e. the social

spiders; Bilde and Lubin, 2011). In general, there are two life stages when

spiders tolerate conspecifics: as newly hatched spiderlings and during
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reproduction. Even during these phases, however, cannibalism may still occur

and behaviours may rapidly shift back to solitary/cannibalistic behaviour after

successful mating. In some species, cannibalism is an important part of mating

behaviour (sexual cannibalism) (reviewed in Elgar, 1992, 1998) and male self-

sacrifice can be an adaptation that increases copulation time and favourably

biases sperm usage patterns (see Andrade, 1996; Elgar, 1991a; Herberstein

et al., 2005c; Miller, 2007; Nessler et al., 2009a; Welke and Schneider, 2010).

Since mating is potentially extremely costly, selection should favour males that

are able to assess female aggression levels rapidly.

In situations where mate searching is costly, and more importantly, when

there is a male-biased tertiary sex ratio and fierce competition, male monogamy

without parental care (which is the general rule for spiders) is predicted to

evolve (Fromhage et al., 2005, 2008). Extreme male monogamy (by self-

sacrifice) is expected when the fitness benefits exceed the costs of foregoing

future matings (see Andrade, 1996, 2003; Schneider and Elgar, 2001). However,

for males to accrue any fitness benefits, self-sacrifice behaviour must occur

after copulation has taken place and in most cases, after both spermathecae have

been inseminated. In the redback spider (L. hasselti), for example, Snow and

Andrade (2005) calculate that males cannibalized by females after they copulate

twice receive the vast majority of paternity (80% paternity; Snow and Andrade,

2004, 2005). Females, however, punish males with premature sexual cannibal-

ism (cannibalism before both spermathecae are inseminated) when males do not

court for a sufficient length of time, thus capping paternity to a maximum of

50% (Stoltz et al., 2008, 2009).
Several hypotheses have been proposed to explain cannibalism and sexual

cannibalism in spiders (see Elgar, 1992, 1998). One proposed hypotheses is that

cannibalism evolved as an extreme form of mate rejection because courtship

performed by poor males is costly to females as it increases the visibility of

females to predators as well as decreasing the efficiency of predatory beha-

viours (Pruden and Uetz, 2004). Pre-copulatory cannibalism is thus a way

to ‘‘silence’’ poor-quality males while allowing females a meal (Elgar, 1992).

In the crab spider, M. vatia, field and laboratory studies concluded that poorer

condition males were attacked and cannibalized more (Morse and Hu, 2004).

The intensity and frequency of cannibalism may also be a function of the

environment where the utility of consuming males as prey for nutrient-stressed

females. Spiders often live in poor-quality environments where prey items are

few and far between (Moya-Larano 2002). In a few spiders, cannibalism is

observed to increase female fecundity (Rabaneda-Bueno et al., 2008). Pre-
copulatory sexual cannibalism may thus reflect a trade-off between acquiring

sperm and acquiring food (Newman and Elgar, 1991). For example, in the

fishing spider Dolomedes triton, females that cohabited with males (a cue

suggesting a high availability of mates) were more likely to cannibalize poten-

tial suitors (Johnson, 2001). In another experiment, in field enclosures with

higher male sex ratios, females were more likely to cannibalize potential mates
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(Rabaneda-Bueno et al., 2008). However, sexual cannibalism is most common

when there is female-biased size dimorphism (Wilder and Rypstra, 2008b), and

in most such cases, results suggest that eating males confers little if any

fecundity benefits (Andrade, 1996; Elgar et al., 2000; Schneider and Elgar,

2002). Nevertheless, cannibalism can occur at sufficiently high frequencies to

have dramatic effects on the structure of spider populations. In some wandering

species, males make up a significant proportion of the female’s diet (Moya-

Larano, 2002; Zimmermann and Spence, 1992) and are an order of magnitude

more profitable than the most commonly found prey item (Moya-Larano, 2002).

Sexual cannibalism itself can thus lead to major, systematic shifts in sex ratio

within mating seasons (Zimmermann and Spence, 1992).

2.6 VARIATION IN POPULATION STRUCTURE

In classic behavioural ecology theory, sex ratio is an important determinant of

the evolution of mating systems. Extreme male-biased sex ratios are predicted to

lead to strong male competition as many males fight for few available females.

As sex ratios become more equal, competition is predicted to be weaker and in

cases of extremely female-biased sex ratios, a shift towards female competition

for few male mates. In the crab spider M. vatia, spiders are sparsely distributed

and the local measured sex ratios in the field are female biased (Holdsworth and

Morse, 2000). Observed incidences of mate guarding is low, and few fights have

been observed even in staged interactions (Holdsworth and Morse, 2000). Males

of this species are extremely polygynous, mating up to 14 times (Legrand and

Morse, 2000). In the related Misumenoides formosipes, however, tertiary sex

ratio in the field is highly male biased and males vigorously defend females

against rival males, often engaging in lethal fighting (Dodson and Beck, 1993).

As the breeding season progresses, the tertiary sex ratio could remain static or it

could shift. Static tertiary sex ratios would be predicted if males and females

continually mature throughout the breeding season. In many spider species,

however, males are protandric (maturing first) and females mature synchronously

(Table 1), so the tertiary sex ratio is known to shift over time. In these groups, there

is a generally a high proportion of mature males early in the season, when the

proportion of immature females is also high. Later in the season, all females are

mature and males begin to die off thus leading to tertiary sex ratio shifts. Although

a given system may show static or systematically shifting sex ratios and age

structure on average through the season, the local conditions experienced by

individuals may be more dynamic than this suggests (Kasumovic et al., 2009a).
For example, variation in ecological factors can affect the spatial patterning of the

population, and sex differences in a variety of life-history traits can lead to both

temporal and spatial variation in population structure. Understanding how these

factors shift is important as local variation in mating status, and age structure

within populations can have a significant effects on the strength and direction of

selection (Dreiss et al., 2010; Kasumovic et al., 2008; Punzalan et al., 2010).
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3 Spatial variation

3.1 ECOLOGICAL VARIATION

Spatial variation in spider population structure stems mainly from the interac-

tion of habitat structure and availability with the hunting practices of spiders.

Orb-weaving species require substrate to which they can attach their webs. The

density of individuals in any given population is thus likely to depend on the

density of the necessary habitat structures. The availability of these structures

within a particular habitat will limit the overall density and patchiness of

individuals of both sexes, likely leading to strong variation in the spatial

structure of the population. For example, in Nephila plumipes, two neighbour-

ing populations inhabiting the same park, less than 50 m from one another,

differed strongly in the density of females, and this was correlated with differ-

ences in the density of the trees (Kasumovic et al., 2008). Similarly, patchy

distributions are expected for any species that use particular types of physical

structures for nests, such as black widows (Latrodectus hesperus) that build
refugia in abandoned tunnels built by small mammals (E. Macleod, personal

communication) or in crevices in rock (Kasumovic and Andrade, 2004). Such

patchiness may be accentuated in the many species that now use human

structures as substrates and inhabit manicured parks or the walls of buildings.

For example, A. keyserlingi use many different low-lying structures but prefer

using low-lying Lomandra spp. plants that are commonly used in Australian

parks (Herberstein and Fleisch, 2003). As a result, density depends strongly on

how the parks are designed and the planting regime. A second example is

Zygiella x-notata which frequently inhabits the underside of roofs on buildings,

so density depends on the frequency and size of buildings (Bel-Venner and

Venner, 2006; Bel-Venner et al., 2008). Other factors that could influence

spatial structure of populations are the affinity of individuals for conspecifics.

For example, in a cobweb species (L. hesperus), spiders are attracted to areas

with established webs and may live in groups of up to eight individuals

(Salomon et al., 2010). Once females are established, they are unlikely to

move until they are ready to lay eggs (Salomon, 2009; Salomon et al., 2010).
Web clustering may have interesting effects on sexual selection, particularly if

the affinity for neighbours fluctuates in response to mating status. For example,

in the spider C. terrestris, silk-based cues affect the spatial distribution of

females as gravid females are attracted to webs of mated females while these

same webs repel virgin females (Trabalon and Assi-Bessekon, 2008).

Wandering spiders may not experience the same level of spatial heterogeneity

as web-building species as both sexes wander in search of food and mates (Foelix,

1982). However, a number of ecological factors can affect the distributions of

wandering spiders as well. For example, if male wandering species aggregate

around the nests of females, this can immediately change the spatial organization

of the population, as nests can be dependent upon habitat structure and refuge
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availability. This is common in mate guarding species such as Phidippus clarus
where males mature earlier than females and then guard females at nests (Hoefler,

2007; Holdsworth and Morse, 2000; Jackson, 1986a). In addition, many wander-

ing spiders show habitat-dependent mating behaviour. In the jumping spider

Habronattus dossenus, even though spiders were observed foraging in a variety

of habitats, mating behaviour only occurred in a subset of those habitats (Elias

et al., 2004). Similar habitat preferences have been shown in wolf spiders (Elias

and Mason, 2011; Elias et al., 2010a; Hebets et al., 2008) suggesting that many

wandering spiders have evolved mating behaviours tuned to specific ‘‘signalling

microhabitats’’. Some crab spiders also show preferences for specific habitats (or

plant species), and spatial heterogeneity may play an important role in mating

behaviour. In the crab spider M. formosipes, males use floral cues to locate the

preferred foraging habitats of females (Stellwag and Dodson, 2010). Preferred

foraging sites are patchy in distribution and this leads to a patchy population

distribution (Heiling et al., 2005). These effects may be amplified if female

distribution is dependent on female quality as in Metellina segmentata
(Rubenstein, 1987), where larger more fecund females monopolize better feeding

territories and are found in large aggregations, while smaller females are found in

lower-quality sites and are sparsely distributed (Rubenstein, 1987).

Once documented, habitat constraints and preferences can be used by

researchers to test hypotheses about the effect of spatial organization on mating

tactics and behaviours, and therefore, selection. Already-manipulated habitats,

such as manicured parks with alternative planting schemes, can provide useful

experimental comparisons, or researchers can manipulate the availability of

necessary structures in natural populations. This was done successfully by

Hoefler and Jakob (2006b) who provided female P. clarus with opaque tubes

that females preferred to natural structures for the construction of their hiberna-

cula. Either of these approaches provides powerful tools for the experimental

examination of how local and broad-scale population densities affect selection.
4 Temporal variation

4.1 DEVELOPMENT TIME

Temporal variation in the distribution of sexually mature males and females is

expected as a consequence of species- and sex-specific differences in life-history

traits. Even if the primary sex ratio is equal at hatching, there may still be sex-

specific differences in development that can lead to variation in the relative

number of mature males and females in a population at any given time (tertiary

sex ratio). Such differences have particularly pronounced effects inmany species

of web-building spiders that show female-biased size dimorphism, as males

develop much more quickly and may mature before any females are available

(e.g. Fromhage et al., 2003; Kasumovic and Andrade, 2006; Knoflach and van



82 DAMIAN O. ELIAS ET AL.

Author's personal copy
Harten, 2001; Schneider et al., 2000a). The degree of dimorphism and the rate of

maturation, however, can vary due to factors such as food availability and

temperature (Kleinteich and Schneider, 2010; Li, 2002b). Moreover, the sexes

may follow different developmental trajectories (Uhl et al., 2004), inhabit
different niches, and behave differently to capture prey (Walker and Rypstra,

2001, 2002) due to different dietary requirements (Fernandez-Montraveta and

Moya-Larano, 2007; Higgins and Goodnight, 2010; Uhl et al., 2004).
In addition to differences in male and female development, there may differ-

ences in the window of time individuals of the same sex mature. For example,

individuals could mature relatively synchronously or relatively dispersed

throughout the breeding season. Sex differences in the synchrony of maturation

may lead to variation in the type of competition, and the intensity of sexual

selection males will encounter. For example, in P. clarus, females mate multi-

ply (Sivalinghem et al., 2010) and mature relatively synchronously compared to

males (Hoefler, 2007) leading to a pattern where differential reproduction

depends mainly on the outcome of male–male competition early in the breeding

season but depends on male courtship and female choice later in the breeding

season (Elias et al., 2010b; Sivalinghem et al., 2010). As male P. clarus can
only guard a single female at a time, no single male can monopolize access to

multiple females. However, in N. litigiosa, females mate only once and mature

relatively asynchronously such that mature females are available throughout the

breeding season (Watson, 1990). In this example, the vast majority of males

have already matured before females start to mature, and the asynchrony of

female maturation allows the potential for male monopolization of multiple

females (Emlen and Oring, 1977), leading to strong male–male competition

throughout the entire breeding season (Keil and Watson, 2010; Watson, 1990,

1991, 1998). Understanding how ecological factors influence development rates

and maturation times between the sexes can provide insight into the evolution of

the mating system of the species under examination.

4.2 MORTALITY RATES

Sex differences in mortality rates should have a strong effect on population age

structure. In most spiders, behaviours of juvenile males and females are similar,

suggesting mortality rates may also be similar at this life-history stage. In

wandering spiders, both sexes actively hunt for food while immature and this

continues after maturity while males simultaneously search for females which

may result in similar mortality between the sexes (Prenter et al., 1997; Walker

and Rypstra, 2001), although males may still be more active as they search for

available females (Framenau, 2005). Females of many species of wandering

spiders, however, provide parental care to egg sacs and spiderlings (Foelix,

1982), and this may make them more conspicuous to predators. A secondary

cost that females of wandering spiders may incur includes a higher incidence of

predation when they are being courted (Su and Li, 2006).
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In contrast to wandering spiders, web-building spiders are generally sedentary

for much of their life time, with individuals of some species travelling short to

moderate distances tomoveweb sites each night, when prey availability shifts, or

in response to encroachment of conspecifics (Chmiel et al., 2000; Jakob et al.,
2001; Lubin et al., 1993; Nakata and Ushimaru, 1999; Rayor and Uetz, 2000;

Riechert, 1976; Smith, 2009; Vollrath, 1985;Ward and Lubin, 1993;Wherry and

Elwood, 2009). After maturity, however, female web-building spiders continue

to build webs and capture prey, while males leave their natal web and begin

searching for females. Web-building spiders have evolved several traits that

make them inconspicuous, simultaneously facilitating prey attraction and pred-

ator avoidance (Hauber, 2002; Herberstein and Tso, 2011; Higgins, 1992; Rao

et al., 2007; Thery and Casas, 2002). After maturity females remain inconspicu-

ous on webs while males abandon their webs. Searching for females thus results

in two costs paid by males. First, as web-building spiders require webs to catch

food, adult males cannot truly feed until they reach a female’s web where they

can steal food (kleptoparasitism) from the female (Agnarsson, 2002; Elgar,

1989; Kasumovic and Andrade, 2009a; McCrate and Uetz, 2010), although

there is evidence that males may be able to subsist on flower nectar (Pollard

et al., 1995). Second, there is an increased risk of predation as males are

relatively conspicuous while mate searching. The mate-searching period is

thus an extremely risky time for males of web-building species where there is

a high mortality rate (Anava and Lubin, 1993; Andrade, 2003; De Mas et al.,
2009; Kasumovic et al., 2007b; Prenter et al., 1997; Segev et al., 2003; Walker

and Rypstra, 2003). The opposite is true for sex role-reversed spiders

(A. brasiliensis; A. alticeps) where females perish more often due to mate

searching (Aisenberg and Costa 2008; Aisenberg et al., 2007, 2009).
This difference in mortality between the sexes has been argued to explain

why female-biased size dimorphism is more often seen in orb-weaving spiders

than in wandering spiders (Vollrath, 1998; Vollrath and Parker, 1992), although

this claim has since been revaluated (Prenter et al., 1998). Regardless, sex
differences in mortality rates, especially due to the increased mortality males

face due to mate-searching behaviour, can cause local or broad-scale fluctua-

tions in the sex ratio at any given time. This will therefore change the selective

pressures males will encounter (Kasumovic et al., 2008). Moreover, it has the

potential to decrease competition between males (Vollrath and Parker, 1992)

and can theoretically lead to the evolution of monogyny (Fromhage et al.,
2005), although intense competition can still exist if males are attracted to a

limited number of sexually receptive females (Kasumovic et al., 2007b).

4.3 MOVEMENT WITHIN AND BETWEEN POPULATIONS

Emigration and immigration of adults between populations have the potential to

significantly alter population structure during the breeding season (Clutton-

Brock et al., 1997; Matter and Roland, 2002; Wauters and Dhondt, 1993).
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The role of either factor is difficult to surmise in spiders as only a few studies

have examined movement patterns in spiders and those that have focus on web-

building species (but see Henschel, 2002; Hoefler and Jakob, 2006; Nihei et al.,
2003, 2004). Here, we consider movement of adults and spiderlings separately.

Large-scale movement of adults between populations could cause sudden and

significant shifts in tertiary sex ratio and local density. The few studies that have

marked adult males and followed their movements demonstrate that males

usually move short distances and visit the nearest (Andrade, 2003; Lubin

et al., 1993) or nearby (Kasumovic et al., 2007b) available females. Given

that males are moving such short distances, even in larger populations, it may be

the sub-population structure that is more relevant for examinations of mating

patterns and selection (Kasumovic et al., 2008). Movement of adults between

populations may be unlikely due to habitat constraints, particularly for species

with specific microhabitat requirements or species that live in anthropogenic-

ally disturbed (fragmented) areas. For example, a study involving movement

patterns of N. plumipes showed that single lane roads acted as effective popula-
tion barriers (Kasumovic et al., 2007b). In the social spider, Stegodyphus
dumicola, males frequently move among close neighbouring colonies, but this

was not observed to facilitate gene flow between populations (Lubin et al.,
2009). Overall, although there are relatively little data available, it seems

unlikely that population structure will change significantly within a breeding

season as a function of emigration and immigration of adults (but see Uhl,

1998). More studies using larger sample sizes are still needed.

Movement patterns during the early life-history stages of a spider’s lifetime

vary significantly from adult movement patterns as many spiders use silk to

travel on air currents when very young (i.e. ballooning). The success of bal-

looning depends on the patchiness of the population and wind velocity (Bonte

et al., 2007; Bonte and Lens, 2007) and may allow movement through habitat

barriers (Ramirez and Haakonsen, 1999), although fragmentation may still limit

ballooning success (Reed et al., 2011). In multivoltine (multiple generations)

species, large-scale movement by juveniles may change the population structure

as the breeding season progresses. This will be more likely if the stochastic

nature of ballooning means that immigration and emigration rates are not

balanced, and if spiderlings balloon at a range of developmental stages or as a

function of local conditions. A study examining sex-specific dispersal beha-

viour under laboratory conditions demonstrated that juvenile females dispersed

shorter distances when they experienced increased female densities during

development, whereas males dispersed further distances when they experienced

high male and low female densities during development (De Meester and Bonte,

2010). The fact that individual spiderlings demonstrated differential dispersal

behaviour as a function of conspecific densities suggests that population struc-

ture could change quite dramatically through ballooning. Studies examining

juvenile movement patterns in the field (which are undoubtedly difficult) are

required to examine the extent to which movement patterns of individuals
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within and between populations may significantly affect population structure

and how this shapes the strength and direction of selection in natural popula-

tions. The use of genetic techniques will undoubtedly provide greater insight

into variation in migration than typical behavioural studies (e.g. Ramirez and

Haakonsen, 1999; Reed et al., 2011).

4.4 GENITALIA AND MATING SYSTEM

Although both sexes mate multiply in the majority of animals, males have higher

variance in mating opportunities and on average, it is generally believed that

males mate more often than females (Jones et al., 2002). In most species, the

marginal fitness returns of multiple mating reaches an asymptote for females

while there is no such asymptote for males (Bateman, 1948; Jones et al., 2002).
This sex difference may not be as drastic in many spiders, due to spider genitalic

morphology, sperm use patterns, and life history. First, one major determinant of

the rate of change in fitness with mating opportunities is the number of indivi-

duals who never mate (Shuster, 2009; Shuster and Wade, 2003); where typically

the skew in mating opportunities is greater for males than females (Bateman,

1948; Jones et al., 2002). However, in spiders, some females may never mate or

have only rare mating opportunities in nature (Andrade and Kasumovic, 2005).

This may be a risk for web-building species, in particular, where mate attraction

largely depends on the detection of pheromones by males. Consistent with this

idea, female pheromone production increases when males are scarce in

N. litigiosa (Watson, 1986). This may generate significant skew among females

if some females are consistently superior in mate attraction. Second, males of

many well-studied species have an upper limit to the number of mating oppor-

tunities because they (i) cannot or do not recharge their pedipalps with sperm

after their first mating (Andrade and Banta, 2002), (ii) irreparably damage their

pedipalps by breaking them during copulation (Andrade and Banta, 2002;

Herberstein et al., 2005b; Kuntner et al., 2009a,b; Miller, 2007; Schneider

et al., 2008; Snow et al., 2006; Uhl et al., 2010), (iii) are cannibalized by females

(Elgar, 1992; Elgar et al., 2000; Fromhage et al., 2003; Schneider and Elgar,

2001; Segoli et al., 2006; Welke and Schneider, 2010) or die spontaneously

during their first mating (Foellmer and Fairbairn, 2003; Sasaki and Iwahashi,

1995), (iv) suffer high mortality rates during mate searching (Andrade, 2003;

Kasumovic et al., 2007b; Segoli et al., 2006), and/or (v) have such energetically
costly courtship that male longevity is significantly reduced after a mating

attempt (independent of copulation; Hoefler, 2008; Kotiaho, 2000). In species

that fit these descriptors, males will typically copulate only once with each

pedipalp, and after mating with only one or a few females, the male will be

removed from the mating pool. As a result, interactions with females that either

end with a mating (successful) or end in pre-mating cannibalism (unsuccessful)

can immediately change the density of males within the population, and there-

fore, the competitive environment a newly matured male will encounter.
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A successful mating also affects the density and availability of females within

a population. First, females that mate may quickly change pheromone release

such that they are no longer attractive to males (Stoltz et al. 2007), effectively
removing them from the mating population. Second, although females of many

species mate multiply (see Aisenberg, 2009; Cross et al., 2008; Elgar, 1992,
1998; Schäfer and Uhl, 2005; Uhl et al., 2005; Welke and Schneider, 2010), if

males can successfully plug both entrances of a female’s genital tract, they may

be able to successfully ensure that any mating attempts from subsequent males

are unsuccessful (Schneider and Andrade, 2011; Schneider and Elgar, 2001;

Snow et al., 2006; Uhl and Vollrath, 1998; Uhl et al., 2010). Females that have

attracted multiple males (Miller, 2007) also alter the competitive environment of

the remaining virgin males in three ways: first, in populations where the tertiary

sex ratio is equal, males accumulating on one web may lead to female-skewed

sex ratios elsewhere; second, females will be removed from the mating pool if

they successfully mate with the first male; and third, the remaining males on the

web that do not get the chance tomate with the femalemay not leave to find other

virgin females. Successful and unsuccessful matings can thus rapidly alter the

density of virgin males and females within a population depending on the mating

system, behaviour, and reproductive biology of the species under study.

4.5 BREEDING SEASON LENGTH

As discussed, sex-specific differences in the above factors can lead to fluctua-

tions in the number of available females and the density of rival males resulting

in variation in competitive challenges encountered by males maturing at differ-

ent times of the season. If temporal factors interact with spatial variation, this

could lead to a large amount of variance in population structure at any given

time in the breeding season. The relative importance of life-history traits,

however, could also be affected by the length of the breeding season as this

has the potential to change the number of mating opportunities, the number of

generations per year (univoltine to multivoltine), and whether generations

overlap. The length of the breeding season is one ecological factor that is likely

to have a strong affect on the mating system of a species.

A short breeding season is defined as a small window in which males and

females mature and in which they have the opportunity to mate. Short breeding

seasons impose temporal limits on polygyny for males (Emlen and Oring, 1977)

due to intense competition for females and often lead to mate guarding which

could potentially lead to size-assortative pairing (Burley, 1983; Crespi, 1989;

Hoefler, 2007). For example, in many Salticid (Hoefler, 2007; Jackson, 1986a)

and Linyphiid species (Austad, 1983; Weldingh et al., 2011), mature males

guard nearly mature females to ensure a mating.

As the length of the breeding season increases, there is not only a greater

likelihood that multiple generations can occur in a single breeding season but

also the possibility that the second generation may not have the time or
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resources to successfully reach maturity, mate, and produce offspring. This

could result in two separate cohorts. For example, in Pardosa agrestis, indivi-
duals hatching early in the breeding season follow one of two trajectories: they

either mature near the end of the breeding season with time to breed in the

current season or do not mature and overwinter as juveniles, maturing earlier in

the following breeding season mature more slowly (Kiss and Samu, 2005). This

results in two distinct peaks of adults due to the overwintering individuals. The

developmental trajectory is in part determined by signals of photoperiod and

temperature (Kiss and Samu, 2002), although individuals from the same egg sac

can follow different developmental trajectories (Kiss and Samu, 2005). Indivi-

duals preparing to overwinter may also allocate resources differentially as seen

in Pardosa pseudoannulata (Iida and Fujisaki, 2007) or may move to a different

habitat to increase overwintering success (Kraus and Morse, 2005). This may

change dramatically for larger spiders as a single breeding season may not be

long enough to mature. In Pardosa moesta and Pardosa mackenziana wolf

spiders that can weigh up to 80 and 60 mg, respectively, and have a two-year

life cycle where immature individuals overwinter twice before maturing

(Buddle, 2000). Although most examples of overwintering species occur in

temperate zones where breeding seasons are relatively short, examples of

cohort-splitting or life-cycle polymorphism also occurs in species in more

tropical zones (Framenau and Elgar, 2005).

During longer breeding seasons, females may reach maturity asynchronously

either because there is sufficient time for multiple generations each season or

because spatio-temporal variation in resource acquisition will allow divergent

growth trajectories.Asynchronousmaturitywill typically allowmales the potential

to find secondmates (Emlen andOring, 1977) leading to an increase in the variance

in male reproductive success. Longer breeding seasons may also allow the earlier

generations to produce offspring that can reachmaturity before the breeding season

ends. This can result in several generations (multivoltine) where individuals from

the different generations may overlap and compete against one another.

Although the variability seen in these factors within and between populations

and species of spiders can be extreme, this variability allows researchers wide

latitude in testing specific predictions regarding the evolution of mating systems

and strategies. The key is to choose species that have life-history and ecological

features that allow comparative and experimental focus on the questions of

interest.

5 Adaptations towards an uncertain world

5.1 EXPERIENCE THROUGH PHEROMONES

As the availability of mates and the density of rivals fluctuate throughout the

breeding season, and as age and mating structure of the population change,

the phenotypic optima for successful competition will also change. As males are
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the mate-searching sex in the vast majority of species, and females are either

sedentary (Foelix, 1982) or return to the same nest each night (Hoefler and

Jakob, 2006), spatio-temporal shifts in population structure will affect a male’s

reproductive success more than a female’s.

In this uncertain landscape, males have one significant edge—chemical cues

produced by females to attract mates, in addition to chemicals produced by

other males (Gaskett, 2007), can provide a substantial amount of accurate

information about their competitive environment (see above). Thus we predict

that male spiders should have developmental and behavioural traits that antici-

pate the features of the competitive arena they are entering, and that allow them

to take maximum advantage of the current population structure or minimize

competition for available females. Below, we discuss a range of male mating

strategies for which there is now growing evidence that information in airborne

chemicals is used to make developmental and/or behavioural decisions.

5.1.1 Stopping the transmission of attractive pheromones

Competition between males can be extremely intense and is not only energeti-

cally costly (Kotiaho et al., 1996, 1997, 1998) but can also lead to death (Elias

et al., 2008; Kasumovic et al., 2009b; Leimar et al., 1991). One method for a

male to decrease the level of competition is to reduce a female’s ability to

transmit attractive pheromones. In at least one species (L. hasselti), evidence
suggests that females discontinue producing attractive pheromones very soon

after mating (Jerhot et al., 2010; Stoltz et al., 2007) such that males searching

for virgins are not attracted to newly mated females (Kasumovic and Andrade,

2009a). Although it is not known whether it is the result of a pheromonal signal,

the webs of mated females of other species are also not attractive and may

sometimes be a deterrent to males (Dodson and Beck, 1993; Gaskett et al.,
2004; Hoefler, 2007; Miyashita and Hayashi, 1996; Papke et al., 2001; Riechert
and Singer, 1995; Rypstra et al., 2003). This suggests that males can reduce

competition with rivals simply by mating with females as quickly as possible.

Mating with females may not be simple, however, particularly in species where

one of the following occurs: (1) females are aggressive and may cannibalize

males before the opportunity to mate arises (Elgar, 1991b, 1992), (2) females

show unpredictable variation in receptivity resulting in variable periods of

cohabitation prior to mating (Anava and Lubin, 1993; Masumoto, 1991; Suter

and Keiley, 1984; Suter and Renkes, 1984), or (3) females are unlikely to mate

or allow a complete copulation unless the male engages in prolonged courtship

(Snow and Andrade, 2005; Stoltz et al., 2008, 2009), increasing the risk of

usurpation. In a recent study on mating behaviour in L. hasselti, for example,

Stoltz and Andrade (2010) showed that males may parasitize previous courtship

effort from rival males. L. hasseltimales have very long courtship displays (6 h),

and if males attempt to copulate too soon, they are killed by the female before

mating is complete. However, when a resident male has been courting for at
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least 100 min, rivals can successfully mate with the female instantly with no

repercussions (Stoltz and Andrade, 2010). Thus selection may favour males

with a secondary means of limiting rivals from locating the female with which

they are attempting to mate.

In some species, males have evolved a behaviour in which they cut the

female’s web and bind it with their own. This web-reduction behaviour is

documented in several species (Forster, 1995; Harari et al., 2009; Schulz and

Toft, 1993; Watson, 1986). Males cut and bind the threads of females that are

actively releasing attractive pheromones until the male has an opportunity to

mate with the female (Watson, 1986). In an elegant set of laboratory experi-

ments, Watson (1986) showed that reduced webs are less attractive to rivals than

intact webs.

5.1.2 Developmental tactics

As changes in population structure affect within-season variation in the inten-

sity and direction of selection, the fitness of any given phenotype is context

dependent (e.g. Kasumovic and Andrade, 2009a; Lailvaux and Kasumovic,

2010; Moya-Laraño et al., 2007). As a result, there may be strong selection

for adaptive developmental plasticity by which individuals can match their

phenotype to variable competitive contexts (Berrigan and Scheiner, 2004;

Garland and Kelly, 2006; Kasumovic and Brooks, 2010). For such a strategy

to evolve, however, developing males would require reliable cues of the sur-

rounding competitive challenges (Lively, 1986). Again, the changes in airborne

chemical cues produced by surrounding males and females potentially provide

the information necessary for this type of developmental strategy to evolve.

One such example comes from the Australian redback spider (L. hasselti). As
in most web-building spiders, male redbacks do not feed after maturity (Foelix,

1982) and therefore have fixed resources at maturity that must be used to search

for and court females, and compete with other males. In a laboratory study,

penultimate instar males were reared in the presence or absence of female’s

pheromones and at differing densities of immature males. In this study, male

redbacks modified their allocation towards development rate, body size, and

body condition (Kasumovic and Andrade, 2006), traits that are correlated with

fitness in different competitive environments (Andrade, 2003; Snow and

Andrade, 2005; Stoltz et al., 2008). Males matured significantly faster in the

presence of females but were smaller and in poorer body condition (Kasumovic

and Andrade, 2006). Although smaller, this shift is adaptive as there is strong

first male precedence (Snow and Andrade, 2005; Snow et al., 2006), so rapidly

developing males would mate with virgin females quickly, and outcompete

larger, more slowly developing competitors (Kasumovic and Andrade, 2009a;

Snow and Andrade, 2004, 2005). When females were absent and rivals present

at high density, males took longer to mature but were larger and in better

condition as adults; traits that increase fitness in competition against rivals
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(Stoltz et al., 2009). This example demonstrates that males can alter allocation

across life-history traits as a function of relatively short-term changes in their

environment. More studies of this type are necessary to determine the phyloge-

netic and ecological distribution of this form of plasticity.

There are two further examples of strong correlations between phenotypes and

local population structure in field populations of two species of spiders: the

golden orb-web spider (N. plumipes) and the St. Andrew’s cross spider (A.
keyserlingi). In N. plumipes, females produce webs either singly or in aggrega-

tions of up to nine females (Herberstein and Elgar, 1994; Kasumovic et al.,
2007b). Males mature either within or near these aggregations and then search

for females. While searching, males preferentially settle on the webs of adult

females (Kasumovic et al., 2008), but those in better body condition prefer

penultimate instar females (Kasumovic et al., 2007b). Due to the intense canni-
balism faced bymales, most males only have a single opportunity to mate in their

lifetime (Schneider and Elgar, 2001). A male’s fitness is thus maximized by

successfully finding and monopolizing a virgin female. Kasumovic and

colleagues (2009a) found that a male’s size and weight were positively corre-

lated with the number of males and negatively correlated with the number of

females within an aggregation (but not across the entire population). Such a

pattern would be expected if males develop more quickly when competition is

low, but mature larger and heavier when more rivals are present as larger size

increases competitive success against rivals (Elgar and Fahey, 1996).

This is in contrast to male A. keyserlingi that have a very different life history
and mating strategy. First, males attempt to mate multiply (Herberstein et al.,
2005b). Second, although virgin male A. keyserlingi prefer virgin females

(Herberstein et al., 2002), mated males have no such preference and attempt

to mate with (and subsequently guard; Herberstein et al., 2005a) any female

they can find (Gaskett et al., 2004). As a result, a male’s fitness is determined by

finding and mating with different females. In A. keyserlingi, male size and

weight was positively correlated with male density as larger and heavier

males are better equipped to outcompete rivals (Herberstein et al., 2005a). As
expected, female density was not correlated with male phenotypic traits as

fitness is not as constrained by the availability of virgins as it is in N. plumipes.
Although the results are only correlative and no data were available on devel-

opment time, the population structure was a far stronger correlate of a male’s

phenotype than any other measured environmental variable. Direct experimen-

tal tests in these two species would be welcomed, as would similar studies

across a range of spiders with a diversity of mating systems.

5.1.3 Behavioural tactics

Apart from developmental tactics, the structure of the population can also

determine a male’s mating tactics. For example, in A. bruennichi, copulation
duration is positively correlated with paternity (Schneider et al., 2006), but
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longer matings carry a higher risk of cannibalism (Nessler et al., 2007;

Schneider et al., 2006). Although males are commonly cannibalized after

mating, some males also attempt to survive the first cannibalistic attempt in

order to mate a second time (Nessler et al., 2009a; Schneider et al., 2006),
after which they succumb to cannibalism without attempting to escape

(Foellmer and Fairbairn, 2003; Gaskett et al., 2004; Nessler et al., 2007).
Nessler and colleagues (Nessler et al., 2009a,b) found that the variation in

escape attempts between males can be explained by the presence of females

during rearing (Nessler et al., 2009b). Males that experienced females and

their pheromones while immature were more likely to succumb to female

attacks (and copulate for longer) during the first copulation than males that

were reared in the absence of females and their pheromones (Chinta et al.,
2010). Although the fitness effect of such a shift is unknown, it is clear the

perception of the availability of females while immature can affect adult male

mating strategies.

5.2 EXPERIENCE THROUGH SOCIAL INTERACTIONS

Although accurate assessment of competitive environments can be facilitated by

pheromones, other modalities may be important particularly for wandering

spiders. Direct social interactions may provide more salient estimates of the

social environment for these species and may be a secondary mechanism used to

estimate/predict competitive environments. In the following sections, we will

explore the role of experience as an indicator of future and current environments

and its effects on spider behaviour and mating system evolution.

5.2.1 Juvenile experience

Wolf spiders of the genus Schizocosa have received a lot of attention particu-

larly in studies on mating behaviour. Three species that have been the focus of

intense research have been Schizocosa ocreata, Schizocosa rovneri, and Schi-
zocosa uetzi (see Hebets, 2003, 2005; Hebets and Uetz, 2000; Hebets and Vink,
2007; Norton and Uetz, 2005; Roberts and Uetz, 2008; Shamble et al., 2009;
Uetz et al., 2009). Male wolf spiders produce courtship signals consisting of

visual leg waving, visual ornaments, and substrate borne vibrations (Elias and

Mason, 2011; Hebets and Papaj, 2005; Hebets and Uetz, 2000; Shamble et al.,
2009; Uetz and Roberts, 2002), and female spiders have been demonstrated to

choose males based on properties of vibratory (Gibson and Uetz, 2008; Hebets,

2005; Shamble et al., 2009) and visual displays (Persons and Uetz, 2005;

Scheffer et al., 1996; Shamble et al., 2009; Stratton, 2005; Uetz and Norton,

2007; Uetz and Roberts, 2002; Uetz and Smith, 1999; Uetz et al., 2002). Lab-
raised females of these species exhibit preferences for species-specific male

displays (Hebets and Uetz, 2000; Hebets et al., 2006; Stratton and Uetz, 1981,

1983).
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In Schizocosa, juvenile experience has major effects on mating preferences

(Hebets, 2003, 2007; Hebets and Vink, 2007; Rutledge et al., 2010).

In laboratory experiments with S. uetzi, Hebets (2003) demonstrated that

females that had experienced courtship from males with manipulated visual

traits as juveniles preferred those traits after sexual maturation. Females were

more likely to mate with males with familiar traits and more likely to cannibal-

ize males with unfamiliar traits (Hebets, 2003). Similarly, in experiments with

Mississippi populations of S. rovneri, females with no juvenile experience

showed no preferences between an ocreata-like morph (brush-legged) and a

rovneri-like morph (non-ornamented). However, females that had been courted

by either brush-legged or non-ornamented morphs as juveniles significantly

preferred brush-legged males (Hebets and Vink, 2007). Interestingly, in experi-

ments with manipulated S. rovneri from Ohio populations, a much different

pattern was observed (Rutledge et al., 2010). In this laboratory study, S. rovneri
juveniles experiencing courtship from males with highly modified phenotypes,

preferred unfamiliar phenotypes over familiar phenotypes (Rutledge et al.,
2010). The different patterns observed between these studies may result from

genetic differences between populations, methodological differences, or from

natural selection stemming from different demographic patterns of sympatri-

cally occurring species (Rutledge et al., 2010). Regardless, this set of studies
suggests juvenile experience, in this case, courtship and visual contact, can have

strong effects on female choice. This has important implications. As the relative

density of males increases, social interactions between juvenile females and

males will also increase. Thus experience effects could amplify the effect of

sexual selection and could promote species maintenance/diversification

(Rutledge et al., 2010). Experience-dependent mechanisms could be plastic

and such mechanisms could evolve as a response to local demographic patterns.

In several studies, preferences for particular male phenotypes only emerged

with juvenile experience suggesting that experience-mediated effects are context

dependent (Hebets and Vink, 2007; Rutledge et al., 2010).
Juvenile experience can also affect several other behaviours associated with

reproduction. In the fishing spider D. triton, Johnson (2005) demonstrated that

when juvenile females had experience with males (cohabitation), those females

were more likely to cannibalize courting males as adults, regardless of mating

status. The presence or number of cohabiting males apparently serves as a cue to

local mate availability and thus affects female ‘‘choosiness’’ as adults (Johnson,

2005). When males are rare, cohabitation is rare as well thus pre-copulatory

cannibalism of potential mates is costly as the female could remain unmated

(Arnqvist and Henriksson, 1997; Johnson, 2001, 2005). However, because

cannibalizing males increases female fecundity, when the perception of male

density is higher and the female is likely to have multiple suitors, a higher rate of

pre-copulatory cannibalism may be adaptive (Johnson, 2005). By tuning mating

and cannibalistic behaviours to local demographic factors, females can thus

compensate for spatio-temporal variations in male density.
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5.2.2 Adult experience

While experience-related learning by adults is believed to be an important

aspect of mating behaviour in most vertebrates (see Dugatkin, 1992; Jennions

and Petrie, 1997), experience/learning effects have been overlooked in most

arthropods, perhaps because it is assumed to be unlikely due to the relatively

small size of the nervous system and short lifespan (Dukas, 2007). However,

learning/experience-modified behaviour may be superior to innate behaviour in

variable environments and has been shown to be significant in several arthro-

pods (Dukas, 2007). Experience would allow spiders to adaptively change their

behaviours in a variety of scenarios, and modifications of behaviour based on

experience have been demonstrated to be a major part of the biology of several

spider species.

One class of experience that may have significant effects across spider taxa is

that derived from fight outcomes. Experience-dependent effects on fighting

behaviour have been documented in many systems (Hsu et al., 2009). Winning

a contest often increases the probability of winning future contests (winner

effect), while losing a contest decreases the probability of winning future

contests (loser effect) (reviewed in Hsu et al., 2006). In fact, many of the classic

examples of this phenomenon come from spiders (Austad, 1983; Dodson and

Beck, 1993; Riechert, 1988). Here, we outline a recent set of studies examining

this phenomenon inP. clarus (Salticidae) and argue that experience effects allow
males to assess their own ability relative to the field of likely competitors—a

field that constantly shifts over the breeding season. Males in this species are

protandrous, and males seek out and find immature females to cohabit with early

in the breeding season (Hoefler, 2007). At this point in the breeding season,

demographic structure is strongly biased towards mature males (male-biased

operational sex ratio) and males fiercely defend immature female resources

(Elias et al., 2008; Hoefler, 2007). Heavier males are more likely to win contests

during this time (Elias et al., 2008; Hoefler, 2007; Kasumovic et al., 2009b).
Near the middle of the season, females mature relatively synchronously leading

to a predictable and rapid demographic shift from male-biased tertiary sex ratio

to equal tertiary sex ratio (Elias et al., 2010b; Hoefler, 2007). At this point in the
breeding season, sexual selection shifts from male–male competition for

immature females (Hoefler, 2007; Kasumovic et al., 2011) to femalemate choice

based on male courtship (Elias et al., 2010b; Sivalinghem et al., 2010). Male

size/weight is extremely variable during the breeding season and males tend to

get bigger as the season progresses (Elias et al., 2010b; Hoefler, 2007, 2008;
Kasumovic et al., 2010). The competitive environment as well as the relative

competitive ability of an individual male is thus expected to fluctuate through the

breeding season. Because males actively choose larger, more fecund females

that are closer to maturing and because females mature relatively synchronously

(Hoefler, 2007), it is important for males to choose only females they can
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successfully defend within the intense male–male competition selection win-

dow. However, a male’s ability to defend a chosen female is wholly dependent

on his competitive ability relative to the pool of local opponents, which can shift

as males move over time. Thus a running estimate of relative competitive ability

would give males a strategic advantage over local competitors. One proposed

mechanism for keeping this kind of ‘‘running tally’’ is experience-dependent

changes in fighting ability (winner and loser effects; Hsu et al., 2006; Kasumovic

et al., 2010).
As predicted, Kasumovic et al. (2009b) determined that experience played a

significant role in contest success in P. clarus using a mixed tournament design

(Stuart-Fox, 2006); Winner and loser effects were not permanent, however, and

disappeared over the course of 24 h (Kasumovic et al., 2010). Kasumovic et al.
(2010) suggested that retention time of experience effects was dependent on the

expected encounter rates of competitors and that a ‘‘leaky integrator’’ type

mechanism could serve to track the relative status of fighting ability of the local

pool of competitors (Hsu et al., 2009; Kasumovic et al., 2010). If subsequent
contests occur before the effects of prior experience decay, then experience

effects may accumulate (Hsu et al., 2006). Over repeated encounters an indivi-

dual’s estimate of his own competitiveness should float to a level that represents

his actual fighting ability relative to that of his pool of competitors as the ratio of

successful (incrementing) and unsuccessful (decrementing) encounters will be

determined by his resource-holding potential (Arnott and Elwood, 2009) rela-

tive to competitors. Time-dependent experience affects, therefore, should pro-

vide a male with a running average of the competitive level of their local

population of rivals. This may be especially important because the competitive

environment is likely to fluctuate widely because resource-holding potential

(weight; Elias et al., 2008; Hoefler, 2007) changes depending on current feeding
history (Elias et al., 2008; Kasumovic et al., 2010) and time of the season (Elias

and Kasumovic, unpublished observation).

In P. clarus, adult male experience is also likely to mediate the shift from

male–male competition behaviours (aggressive signalling and resource defence

behaviours) to courtship behaviours (courtship signalling). Signalling is distinct

in each context and females prefer males that court at higher rates and have

longer legs (Elias et al., 2010b; Sivalinghem et al., 2010). Males that act

aggressively towards females are less likely to mate (Sivalinghem et al.,
2010), and males are commonly seen being cannibalized in the field by females

(Elias and Kasumovic, unpublished observation). Accurately assessing the

current selective environment and suites of behaviours more likely to ensure

reproductive success at that point in time is critical (defend vs. court free

roaming females). Flexible behaviours dependent on experience with the local

demographic and environmental conditions is likely to be common across

spider taxa, but we predict strongest effects for wandering rather than web-

building spiders. Wandering spiders are likely to have higher encounter rates

with conspecifics, and thus the opportunity for salient experiences is higher.
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Experience with the local competitive environment has also been shown to

shift mate choice behaviour in male spiders. In field studies on Z. x-notata,
several populations were examined which varied in the level of competition; in

high competition populations where the sex ratio was heavily male biased, most

females were guarded by males, and guarding success was low. In contrast, in a

low competition population where the sex ratio was even, 70% of females were

guarded, and guarding success was high (Bel-Venner et al., 2008). In high

competition environments, large males chose larger, more fecund females and

smaller males chose poorer-quality females leading to a pattern of size-assorta-

tive mating (Bel-Venner et al., 2008). Bel-Venner et al. (2008) proposed that

smaller males chose small females as a way to avoid futile and costly competi-

tion with large males. In low competition environments, however, no male mate

choice was observed and it was suggested that males in these environments pair

opportunistically to maximize reproductive opportunities (Bel-Venner et al.,
2008). Size assortative pairing was also observed in P. clarus but in that species,
all males preferred larger, more fecund females but only large males could

compete successfully for them (Hoefler, 2007).

Not surprisingly, mating experience often changes subsequent mating beha-

viour. The most commonly observed pattern in spiders is that females become

less receptive after both spermathecae have been filled (see Aisenberg and

Costa, 2005; Baruffaldi and Costa, 2010; Molina and Christenson, 2008;

Wilder and Rypstra, 2008a). Recent work suggests that males transfer consid-

erable volumes of seminal fluids to females suggesting the potential for chemi-

cal manipulation of female receptivity (Michalik et al., 2010). However, there is
debate on whether this commonly observed pattern is adaptive for both sexes or

whether it is the outcome of sexual conflict between males and females (see

Kuntner et al., 2009b; Maklakov and Lubin, 2004). Many female spiders will

still mate multiply even though receptivity patterns have been changed, and this

has often been interpreted as a shift in the ‘‘choosiness’’ of females (see Cross

et al., 2007; Jackson, 1981; Sivalinghem et al., 2010). In the spider L. mariana,
larger females are more likely to choose smaller males and males that signal

more after their initial matings even though second matings are less frequent

than first matings (Aisenberg, 2009). In Stegodyphus lineatus, females mate

with up to five males but behave aggressively to all males after the first mate

(Maklakov and Lubin, 2004). The success of the second mate is determined by

male body mass with larger males being more likely to mate again (Schneider

and Lubin, 1996, 1997). In this species, this pattern results from sexual conflict

and not increased choosiness as females experienced lower fitness when they

mated multiply (Maklakov and Lubin, 2004).

Males have also been shown to modify their behaviour based on mating

experience. In the case of A. keyserlingi, males exhibit preferences to virgin

webs but after mating do not show any preference for immature, virgin, or

mated females (Gaskett et al., 2004). In Pisaura mirabilis, males that success-

fully mated with more than one female provided more courtship effort for every
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individual female than monogamous males (Tuni and Bilde, 2010). In the cellar

spider P. phalangioides, Hoefler et al. (2010) demonstrated that males that had

experienced female silk courted non-virgin females more suggesting that males

bias mating investment (courtship) based on some estimate of female density.

One potentially important aspect of adult experience that could drastically

affect future mating opportunities and by extension mating system evolution is

maternally derived effects on hatching in response to predators. Li (2002a)

showed that in the spider Scytodes pallida, pregnant females experiencing

cues from predators (jumping spiders) pass on a maternal cue that causes faster

egg hatching. Spiderlings hatching in areas with high predators in general hatch

sooner and the spiderlings are smaller (Li, 2002a). Variation in the population

structure of predators can thus also have dramatic effects on mating systems as

spiders from predator-rich environments may be weaker competitors than those

from predator-poor environments. Alternatively, if there are advantages to

emerging sooner (see Kasumovic and Andrade, 2006), then spiders from preda-

tor-rich environments may have an advantage in securing mates and may gain

an ownership advantage which may outweigh the competitive disadvantages

(Hack et al., 1997; Kasumovic et al., 2011; Leimar et al., 1991).
6 Conclusions and future directions

Research on spiders has often concentrated on the lurid and extravagant traits

that seem to be common in spider mating systems (e.g. genital mutilation,

mating plugs, extreme monogyny, sexual cannibalism). These behaviours

have offered a means to test general hypotheses about sexual selection and

behavioural ecology. Here, we argue that the unique nature of spider mating

systems and the adaptations that defines them as a group gives scientists the

opportunity to explore how environmental variations may affect behaviour and

life history. While this line of research is not novel, the idea that environments

vary at very short temporal and spatial scales has only recently been explored

theoretically and empirically. In order to fully understand adaptation, it is

important to understand not only how selection operates on phenotypic distribu-

tions, but also how selective environments change, at what scales they change,

and how animals may or may not be adapted to change in their selective

environments. Changes in population structure are an excellent opportunity to

investigate dynamic environments because of their strong role in determining

selection pressures.

Here, we focus on three demographic variables that we argue can have wide-

ranging effects on selection in spiders, and more critically, are likely to vary

over relatively short spatio-temporal scales: tertiary sex ratio, density, and sex

biases in development time (Table 1). We suggest several avenues of research

that are missing in the literature. First, more studies that measure demographic

patterns (spatial distribution, tertiary sex ratio, density, etc.) in the field as well
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as how development, experience, and predatory pressures shape population

distributions and structure across the landscape. Second, it is important to

expand our knowledge-base on sperm competition patterns in more species.

More studies examining sperm precedence, genitalic morphology, and mating

patterns are needed. To date, too few studies in spiders have explored this in

detail, and understanding sperm patterns is key to deciphering mating patterns

in the field. Third, it is important to understand the different competitive

contexts that spiders face in nature. Scientists must take care to design experi-

ments that are grounded in the ecology and biology of the study species in

nature. Manipulations are critical, but when these cannot be done in the field,

they should at least be paired with complementary data acquired under field

conditions—and these must be interpreted in their particular spatio-temporal

context. Fourth, one challenge with making broad conclusions based on the

literature in this area is the strong tendency of researchers to focus on a few,

showy taxa. While it is clear that broader taxonomic coverage is needed, we

urge researchers to choose species as a function of the questions they wish to

answer whenever possible, rather than the reverse.
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