Chapter 3

The Silent Traditions of Developing Cooks

Emma Crewe

What is essential goes without saying because it comes without saying: the tradition is silent, not least about itself as a tradition; customary law is content to enumerate specific applications of principles which remain implicit and unformulated, because unquestioned (Bourdieu 1977: 167, original emphasis).

Introduction

Cultural traditions within European development organizations have been a neglected field, to the frustration of development personnel elsewhere. Tandon argues that it is difficult for Africans to fathom the workings of ‘Western’ Non-Government Organizations (NGOs) ‘not only because of their secrecy but also because their ideological and philosophical orientations are products of complex historical forces within their own countries which outsiders cannot fully understand’ (1991: 74).1 Perhaps it is even harder for European ‘insiders’ to make sense of these complex historical forces. Rather than seeing their own ideology as a product of history, their thinking is oriented by it. Ideology is automatically imbued with a character of objectivity for insiders (Bourdieu 1977: 167), while outsiders are constantly reminded that historical forces behind the foreign ideology are very different from their own. What appears as secrecy amongst ‘Western’ development agencies is probably more likely to be the silence of tradition being taken for granted. It is aspects of the assumptions made by ‘developers’, part of the development ‘industry’s’ silent traditions, that I will try to uncloak in this paper. I will illustrate how
Unspoken ideologies have affinities with particular social orders, with reference to my ethnographic study of one area of technology development — improved cooking stoves.

In 1988 I began to study the impact of a government-run project in Sri Lanka. Like the many expatriate researchers who have followed this path before me, I embroidered patterned links between project activity and its effect on ‘beneficiaries’. As examples, the benefits were highly inequitably distributed: waged labour was introduced to relatively egalitarian communities, and women were marginalized from control over production and profits. I then embarked on more conventional ethnographic fieldwork in a Sri Lankan village to explore these effects in more detail. The fieldwork was interrupted in 1989 when I was recruited by a British development agency. For fifteen months I worked as a social scientist and, at the same time, continued research by compiling a picture of how ‘development’ processes are embedded within the political relations of various groups of ‘developers’ as well as supposed ‘beneficiaries’.

I was uncomfortable with the whole business of embracing the ‘world of development’, or more specifically of developing people through technology, despite Escobar’s valid claim that among most anthropologists such discomfort has become worryingly allayed by job opportunities (1991: 659) (putting aside crude materialist explanations, it is easy to forget the anthropological relativism once one has been firmly socialized into development discourses). ‘Don’t be naive’, a Kenyan colleague suggested during a seminar in a Sri Lankan beach hotel: ‘naturally your country is more developed. Look at your technology, economy, your standard of living, your freedom of speech… What more proof do you need? We Africans have to catch up.’ This jarred against years of training in anti-evolutionist thinking. Even more disorientating were the assumptions that people were not voicing. The most overarching ones lay behind missionary-like statements, such as ‘people in developing countries have problems and the Northern “experts” can help.’ In this paper, I am concerned with the process of European developers struggling to help stove users, i.e. cooks, in Africa and Asia.

Cooking stoves were once an important area of appropriate technology development because they brought together several ‘sexy’ subjects, as fashionable aims are called in colloquial development jargon, such as working with poor women; raising the income of poor artisans, conserving environmental resources (especially saving trees) and reducing pollution. Stoves attracted a great deal of aid and attention, and many development agencies, government and non-government, became involved in their promotion. By the time I became involved in 1988, most of the large agencies had allocated some funds to stove programmes. Among the various personnel working in the area of stoves – the ‘stovies’, as they call themselves – I will concern myself particularly with the planners and the engineers. Planners in stove-work tended to be energy experts, often economists, while the technical people were mostly mechanical engineers. Among those on the receiving end of the attention, in this paper I am concerned with the users of stoves rather than the much smaller number of artisans who make them. The most obvious observation to make is that while the cooks were exclusively indigenous, the technical people were a mixture of indigenous and expatriate, and the planners were a mixture in theory but mostly expatriate in practice.

Before we delve into the work of the ‘stovies’, it is worth commenting on the involvement of expatriates in international development. In foreign aid-funded projects it tends to be the planners in donor agencies who make the important planning decisions in the public domain. And where do they get their information from? They will tell you proudly that they do not read books unless they are extremely brief. So they hire advisers to write very short reports or to tell them what to do verbally. In addition to these advisers, expatriates impart technical, managerial, marketing, business and social-scientific wisdom through assistance and training. This ‘indigenous capacity building’, it is hoped, guarantees sustainability or raises awareness about various political issues, such as gender, poverty or the environment. The result is that Africa, Asia and South/Central America have over 150,000 expatriate residents or visitors working in development projects. This ‘expert’ assistance consumes an estimated 57–8 billion of donor money a year in Africa alone, and even a non-government organization (NGO) may spend up to £900 a day on a very expensive consultant. According to Nindi, the highly paid ‘experts’ have done nothing to prevent Africa plunging into an economic crisis (1990: 59).

These development ‘tourists’, as Chambers calls them, must surely offer something (1983: 11). They are usually described as having valuable and unique specialist skills capable of sustaining
The perception that the demand for fuelwood was outstripping supply in 'developing countries' led to the 'gap theory'. All of the sixty or more UNDP/World Bank energy-sector assessments for developing countries relied on gap-theory calculations (Leach and Mearns 1988: 6). Describing estimates of the size of this gap as wild would be greatly understating the case. To measure the gap, an estimate was usually made of the fuelwood consumed, which was then compared to the available tree stocks (allowing for the annual growth of the population and tree resources). Since estimates of consumption nearly always exceed this annual tree growth, apparently by as much as 200 per cent in some Sahelian countries, it was assumed that people overcame the problem by felling the forests. For example, the Food and Agriculture Organization claimed that 'fuelwood supplies have been rapidly depleted and the cutting of firewood has in turn been a major cause of excessive deforestation' (1985: 8).

Some projections into the future assumed that as the gap grows, the tree stocks dwindle until eventually none remain. In 1984 it was predicted that Tanzania would be completely stripped of trees within six years (Leach and Mearns 1988: 7). It wasn't. The reaction to the predictions of catastrophe, mainly by expatriates, was energy-related intervention on an enormous scale. Initially the solution was seen to be large afforestation programmes, but planners hoped that fuel-efficient stoves would avert the immediate crisis by reducing consumption. The underlying rationale of stoves was consistently linked to saving trees. Claims like the following one about Senegal were not uncommon: 'if stoves were used by 60% of the population they would save over half the annual forest deficit, estimated at 3 million cubic metres of wood annually, and reduce the national energy budget by 20%' (Gern and Evans 1981: 2).

The claims about deforestation, although unwarranted, influenced national governments to concentrate on disseminating vast numbers of fuel-efficient stoves very quickly. Quality was often sacrificed on the altar of quantity. The technical performance of stoves related to fuel consumption became critical. Karekezi, of the Foundation for Woodstove Dissemination (FWD) in Nairobi, surmises that 'the socio-economic aspects of stove development and dissemination took a back seat. In the 1970s, technical and scientific parameters were perceived to be as important as (and probably more important than) the needs and aspirations of the greater objectivity. It may indeed make sense for donors to send their own appraisers or evaluators to look critically at a project they are funding, because they can represent the concerns of the donor. As a regular habit, however, Nindi argues that 'a number of disadvantages either inherent or created by the adoption of outside planning experts outweigh the apparent benefits' (1990: 48). As examples, their reports are often insufficient in scope and depth, their planning is not supported by locally specific information, they tend to over-generalize about problems and solutions, and they exclude local planners (not to mentioned those planned for) from decision-making (ibid.: 49-50). Since foreigner's inputs are not usually monitored or evaluated, guessing at the accumulated value or impact is an exercise fraught with difficulties. Even so, I hope to make a start through a study of the recent development of cooking stoves.

The Story of Stoves

In the history of stoves until the late 1940s, technological development in the 'South' took place either in kitchens, or occasionally in artisan's workshops, largely as a part of commercial enterprise. Improved biomass stoves were first put on the agenda of planned development in the 1950s, and international agencies became involved during the 1970s. I will consider the impact of advice about stoves given by expatriates since that time.

Half the households in the world use stoves to burn biomass fuels, mainly wood and charcoal, and principally for cooking. A series of chronic misunderstandings about household or domestic energy, deforestation and biomass fuel evolved in most international development agencies during the 1970s and 1980s. In the 1970s, the oil price hikes and alarm about the depletion of resources (most influentially spread by Meadows et al. 1972) combined to create the 'woodfuel crisis'. 'Experts' mistakenly thought that people cut trees to obtain fuel for domestic consumption, thus deducing that a decrease in domestic fuelwood consumption would decelerate the rate of deforestation in areas of scarcity. The orthodoxy also stated that domestic fuelwood consumption increases proportionately with population growth and that both are directly related to deforestation (Cline-Cole, Main and Nichol 1990: 514).
stove user’ (1989: 23). Unfortunately, the emphasis on fuel-efficiency at the cost of users’ priorities frequently led the users to reject the stoves. Expatriate (and national urban-based) technicians told me that lack of education led the cooks to use the new stove incorrectly or that the abandonment of stoves was evidence of a conservative culture. The technical performance of improved stoves was beyond reproach because the engineers, and not the cooks, were apparently the only rational judges of technology.

During the early 1990s it was accepted by some technicians that the cooks were acting rationally in rejecting early designs. In many cases stoves were introduced to solve problems perceived by designers (such as fuel-inefficiency), which were not necessarily considered troublesome by cooks. It has been found in many places (e.g. Senegal, Sri Lanka, Indonesia and Zimbabwe) that cooks value the speed at which a stove functions above all other features (Crewe 1993: 112). In the mountainous areas of Nepal, Fiji and Guatemala, space heating is more important than fuel conservation, so well-insulated, fuel-efficient stoves are not popular in most households (Gill 1987: 138). Such a diversity of priorities, however, was not reflected in the stove models emerging from engineers’ workshops, because their parameters were set by a policy fashion for fuel conservation.

The technical failings were noticed by energy ‘experts’. In 1983 two British writers, Foley and Moss, concluded that not only were most improved stoves making very small reductions in fuelwood consumption, but that some were even increasing the amount of fuel burnt. They also pointed out that the policy premise was flawed: woodfuel consumers are the victims but not the root cause of deforestation. Clearing land for agriculture creates by far the greatest pressure on wood resources, and timber logging, charcoal-making and industrial fuel use all account for substantially greater depletion of the forests than domestic consumption (Foley and Moss 1983: 19-21). Since people cut trees primarily to clear land for cultivation or livestock rather than to burn wood in their stoves, deforestation is ultimately a land and not a fuel issue (Foley, Moss and Timberlake 1984: 11).

Years before Foley wrote about domestic fuelwood consumption, ‘local’ researchers had been pointing out that cooks do not cut green trees. For example, when Indian researchers asked residents of Gujarat, India, about felling trees, one of them said, ‘Who will cut the green trees? Don’t they give us our livelihood? It is outsiders who cut them’ (Nagabrahmam and Sambrani 1980: 14). But it was Foley and other Europeans and Americans following his line who brought about a change in donor policy. It is they, not Indian researchers such as Nagabrahmam, who are remembered for eliminating the enchantment with stoves as a panacea for all energy ills. The expatriates’ advice acted as a catalyst and excuse for giving up the tricky business of working with overworked, resource-poor cooks to improve their kitchen technology.

By the end of the 1980s, almost all the multi-lateral and bi-lateral donors, aside from FAO, DGIS (Dutch) and GTZ, had abandoned stove development. It was deemed to be a failure as a solution to the energy crisis and not relevant to any other development area, despite stoves being one of the most important pieces of equipment for household work. There are certainly other institutional causes for the decline in stoves, aside from the influence of advisers, emerging out of the circumstances of the particular agency. For instance, staff within the Energy Strategy Management Assistance Programme (ESMAP), the key energy department within the World Bank, told me during interviews in 1990 and 1993 that the loss of interest in stove programmes was a result of their own poor record at implementation, the low project cost and lack of explicit macro-level objectives. But expatriate advisers undoubtedly gave the Bank and its own donors their rationale for dropping stove programmes. ESMAP’s position in turn influenced the United States Agency for International Development (USAID), who, for example, cut funding for stoves in Nepal at least partly (they claimed) because ESMAP had conveyed negative signals about such programmes. Other staff within USAID’s Energy Department have explained that negative policy statements (such as Foley’s) and failed stove programmes disillusioned staff to the point where, by 1993, the subject had become ‘taboo’.

Meanwhile, stove programmes have been blossoming in many African and Asian countries. By 1993 over 165 million stoves had been installed in kitchens worldwide, mainly in China, India, Sri Lanka and Kenya (Crewe 1993: 112-13). In the latter two countries they were purchased – rather than given and financed by subsidies – by fifteen to twenty per cent of the population. Project staff have learnt to do extensive trials to find out which design would be popular with consumers. Consequently, new stoves have been a roaring success from the users’ viewpoint, in Kenya because they use less fuel and in Sri Lanka due to time saved in cooking.
Many national planners in the South welcome stove programmes. Two African energy analysts, Davidson and Karekezi, argue that an environmentally sound strategy for Africa should focus on more efficient use of energy rather than growth of supply (1993: 19, 21). On these grounds, they add, the promotion of wood-and charcoal-burning stoves should be a component of energy plans in Sub-Saharan Africa. Karekezi established that, unlike wood stoves, more efficient charcoal stoves do reduce the rate of deforestation, since they can decrease the amount of trees felled for charcoal-making (Bhagavan and Karekezi 1992). A more sophisticated understanding of biomass systems is now emerging as a result of the work of Asian and African energy experts. Regional policy research has become highly organized, and in Africa alone valuable reports are regularly produced by the Foundation for Woodstove Dissemination, the Regional Wood Energy Programme for Africa, the African Energy Policy Research Network, the African Energy Programme of the Commonwealth Science Council and the SADCC-TAU Energy Programme for Southern Africa. But do the expatriates donors, planners and advisers follow their directives? Not so far.

To summarize the stoves story, most planners in donor agencies listened most attentively to expatriate advisers and promoted stoves for the wrong reasons in the 1970s and early 1980s. The reasons were founded on misplaced assumptions because the advisers did not listen to cooks and energy users, nor even national energy analysts and researchers. It is clear that a weak understanding of biomass energy supply and use, established as orthodoxy by expatriate advisers, gave rise to severely mistaken policies. We have seen that for roughly fifteen years stoves were heralded as the technology to save forests. Donors enthusiastically developed them as technical devices and then persuaded southern governments or NGOs to set themselves enormous dissemination targets and hawk them fast. As the promised saviour of forests, stove programmes failed and so donors gave them up, ignoring the positive value attached to new stoves for those who were using them. The reduced workload and/or household expenditure on fuel was invisible to the planners.

Foley was probably only trying to conjure up a more informed picture of the relationship between biomass use and deforestation. But the result of his work was the replacement of one pessimistic generalization about energy problems (fuelwood use causes deforestation) with another (improved stoves are a failure). The weakness of such a selective, unilinear causality is described by Campbell (1989: 102). He warns against making causal statements where 'one explanation is abstracted from a number of competing ones and emphasized in such a way that it obliterates the others by denying them'. But his warning may fall on deaf ears unless priorities change, because it would make planning too complicated, lengthy and reliant on contextual information, and therefore expensive.

I promised a conclusion on the impact of the work of European expatriates. Although not a conscious strategy, they have reinvented themselves as experts at the cost of the position of national analysts in Africa and Asia. But that is not the only social transformation which can be traced in this story: it also gives rise to a pattern of engineers displacing the cooks as the technical innovators.

Engineers Displacing the Cooks

In rural areas of Africa, Asia and South/Central America technical improvements to stoves were probably carried out by female cooks, until potters became involved in designing ceramic wood-burning stoves, and metal workers began making aluminium or tin charcoal-burning stoves. Since Indian technologists started working on new biomass stove designs in the late 1940s, technical stove development has moved into the domain of almost exclusively male engineers and technicians. Although the national technologists outnumber expatriates involved in designing stoves, it has often been the latter who claim the credit for the more successful models in their project reports. Cooks have not usually been involved in the development of the stove, except to test its 'acceptability' after a bout of technical work was complete. Producers are usually consulted only to see if the manufacturing processes are technically and financially feasible. Thus, the users and producers have been displaced from the centre of the technical innovation process. Goody (1982: 193) points out that in Europe the 'kitchen was the birthplace of many technical operations and apparatus' concerning the preparation and cooking of food, but 'when these processes left the kitchen for specialist control they generally shifted from the hands of women to those of men'. This is also true of stove development in the South.
Why were cooks not leading stove development? Because their views continue to be considered ‘backward’ and distorted by exotic traditional beliefs, in contrast to the apparently sophisticated, detached technical expertise of engineers and even social scientists. For example, a survey carried out by a national development organization in Kenya in 1990 showed that the only stove satisfying all household demands was probably the ‘traditional’ fireplace. But are these ‘demands’ really taken seriously? In a report of the survey, the writer (a social scientist and development worker) warns that ‘these comments represent “perceptions” of the users and are not necessarily related to technical performance’. Cooks, despite their daily practice of cooking, apparently have less technical knowledge in their perceptions, than designers in laboratories do in their findings.

The implication is that while users passively ‘perceive’ but do not know, the technical experts actively ‘find’ and ‘know’, and even develop knowledge within an objective, scientific discourse. Behind this implication is an assumption that ‘Western science’ is the only path to objective truth. But what makes science true? The fact that it works? And yet, watching cooks at an open cooking fire alerts an observer to the complex technical skill involved in manipulating fire, stones, air, earth and wood, which also works. In both the Gambia and Zimbabwe, fuel-consumption studies have shown that women using fuel-conservation strategies with a threestone fire have saved more wood than apparently fuel-efficient stoves (Bennett 1990: 20; Howorth 1992: 24). For example, some Zimbabwean cooks build walls around the open fire, lower the grate on which the pot sits, extinguish the fire as soon as the cooking is finished and arrange the sticks so that the most efficient performance is attained. In wood-burning stove-use, the user is a more influential variable on fuel consumption than the equipment. If stoves are promoted for the benefits to cooks rather than designers, then the technical skills and views of the former should surely be central to an assessment. After all, very often the national male designers are not even regular cooks.

Stating the obvious about most men’s relatively light cooking workload is no mere jibe – it sheds light on the quality of expertise. Bloch stresses the importance of practice in the use of expertise, giving the example of a Malagasy farmer choosing a bit of forest for ‘good swidden’ (1991: 187). When the farmer decides on a good plot he whizzes through an incredible processing feat in minutes:

He recalls the complex yet flexible mental model of what good swidden is like, takes in the image of forest before him (the vegetation, the slope, the surrounding countryside, the hydrology, the soil), and then compares the two. This could not be achieved through a simple comparison, with the mental processes running down a single line of analysis, but must involve what Bloch calls ‘multiple parallel processing’ (ibid.: 191). A technician cannot know exactly what mental image the cook has of a ‘good’ stove. It is only through the ‘complex yet familiar task’ of cooking that the cook can compare a new stove against an old one, taking in information about what kind and size of wood it needs, how well air is drawn, how much heat and light is provided, how many sparks fly about, how much smoke is released into the room, whether the heat can be easily controlled, and so on. Such familiarity builds up over years which, not surprisingly, makes them the most experienced experts at cooking with wood.

If we take the engineers’ conception of technology as being equated with equipment, machines or ‘hardware’, then cooking and fuel-conserving techniques which involve manipulating materials (the fuel and stones) are merely practices or skills, as if there is no innovation involved. To be more specific, the creative expertise of cooks is demoted to the category of ‘cultural cooking practices’, whereby culture and technology are opposed. There is no such opposition in the minds of the cooks. Also, such an assumption misses an essential point. The fuel and stones are just materials in one context, that is, when they are not being used for a purpose, but they are transformed into equipment once the cook has arranged them for a task. Innovation can be involved in either developing new equipment or creating new ways of arranging equipment. Thus, Bush is right to distinguish between (1) tools, such as appliances or equipment; (2) techniques, that is methods or skills for using tools; and (3) technology, which is the organization of tools and techniques for the performance of tasks (1983: 155).

The marginalization of indigenous knowledge is welldocumented (Brokensha, Warren and Werner 1980; Chambers 1983; Hobart 1993; Warren 1989). Even so, the puzzle surrounding the perceived insignificance of cooks’ knowledge is still not quite solved. Undoubtedly, it has something to do with the people themselves. It appears that technical knowledge is not measured and valued according to its utility for users when put into practice:
the value of knowledge is predetermined by the source of knowledge, that is, the identity of the innovator. More accurately, the identity of both the innovator and the evaluator are relevant: the process of evaluating development technology expresses the unequal power relationship between the two. But that is not all. The identity of cooks is, of course, critically shaped by the fact that in the vast majority of the world’s households, cooks are female, and cooking has to be understood within the context of gendered social relations. At the household level, and in international aid and development projects, men control key resources and decision-making processes, while women’s work and expertise is undervalued.

As is often the case with women’s work, it is assumed that cooks are not technically minded. The cooking expertise of women is invisible because, following Chamber’s criterion for low status in development projects, their cooking is carried out in rural areas, is women’s household work, is not part of the market economy and is considered messy, tradition-bound and dirty (1986: 143). In short, cooks are a marginalized, relatively powerless group of women with relatively low access to, and control over, valued resources. The stove technicians, on the other hand, tend to be men busily devising clever new widgets in laboratories with valuable resources at their fingertips, applying their more visible knowledge and thus propelling development through the traditionally male medium of hardware technology. Men, by reaffirming their control of technology development through inventions, recreate the gender inequity permeating the social order of the development industry. This does not operate on the level of a conscious ploy by men as a group, but the result of their combined innovative efforts is plain enough.

This pattern is not peculiar to stove development. Smith claims that appropriate technology in general is written about and promoted by men, who adhere to the same old androcentric values that dictate that ‘men have technical skills and make the technical decisions’ (1983: 66). Perhaps it is hardly surprising in Europe or America, where there are very few female engineers or acknowledged inventors, and where technology development is seen as highly specialized and centralized, far away from the location of the users. But that does not mean that women have been excluded from inventing or modifying technology in practice in rural Africa, Asia or South/Central America. It may not be easy to demonstrate this from the written record. Stanley points out that ‘if researching women’s history is like looking for needles in haystacks, and researching women inventors is like looking for needles in haystacks when everyone denies that needles exist, then researching black women inventors is like looking for those nonexistent needles in haystacks that have been scattered by the wind’ (1983: 55). Though it is difficult to quantify women’s innovations, she surmises that women have been inventing tools and processes in the realm of food-gathering and processing, horticulture, agriculture, spinning, weaving, pottery, architecture, medicine, contraception, music and possibly even mining and metallurgy (ibid.: 56). However, until either the definition of technology widens to incorporate these innovations or more women enter more formal technological domains (e.g., enrol in engineering courses), technology will be interpreted as man-made and development will be men making machines for progress.

Expatriate Expertise Invented

We have seen that women are not deemed to be experts in technology development and assessment. I now want to make a link between male-dominated technical innovation and my other theme, expatriate-dominated planning. The roles of technicians and cooks in stove programmes reveal that value attached to knowledge has little to do with its intrinsic value or function. It is more an expression of the power relationship between the knowledge creator and evaluator. In the final section of this chapter, my intention is to comment on the related power relationship between the expatriates and nationals.

The perceived superiority of expatriate expertise is recreated not by their insightful analysis and talent, but by the planners who rationalize decisions with reference to expatriate-derived knowledge. The ink on the stamp of authority held by expatriates is renewed by constant, repetitive reference to their advice. Meanwhile the nationals speak, but are not heard; their reality is mediated through the worldview of expatriates, reaffirming the latter’s place as powerful beings within the international social order. People shape power relations partly by action but also by telling tales about the past, which then act as rationalizations. I have argued in the brief story of stoves that the advice of experts...
is usually used to rationalize decisions after they have been made. Expatriate experts give authority to policy and planning decisions, authority which seems to slip away from national experts.

What are the reasons for this? Is it, for example, stark and simple racism? Not necessarily. It is not purely a question of national or racial identity: for instance, Munasinghe, a Sri Lankan, is frequently referred to deferentially by energy planners and policymakers. But I would argue that this is because his position has been defined by his place as an adviser within the World Bank, plainly a powerful institution. Conversely, being white does not give a person automatic authority. As a female representative of a small British NGO working in the supposedly narrow field of household energy, I had almost none within the World Bank. The influence of whites is contextual and relational; it depends upon their social position in each context and in relation to those listening to them. One anecdote about stoves, related by a white senior economist at the World Bank who had made one brief visit to Mali, had a decisive influence on her manager within ESMAP. She reported that she had seen people using stoves as flowerpots, and blamed the recent legislation which compelled people to purchase stoves, even though, she deduced, they were universally unpopular. Her ‘evidence’ was quoted informally by senior managers when justifying their decision to cut funding for stove programmes. The evidence is uncertain. Two years earlier a white member of staff of an American NGO conducted a study of the same stoves programme in Mali during one of her many regular visits to the country, and found that over 90% of fifty stove users were mostly happy with their stove (Crouch 1989: 13). The ESMAP senior staff did not mention this study.

Although simple racism is not the defining process, long-established racial stereotyping underpins many assumptions. The propulsion behind development as social evolution is portrayed with all sorts of arbitrary features which apparently indicate social backwardness. For example, it is common for energy analysts to describe energy ‘progress’ in terms of fuel-use in relation to supply and demand, whereby populations move up the ‘energy ladder’ as their societies develop (Ausubel 1989: 80–2). In the typical version of energy modernization theory, the poorest and ‘least developed countries’ are populated mainly by dung-fuel users. As countries become more developed, their households take a step upwards from dung to agricultural residues, wood, biogas, charcoal, kerosene, coal, and finally gas and electricity. In most parts of Africa, South and Central America and Asia, biomass is still the predominant fuel, especially in rural areas. At the same time, biomass fuel-use remains one of the criteria for relegating the countries and their populations within these continents into the category of ‘developing’ or ‘less developed’.

The argument for employing expatriates is partly informed by the evolutionist idea that all ‘locals’ (urban or rural, irrespective of class or training) are behind the ‘Westerners’ in terms of education. The apparent consequence is that the ‘locals are not yet ready to work on their own’, according to one British development worker (what does she think the locals were doing before the development project, it makes you wonder?). Ideology within development agencies is still at least partially informed by the evolutionist heritage of modernization theory, with its historical link to explicitly racist theories prevalent during colonial times. The word ‘local’ is often used in an equivalent way to the discredited term ‘native’. While there is nothing intrinsically evolutionary about the concepts ‘local’ or ‘native’, since they imply place, not character, many development personnel tend to characterize urban-based local development workers as relatively incapable, dishonest or incompetent in startlingly similar language to the colonial administrators of the past. Until recently, the perceived technical failings of locals have been most vigorously charted; in the last decade, management has been identified as their key weakness. Through these stereotypes, it is possible to see that ‘local’ can be a euphemism for thoroughly derogatory words such as ‘primitive’ or ‘backward’ or ‘simple’.

In the eyes of the expatriates, the ignorance of the ‘locals’ is confirmed by the fact that ‘they’ do not seem to ‘speak our language’, literally and figuratively. Development organizations create their own language, scattered with acronyms, which is only familiar to ‘insiders’. Familiarity with the domain of meaning for each word or expression in this language, the limits of which are fought over by individual speakers, plainly gives an agent a more powerful position in a debate. Although the language is not necessarily consciously created with this in mind, unfamiliarity places you in such a weak position that it is difficult to enter into negotiation at all. The first job of new recruits in a development agency is to learn this language fast. The result of this specialized development language is that the local project personnel, and
certainly the local stove producers and users, are confirmed as ignorant in the minds of developers until they are equally fluent in the code.

More significant still than the words used in a development agency’s lexicon, which are relatively easy to pick up and inject into meetings and reports, are the ‘project cycle methodologies’. As a social scientist, I was asked to comment on the work of counterpart social scientists, and even advise and/or train them in ‘project cycle methodologies’. This was extremely embarrassing, as they plainly knew far more than I about choosing appropriate methods for the country in which they had been living and working all their lives. My counterparts had all had several years of project experience (at least), while I had spent four months working in development when I started ‘advising’ them in 1989. Project staff in Sri Lanka, India, Kenya and Nepal had no choice but to accept my ‘advice’, as if it was given by a social scientist with superior expertise.

According to a Nepali social scientist I ‘advised’, it is particularly young, inexperienced development ‘experts’ who feel a pressure to prove their professional worth, so that moral and political rhetoric is swallowed up in practice by a need to gain recognition. This certainly rings true in my experience. While acting out the part of a young so-called ‘expert’, I was not consciously fabricating a special domain of knowledge to vanquish African or Asian colleagues. Rather, I was being socialized within an organization which defined my social position as having a superior knowledge or skills. If I had no specialist skills worth transferring to projects, I would not just have a lowly social position within the department responsible for implementing projects, I would have had no coherent identity or job. Thus, as an inevitable part of being a member of a social order, I took on a body of knowledge, such as ‘project cycle methodologies’, gender awareness and how to do participatory rural appraisal. This can be contrasted with my behaviour after a year working as a trainer, when I refused to engage in any more assistance, training or advising. By this time advocacy work had expanded in the organization I was working in, and I was established enough to carve out a new identity unofficially as a British-based policy worker.

One African colleague related examples of how expatriate advisers continually used various strategies to assert their perceived superiority over the ‘locals’. These may include putting them down by quoting recent foreign publications (which can be difficult to obtain in most countries), contradicting them, capturing as much speaking time in meetings as they can, referring to their own work in other countries and thus providing a contrast to the locals’ apparently meagre national experience and using high technology (such as computers). Do the nationals passively internalize the superiority of expatriate expertise? Not necessarily, he concluded. Nationals in their turn invest considerable effort in developing computing skills to make the point that anything the expatriates can do, they can match or do better (he also added that watching European and American expatriates at work was deliciously reassuring, because it shattered the stereotype of whites being essentially efficient, punctual and sharp-witted). Even if the nationals’ resistance is often subtle or even disguised, it reveals that the power relationship is not necessarily accepted by the supposed weaker recipients. The secrecy of national experts, their refusal to write reports, attend meetings or accept advice from expatriates, and their ‘misuse’ of donor funds could all be seen as forms of resistance or ‘weapons of the weak’, as Scott calls them when employed by Malaysian peasants (1985).

On an institutional level, however, for the social order to be maintained with the objects of development remaining in their rightful position, the excellence of expatriate expertise must be invented through history. Development tales told by expatriate experts about their success with the ‘locals’ affirm the authors’ place in the wider social order of the development industry. Their body of superior knowledge does not exist in any objective sense, but relies on constant reiteration and renewal of development language, methods and rules. This process is silent so that the experts appear neutral in theory, while in practice they reinvent their powerful position. The situation seems to have changed very little since Adams wrote:

It’s not knowledge or skill alone that’s wanted of the expert; there would be less costly, more efficient ways of acquiring them. What matters is the halo of impartial prestige his skills lend him, allowing him to neutralize conflict-laden encounters – between governments, between a government and its governed – and disguise political issues, for a time, as technical ones. An expert helps disguise the government of men as the administration of things, thus making it
Conclusions

The recent fierce criticism of aid has led to calls for greater accountability, especially a more rigorous evaluation of projects. It is my contention, however, that the contribution of European and American expatriates to particular projects is usually overlooked. Moreover, their overall impact on aid over time is almost never scrutinised. I have tried to evaluate the impact of expatriates on one development sector, cooking stoves and household energy, within the context of social and political relations between 1980 and 1995. I have argued that they displaced localized knowledge and expertise by ignoring national energy specialists. They also contributed to a transfer of technology development out of the hands of women and into urban-based laboratories and workshops which mostly employ male technologists. Even if the technical work is now mostly carried out by nationals in national institutions, the European expatriates who give technical advice and assistance and funds for urban-based research play an important part in the marginalization of women’s expertise.

I have given prominence to the role of two ideological themes in the context of social relations within ‘development’ processes: evolutionism and androcentrism. Although my observations relate to my experience of stove programmes, I suspect that they may be relevant to other development areas. Whether it is modernization theory (relegating developing countries to economic and technological backwardness) or romantic populist ideas of indigenous knowledge (characterizing locals as practical people with fantastic memories but not much theory), equivalent evolutionist ideas form a current trend. In relation to the theme of androcentrism, the fashion for ‘gender issues’ often amounts to no more than proposing women’s presence in technology development projects, with little regard to their relative control over innovation, production and distribution.

It is not enough to revere participatory development, to say, ‘Listen to the people, consult the poor and let them tell us their needs’, as if they all agreed with each other. People disagree and compete, partly because their interests are differentially defined by, for example, their colour, ethnicity, class, gender and/or caste. Not recognizing conflicts between interest groups leaves control in the hands of the more powerful by default. We need to understand not only the differentiated interests of the cooks – when split by class, for example – but how they relate to other groups within and outside their communities. We need to study the engineers and the planners, the policy specialists, researchers, anthropologists, sociologists, economists, marketers and business specialists, the campaigners, communicators – the enormous team that makes up the development ‘industry’. Their practices must be watched within the context of their institutional affiliation, their gender, their nationality, their class and identity, for to sweep all expatriates into one pigeon-hole is as misleading as generalizing about ‘locals’. I hope to draw attention to what ‘goes without saying’ for the developers (Bourdieu 1977: 167). Once they understand the partiality of their own thought and inventions, draw back their false veil of neutrality and recognize that their efforts are resisted, ignored or improved by the ‘weak’, they may be better disposed to accept the demise of ‘development’ as evolutionary progress controlled by men.

Notes

1. Thanks are due to Ralph Grillo for suggesting changes to an earlier draft, and to colleagues at Sussex University for commenting on this material when it was presented as a paper in January 1994.
2. This doctoral research was carried out from Edinburgh University, supervised by Anthony Good, and funded by a Collaborative Award for the Social Sciences from the Economic and Social Research Council. I have concealed the identities of all organizations and individuals involved in the research.
3. Biomass is matter derived from recently living organisms, such as wood, charcoal, animal dung and agricultural residues.
4. The cycle includes the phases of the project, which usually cover planning, appraisal, implementation, monitoring and
evaluation. Project cycle methodologies refer to the way these activities are carried out.

References

Chapter 4

The Donors' Discourse: Official Social Development Knowledge in the 1980s

Alan Rew

Development institutions are part and parcel of how the world is put together so as to ensure *certain processes* of ruling. (Arturo Escobar 1991: 674, emphasis added)

To ‘donate’ is to give implying an altruistic motive; strictly, and perhaps more neutrally, ‘suppliers’ should replace ‘donors’ in the vocabulary of this study. (Richard M. Titmuss 1973: 81)

The Importance of Deconstruction ‘From Within’

‘Development’ is as much a set of currently existing institutions and practices with an international remit and compass as it is sets of concepts containing powerful ideological visions with normative tools of reform on behalf of economic growth and poverty alleviation. Development is therefore at the same time rhetoric, official practice and political theory, while also serving as a framework for descriptions, on a global scale, of human misery and hope. As anthropologists, we know that the drama of human activity and interests ensures that visions, methods, institutions and routine practices are blended and combined into complex social processes that are hard to capture with single theories and metaphors. In a benchmark analysis of development programming in action in Lesotho, Ferguson (1990: 17) recognizes the complex transformations of interest and intentions, and treats the outcome of a development project and programme as ‘neither an inexplicable mistake, nor the trace of a yet-undiscovered intention, but as a riddle, a problem to be solved, an anthropological puzzle’.