ORIGINAL ARTICLE

A multiplex PCR-based method for the detection and early identification of wood rotting fungi in standing trees

F. Guglielmo¹, S.E. Bergemann², P. Gonthier¹, G. Nicolotti¹ and M. Garbelotto²

1 Department of Exploitation and Protection of Agricultural and Forestry Resources, Plant Pathology, University of Torino, Grugliasco, Italy 2 Ecosystem Sciences Division, Department of Environmental Science, Policy and Management, University of California Berkeley, California, USA

Keywords

Abstract

internal transcribed spacers, mitochondrial small subunit, nuclear large subunit, molecular diagnostic, wood decay.

Correspondence

Matteo Garbelotto, University of California at Berkeley, Department of Environmental Science, Policy and Management, Ecosystem Sciences Division, 137 Mulford Hall, Berkeley, CA 94720, USA. E-mail: matteo@nature.berkeley.edu

2006/1023: received 14 July 2006, revised 22 December 2006, and accepted 21 February 2007

doi:10.1111/j.1365-2672.2007.03378.x

Aims: The goal of this research was the development of a PCR-based assay to identify important decay fungi from wood of hardwood tree species in northern temperate regions.

Methods and Results: Eleven taxon-specific primers were designed for PCR amplification of either nuclear or mitochondrial ribosomal DNA regions of *Armillaria* spp., *Ganoderma* spp., *Hericium* spp., *Hypoxylon thouarsianum* var. *thouarsianum*, *Inonotus/Phellinus*-group, *Laetiporus* spp., *Perenniporia fraxinea, Pleurotus* spp., *Schizophyllum* spp., *Stereum* spp. and *Trametes* spp. Multiplex PCR reactions were developed and optimized to detect fungal DNA and identify each taxon with a sensitivity of at least 1 pg of target DNA in the template. This assay correctly identified the agents of decay in 82% of tested wood samples.

Conclusions: The development and optimization of multiplex PCRs allowed for reliable identification of wood rotting fungi directly from wood.

Significance and Impact of the Study: Early detection of wood decay fungi is crucial for assessment of tree stability in urban landscapes. Furthermore, this method may prove useful for prediction of the severity and the evolution of decay in standing trees.

Introduction

One of the unique traits of wood decay fungi is their ability to decompose lignified cell walls (Blanchette 1991). Based on their enzymatic capabilities, wood decay fungi can be classified into either brown rot or white rot fungi. While the former can progressively degrade both carbohydrates and lignin, the latter preferentially attack and rapidly depolymerize mostly hemicelluloses and celluloses (Blanchette 1991; Worrall et al. 1997). Decay caused by either type of wood rot fungi leads to structural deterioration of the woody tissues. While only a few groups of decay fungi are directly responsible for tree mortality, the loss of wood mechanical strength caused by these organisms is nonetheless inherently linked to hazardous situations including tree wind throws or limb failures. In urban environments, or at the interface between urban and rural environments, tree or limb failures can lead to significant damage of property and/or to tragic injuries.

The detection of potentially hazardous trees is mainly based on Visual Tree Assessment (VTA), an approach consisting of a visual inspection of signs and symptoms linked to the presence of imperfections in the structure of trees (Mattheck and Breloer 1992). While the VTA approach is useful for the diagnosis of decay at an advanced stage, it rarely allows the detection of incipient decay or the identification of the rotting fungi involved. Although modern technologies are improving our ability to detect internal wood decay (Tomikawa et al. 1990; Habermehl et al. 1999; Müller et al. 2001; Sambuelli et al. 2003), the identification of the agents responsible for such decay is not always feasible without the presence of fungal fruit bodies, which are only sporadically visible usually in the advanced stages of infection. Because the biology and ecology of different decay fungi is varied, the identification

of the taxa involved in each instance is important for prediction of the severity of the fungal infection (Lonsdale 1999). An accurate and early identification of the causal agent is crucial for rapidly progressing decay fungi, because infections caused by such fungi can turn a sound tree into a hazard in a short period of time. Current diagnostic methods can be employed only in the late stages of decay, when trees may have already become hazardous. A method for the early identification of decay fungi is not available, but it is necessary for a timely detection of hazardous trees and to establish a preventive hazard management plan for trees in urban environments.

In the absence of unequivocal signs, it is currently necessary to isolate the decay fungus and characterize it by comparing growth rates, enzymatic capabilities and biochemical and immunological traits (Nobles 1965; Stalpers 1978; Anselmi and Bragaloni 1992; Jellison and Jasalavich 2000; Clausen 2003). The main drawback of culture diagnoses based on cultures is that fungal isolation is time-consuming and, in some cases, impossible. Moreover, the identification of closely related taxa based on the examination of cultural characters is complicated and often impractical. Biochemical and immunological techniques were largely developed for the detection and identification of common brown rot fungi from lumber (Jellison and Jasalavich 2000; Clausen 2003), but have limited applications in standing trees.

Techniques based on fungal DNA detection are a promising alternative for specific, sensitive and rapid routine diagnoses directly from wood samples. PCR-based methods using nuclear or mitochondrial ribosomal DNA (rDNA) loci have proven valuable for fungal identification at different taxonomic levels (Johannesson and Stenlid 1999). The Internal Transcribed Spacers (ITSI and ITSII) are useful for delimiting species whereas the structural ribosomal genes, such as the nuclear small and large subunit rDNA (nuc SSU and nuc LSU), are more useful for identification at higher taxonomic levels (Bruns and Shefferson 2004). The mitochondrial small subunit (mt SSU) rDNA includes both conserved and variable domains, providing molecular markers to resolve phylogenetic relationships of both higher and lower ranks among taxa (Hong et al. 2002). Furthermore, multicopy arrangement and highly conserved priming sites, typical of both nuclear and mitochondrial rDNA, permit amplification from virtually all fungi, even if the starting sample is lacking in quantity or quality (Jasalavich et al. 2000). The amplification of rDNA genes with universal fungal primers followed by restriction endonucleases digestion (RFLP) proved to be suitable for taxon-specific identification from cultures of decay fungi (Harrington and Wingfield 1995; Fischer and Wagner 1999; Johannesson and Stenlid 1999; Adair et al. 2002). However, when DNA

extraction is performed from environmental matrices like wood samples, where more than one fungal taxon could be present, PCR-RFLP is appropriate in its automated version (i.e., terminal-RFLP), or following a preliminary cloning step (Kennedy and Clipson 2003). These methods as well as other techniques commonly applied to fungal communities fingerprinting, such as direct sequencing of cloned amplicons, denaturing gradient gel electrophoresis (DGGE), and hybridization of immobilized sequencespecific oligonucleotide probes (SSOP) with amplified rDNA (Vainio and Hantula 2000; Buchan et al. 2002; Oh et al. 2003) are, in general, costly and time-consuming procedures and are not suitable for routine analysis. Taxon-specific primers have been already used for the identification and detection of fungal decay directly from wood (Moreth and Schmidt 2001; Bahnweg et al. 2002; Gonthier et al. 2003) without the necessity of automatic electrophoretic systems, expensive fluorescent dyes, restriction enzyme digests and blotting procedures. As an added benefit, the simultaneous application of taxonspecific primers in multiplex PCR reactions has been reported in clinical and food microbiology to increase the diagnostic capacity of PCR (Elnifro et al. 2000; Corbiere Morot-Bizot et al. 2004) and thus saves time and efforts without compromising the specificity of the analysis.

The objectives of this study were (i) to design taxonspecific primers for wood rotting fungi which can cause mechanical failures in urban trees; (ii) to develop multiplex PCR assays by combining taxon-specific primers with similar annealing temperature and test their sensitivity under simulated natural conditions; (iii) to validate the diagnostic protocol by evaluating the efficiency and specificity of such method on wood samples collected from trees showing decay symptoms and/or signs.

Materials and methods

Target decay fungi, sampling and culturing

The design and initial validation of ten genera- and two species-specific diagnostic PCR assays were based on 80 fungal collections. The collections were selected because of their prevalence in the northern temperate areas, their aggressive role in the deterioration of wood in standing trees and their broad range of hosts (Table 1) (Hickman and Perry 1997; Lonsdale 1999; Nicolotti *et al.* 2004; Bernicchia 2005). The taxa selected included *Armillaria* spp., *Ganoderma* spp., *Hericium* spp., *Hypoxylon thouarsianum* var. *thouarsianum, Inonotus* spp., *Laetiporus* spp., *Perenniporia fraxinea, Phellinus* spp., *Pleurotus* spp., *Schizophyllum* spp., *Stereum* spp. and *Trametes* spp. Collections were either pure cultures or fruit body specimens (Table 1).

				GenBank Accession numbers	sion numbers	
Species	ID collection	Host/geographic origin	Source*	Nuc LSU (5')	ITS	Mt SSU
Armillaria cepistipes Velen.†			EMBL-EBI		AJ250053	
<i>Armillaria gallica</i> Marxm. & Romagn.	Napa-141	Quercus agrifolia Née⁄ USA (CA)	USDA–ARS	AM269818	AM269760	
A. gallica	Napa-144	Unidentified hardwood/ USA (CA)	USDA-ARS	AM269817	AM269759	
A. gallica†			EMBL-EBI	AY213570	AJ250054; AY190247	
Armillaria mellea (Vahl) P. Kumm§	DP26	Aesculus hippocastanum L./ Italy	Di.Va.P.R.A.			
A. mellea	Mar-001	Unidentified hardwood/ USA (CA)	USDA-ARS	AM269820	AM269761	
A. mellea	Mar-016	Quercus agrifolia Née/ USA (CA)	USDA–ARS	AM269819		
A. mellea	T4D	Vitis vinifera L./ Switzerland	MSL	AM269821	AM269762	
A. mellea†			EMBL-EBI		AJ250051; AF163578; AF163584· AF163589	
<i>Armillaria nabsnona</i> Volk & Burds	Men-017	Alnus rubra Bona. / USA (CA)	USDA-ARS	AM269822	AM269763	
A. nabsnona	Men-023	Alnus rubra Bong./ USA (CA)	USDA-ARS	AM269823	AM269764	
A. nabsnona†		3	EMBL-EBI		AY213574	
<i>Armillaria ostoyae</i> (Romagn.) Herink†			EMBL-EBI	AY207145	AJ250055	
Armillaria tabescens (Scop.) Emel†			EMBL-EBI	AF042593;	AY213588	
				AY213590		
Baeospora myosura (Fr.) Singer Daedaleopsis confragosa (Bolton)	OKM-3708-Sp	Picea abies (L.) H. Karst./ USA (ME)	USDA-FPL EMBL-EBI	AM269824 AF261542	AM269765	AF039576
				0002711		
Øalainija concentrica (bolloin) Ces. & Da Not t⁴¶			EIVIDL-EDI	04/070	C000101A	
Formes fasciatus (Sw.) Cooke	FP-1061048-T	Carva sp./ USA (MS)	USDA-FPL	AM269825	AM269766	
Ganoderma adspersum (Schulz.) Donk	DP60	Aesculus hippocastanum L./ Italv	Di.Va.P.R.A.	AM269828	AM269770	
G. adspersum	DP87	Aesculus hippocastanum L./ Italy	Di.Va.P.R.A.	AM269826	AM269767	
G. adspersum	FGA1	Pterocarya fraxinifolia Wingnut./ Italy	Di.Va.P.R.A.	AM269829	AM269771	
G. adspersum†			EMBL-EBI		AJ006685	
Ganoderma applanatum (Pers.) Pat.†			EMBL-EBI	AJ406526; AY515339	AY787672	
Ganoderma gibbosum (Blume & T. Nees)			EMBL-EBI		AY593854	
Pat.†						
Ganoderma lucidum (Curtis) P.Karst‡	GIT099	Aesculus hippocastanum L./ Italy	Di.Va.P.R.A.	AM269830	AM269773	
G. lucidum‡	SP5	Umbellularia californica (Hook. & Am.) Nutt./ USA (CA)	UC Berkeley	AM269831		
G. lucidum‡	SP26	Unknown∕ USA (CA)	UC Berkeley		AM269772	
G. lucidum†			EMBL-EBI	AX78776	AF506372; AY456341	
Ganoderma orbiforme (Fr.) Ryvarden†			EMBL-EBI	AX78777		
Ganoderma pfeifferi Bres.	G2/11	Unknown/ Italy	Di.Va.P.R.A.	AM269832	AM269774	
Ganoderma resinaceum Boudier	DP1	Platanus acerifolia (Ait.) Willd./ Italy	Di.Va.P.R.A.	AM269833	AM269775	
G. resinaceum	FGR1	Fagus sylvatica L./ Italy	Di.Va.P.R.A.	AM269834	AM269776	

Molecular diagnosis of decay fungi

1492

Table 1 List of fungal taxa collections and sequences used for primer design and/or testing and GenBank accession numbers. The geographic origin and host is included for cultures and fruit

© 2007 The Authors Journal compilation © 2007 The Society for Applied Microbiology, Journal of Applied Microbiology **103** (2007) 1490–1507

Species D collection Hord 'geographic onjon Sourc* Nucl. (SI / S) TS Nucl. (SI / S) TS Nucl. (SI / S) Nucl. (Delibarik Accession murmbers	on numbers	
FGR3 Populus rigra L, Italy DiVa P, R, A AM26935 FGR5 Aexcutus rippocastarum L/ Italy DiVa P, R, A AM26935 FGR5 Aexcutus rippocastarum L/ Italy DiVa P, R, A AM26935 FR13 UntherNatia californica UntherNatia californica UC Berkley AM26933 SP13 UntherNatia californica UntherNatia californica UC Berkley AM26933 SP16 UntherNatia californica UC Berkley AM26933 HDB Overcus agrifolia Nec/ USA (CA) UC Berkley AM269341 Check carcharum Marsh/ USA (M) UC Berkley AM269341 FRHE-EBI ACer saccharum Marsh/ USA (M) USDA-FPI AM269341 FRHE-EBI Unknown/ Czech Republic C/S-IM AM269341 FR15 FRHE-EBI ACB A/GER FR16 USS Unknown/ Czech Republic C/S-IM AM269341 FR16 Z/S-IM UNDC-APD A/GER A/GER FR101 UNDC-APD UNDC-APD A/GER A/GER FR101 SP	Species	ID collection	Host/geographic origin	Source*	Nuc LSU (5')	ITS	Mt SSU
FGR Accutus hippocastanum L/ Italy DiVa P.R.A AM268836 64/13 Untervowr/ Italy Diversional antificantia Diversional antificantia 9P16 Untervisional antificantia Untervisional antificantia Diversional antificantia 16406.8 Amilian Sufficantia Untervisional antificantia Diversional antificantia 16406.25 Outerus agrifolia Nec/ USA (CA) UC Berkeley AM269338 16406.2.5 Acer saccharum Marsh/ USA (M) Untervisional antificantia Am269431 1652.5 Acer saccharum Marsh/ USA (M) USDA-FR Am269834 1652.5 Acer saccharum Marsh/ USA (M) Untervisional antificantia Ma269431 1653.5 Acer saccharum Marsh/ USA (M) USDA-FR Am269834 1653.5 Acer saccharum Marsh/ USA (M) Untervisional Acre saccharum Marsh/ USA (M) USDA-FR 1653.5 Feanacocharum Acre Republic	G. resinaceum	FGR3	Populus niara L./ Italy	Di.Va.P.R.A.	AM269835		
G4/13 Unknown/ ialy (mos/karn) kur/, USA (CA) DIVa.P.R.A AM269837 SP13 Unbellularia californica (mos/karn) kur/, USA (CA) UC Berkeley AM269837 SP13 Umbellularia californica (mos/karn) ke/ USA (CA) UC Berkeley AM269837 SP16 Quercus agrifolia Ne/r USA (CA) UC Berkeley AM269837 F11 Unbellularia californica UC Berkeley AM269837 CHOOK, & Am), Nutr./ USA (CA) UC Berkeley A73578; CHOOK, S Am), Nutr./ USA (CA) UC Berkeley A735718; CHOOK, S Am), Nutr./ USA (M) USDA-FR Am269839 EMBL-EBI Arer saccharum Marsh/ USA (M) USDA-FR Am269831 F016 Lithocarpus dersificus (Hook, & Am) USDA-FR Am269831 F016 Lithocarpus dersificus (Hook, & Am) UC Berkeley Am269831 F016 Lithocarpus dersificus (Hook, & Am) UC Berkeley Am269841 F016 Lithocarpus dersificus (Hook, & Am) UC Berkeley Am269841 F016 Lithocarpus dersificus (Hook, & Am) UC Berkeley Am269943 F01011-14-C	G. resinaceum	FGR5	Aesculus hippocastanum L./ Italv	Di.Va.P.R.A.	AM269836	AM269777	
SP11 Undellularia californica UC Berkeley AM269827 S13 Undellularia californica UC Berkeley AM269838 S13 Undellularia californica UC Berkeley AM269838 S16 Quercus agrifolia Nee/ USA (CA) UC Berkeley AM269838 FHB-908255 (Hook. & Am.) Nutt. / USA (CA) UC Berkeley AM269838 FHB-908255 Guercus agrifolia Nee/ USA (CA) UC Berkeley A755149 Acer saccharum Marsh / USA (M) USDA-FPL A7684163 FHB-908255 Acer saccharum Marsh / USA (M) USDA-FPL A7684163 FHB-908256 Acer saccharum Marsh / USA (M) USDA-FPL A7684163 FHB-908256 Acer saccharum Marsh / USA (M) USDA-FPL AM269841 FHB-62149 Acer saccharum Marsh / USA (M) USDA-FPL AM269843 FHB-62149 Acer saccharum Marsh / USA (M) USDA-FPL AM269843 FHB-62149 Acer saccharum Marsh / USA (M) USDA-FPL AM269843 FHB-62149 Acer saccharum Marsh / USA (M) USDA-FPL AM269843 FHB-62149 Acer saccharum Marsh / USA (OH) UC Berkeley AM269843 FHI0670210 Unknown / Czech Republic CAS-M AM269843 FH1067 Unknown / USA (OH) USDA-	G. resinaceum	G4/13	Unknown/ Italy	Di.Va.P.R.A.	AM269837	AM269778	
F13 (Hook, & Am) Nutr, USA (CA) UC Berkeley AN259338 F16 Quercus agrifolia Nés/ USA (CA) UC Berkeley AN255149 F16 Quercus agrifolia Nés/ USA (CA) UC Berkeley AN255149 F16 Quercus agrifolia Nés/ USA (CA) UC Berkeley AN255149 F16 Quercus agrifolia Nés/ USA (CA) UC Berkeley AN265933 F116 Quercus agrifolia Nés/ USA (CA) UC Berkeley AN2659340 F118 Aeer saccharum Marsh/ USA (M) USDA-FPL AN2659333 F106 Lithocarpus densifiorus (Hook, & Am) USDA-FPL AN2659343 F116 F1101 USDA-FPL AN2659343 F116 Lithocarpus densifiorus (Hook, & Am) UC Berkeley AN2659443 F111-14-C Ouercus wellicus (Hook, & Am) UC Berkeley AN2659443 F111-14-C Ouercus wellicus (Hook, & Am) UC Berkeley AN2659443 F1111-14-C Ouercus wellicus (Hook, & Am) UC Berkeley AN2659443 F1111-14-C Ouercus wellicus (Hook, & Am) UC Berkeley AN2659443 F1111-	Ganoderma sp.‡	SP11	Umbellularia californica	UC Berkeley	AM269827	AM269768	
5113 Unbellularia californica UC Berkeley AN25938 FPI6 Quercus agrifolia Nev. USA (CA) UC Berkeley A7253149 FP16 Quercus agrifolia Nev. USA (CA) UC Berkeley A7253149 FP16 Quercus agrifolia Nev. USA (CA) UC Berkeley A7253178; FP16 Quercus agrifolia Nev. USA (CA) UC Berkeley A7253178; FP16 Quercus agrifolia Nev. USA (M) USDA-FPL A7056941 G54 Unknown/ Czech Republic USDA-FPL AM266939 HHB-9082-5p Acer saccharum Marsh/ USA (M) USDA-FPL AM2669393 G54 Unknown/ Czech Republic CSS-IM AM2669393 G64 Unknown/ Czech Republic CSS-IM AM2669393 FP106 Lithocarpus densifious (Hook, & Am) UC Berkeley A7056941 FP106 Lithocarpus densifious (Hook, & Am) UC Berkeley A7056943 FP106 Lithocarpus densifious (Hook, & Am) UC Berkeley A7056943 FP106 Lithocarpus densifious (Hook, & Am) UC Berkeley A7056943 FP106			(Hook. & Arn.) Nutt./ USA (CA)				
SP16 Quercus agrifolia Née/ USA (CA) UC Berkeley AF355149 RMBL-EBI A738778; MBL-EBI A753101 RMBL-EBI A7684163 EMBL-EBI A7684163 FMBL-EBI A7684163 EMBL-EBI A7684163 FMBL-EBI A2655149 Gest saccharum Marsh/ USA (M) USDA-FPI A7636940 FMBL-EBI Ad06493 EMBL-EBI A4066933 FH06 Lithocarpus densifions (Hook, & Am) USDA-FPI AM269841 FMBL-EBI Ad06493 EMBL-EBI A4066933 FMDex Volt USDA-FPI AM269842 A40659343 FMDex Volt USDA-FPI AM269843 A40659343 FMDex Volt USDA-FPI AM269844 AM269844 FMDex Volt USDA-FPI AM269845 A40659343 FMDex Volt UNNOW/ Czech Republic CAS-IM A40659343 FMDex Spot UNNOW/ Czech Republic CAS-IM	Ganoderma sp.‡	SP13	Umbellularia californica	UC Berkeley	AM269838		
orto Operator agritolitic EMBL-EBI A7535149 FMBL-EBI A75378; A75373; FMBL-EBI A783473; A783473; FMBL-EBI A783473; A783473; FMBL-EBI A773474; A7834163; FMBL-EBI A7834163; A7834163; FMBL-EBI A78369840 A7310101 F54 A00569339 G64 JHO-62-149 Acer saccharum Marsh/ USA (M) USDA-FPL AM269840 F81 Acer saccharum Marsh/ USA (M) USDA-FPL AM2699843 F8106 Lithocarpus densifious (Hook, & Am) USDA-FPL AM2699842 Rehder/ USA (CA) USDA-FPL AM2699842 A7135171 F8106 Lithocarpus densifious (Hook, & Am) UC Berkeley A7135171 F8106 Lithocarpus densifious (Hook, & Am) UC Berkeley AM2699842 F8106 Lithocarpus densifious (Hook, & Am) UC Berkeley AM2699842 F8106 Lithocarpus densifious (Hook, & Am) UC Berkeley AM269843 F810111-14-C Ouercus velutina Lan /	to second second	CD16	(HOOK, & Afn.) Nutt./ USA (CA) Outrains servitedia Néo / USA (CA)			DATOACIAN	
cmote-ebi hHB-9082-5p deer saccharum Marsh / USA (M) cmote-ebi kMB-EBi A753718; A7684163 HHB-9082-5p Acer saccharum Marsh / USA (M) UNknown / Zech Republic A753711 654 Unknown / Zech Republic UNknown / Zech Republic A7569840 10-62-149 Acer saccharum Marsh / USA (M) USDA-FPL AM269840 654 Unknown / Zech Republic CAS-M AM269841 671371 SP106 Lithocarpus densifious (Hook: & Am) USDA-FPL AM269843 7657 Unknown / Zech Republic CAS-M AM269843 A4064933 7111-14-C Quercus valiticus (Hook: & Am) UC Berkeley AM269843 7657 Unknown / Czeh Republic CAS-M AM269843 703 Unknown / Czeh Republic CAS-M AM269843 703 Unknown / USA (OH) USDA-FPL AM269843 703		0110	Areiras adiijola Inee/ 034 (CA)			AIVIZU3/U3	
RMBL-EBI A7301/05 HHB-9082-5/P Acer saccharum Marsh / US (MI) EMBL-EBI A7301/05 654 Unknown / Czech Republic EMBL-EBI A7669439 654 Unknown / Czech Republic EMBL-EBI A7669393 1HO-62-149 Acer saccharum Marsh / US (MI) USDA-FPI A7669393 1HO-62-149 Acer saccharum Marsh / US (MI) USDA-FPI A7669393 1HO-62-149 Acer saccharum Marsh / US (MI) USDA-FPI A7669841 653 Unknown / Czech Republic CAS-IM AM269842 757 Unknown / Czech Republic CAS-IM AM269843 761311-14-C Quercus velutina Lam / USA (CH) UC Berkeley A7659843 703 Unknown / USA (CH) USDA-FPI AM269843 703 Unknown / USA (CH) USDA-FPI AM269843 703 Unknown / USA (CH) USDA-FPI AM269843 703 Unknown / Czech Republic CAS-IM A7059941 703 Unknown / Czech Republic CAS-IM A7059941 703 Unknown /	Ganoderma sp.r			EMBL-EBI	AF255149		
FMBL-EBI ATIONIC HHB-9082-5P Acer saccharum Marsh/ USA (MI) USDA-FPL ATIONIC 654 Unknown/ Czech Republic USDA-FPL AM269840 654 Unknown/ Czech Republic USDA-FPL AM269841 654 Unknown/ Czech Republic USDA-FPL AM269840 654 Unknown/ Czech Republic USDA-FPL AM269841 654 Unknown/ Czech Republic USDA-FPL AM269841 705 Lithocarpus densifiorus (Hook. & Arm.) UC Berkeley AM269842 705 Lithocarpus densifiorus (Hook. & Arm.) UC Berkeley AM269843 705 Unknown/ Czech Republic CAS-IM AM269843 703 Unknown/ USA (CA) USDA-FPL AM269843 703 Unknown/ USA (CA) USDA-FPL AM269843 703 Unknown/ USA (CH) USDA-FPL AM269843 703 Unknown/ USA (CH) USDA-FPL AM269843 703 Unknown/ USA (CH) USDA-FPL AM269843 703 Unknown/ Czech Republic CAS-IM AM269843 703 Unknown/ Czech Republic CAS-IM AM269843 703 Unknown/ Czech Republic CAS-IM AM269845 703 Unknown/ Czech Republ	danouenna isugae iviurnit			EIVIBL-EBI	AA/8/16; AV68/163		
HHB-9082-5p Acer saccharum Marsh/ USA (MI) USDA-FPL AM269840 654 Unknown/ Czech Republic Unknown/ Czech Republic AM269841 654 Unknown/ Czech Republic USDA-FPL AM269833 1HO-62-149 Acer saccharum Marsh/ USA (MI) USDA-FPL AM269833 654 Unknown/ Czech Republic USDA-FPL AM2698341 759 Lithocarpus densifibrus (Hook. & Am.) USDA-FPL AM269842 768 Lithocarpus densifibrus (Hook. & Am.) UC Berkeley AM269842 757 Unknown/ Czech Republic CAS-IM AM269843 753 Unknown/ USA (OH) USDA-FPL AM269843 703 Unknown/ USA (OH) USDA-FPL AM269843 71545 Unknown/ USA (OH) USDA-FPL AM269843 703 Unknown/ USA (OH) USDA-FPL AM269843	Gloeocvstidiellum porosum			EMBL-EBI	AF310101		
FMBL-EBI EMBL-EBI HHB-3082-5p Acer saccharum Marsh/ USA (MI) USDA-FPL AU269840 654 Unknown/ Czech Republic USDA-FPL AM269841 HHB-3082-5p Acer saccharum Marsh/ USA (MI) USDA-FPL AM269841 HHB-3082-5p Acer saccharum Marsh/ USA (MI) USDA-FPL AM269841 HHB-3082-5p Acer saccharum Marsh/ USA (MI) USDA-FPL AM269841 AF135171 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AM269842 AF135171 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AM269842 AF135171 Unknown/ USA (CA) UC Berkeley AM269843 AF135171 Unknown/ USA (CA) UC Berkeley AM269843 T1545 Unknown/ USA (OH) USDA-FPL AM269843 </td <td>(Berk. & M.A. Curtis) Donk†1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	(Berk. & M.A. Curtis) Donk†1						
HHB-9082-5p Acer saccharum Marsh/ USA (MI) USDA-FPL AM269840 654 Unknown/ Czech Republic CAS-IM AM269839 1HO-62-149 Acer saccharum Marsh/ USA (MI) USDA-FPL AM269841 654 Unknown/ Czech Republic CAS-IM AM269843 654 Unknown/ Czech Republic CAS-IM AM269843 654 Lithocarpus densifiorus (Hook. & Am) UC Berkeley AM269842 657 Unknown / Czech Republic CAS-IM AM269843 657 Unknown / Czech Republic CAS-IM AM269843 657 Unknown / Czech Republic CAS-IM AM269843 661)11-14-C Quercus wisilizeni A. DC. / USA (OH) USDA-FPL AM269843 703 Unknown / USA (OH) USDA-FPL AM269843	G. porosum†			EMBL-EBI		AY048881	
654 Unknown/ Czech Republic CAS-IM AM269839 JHO-62-149 Acer saccharum Marsh/ USA (MI) USDA-FPL AM269841 Acer saccharum Marsh/ USA (MI) USDA-FPL AM269843 Aren SPI06 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AM269842 Aren SP106 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AM269842 Rehder/ USA (CA) UC Berkeley AM269842 AM269842 SP106 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AM269842 Rehder/ USA (CA) UC Berkeley AM269843 AM269843 SP3 Unknown/ Czech Republic CAS-IM AM269843 L(61)11-14-C Quercus vivilzeni A. DC./ USA (OH) USDA-FPL AM269843 SP23 Unknown/ USA (OH) USDA-FPL AM269843 I1545 Unknown/ Czech Republic CAS-IM AM269843 I0515-20-A Unknown/ USA (OH) USDA-FPL AM269845 I0515-20-A Unknown/ Czech Republic CAS-IM AM269845 I0515-20-A Unknown/ Czech Republic CAS-IM	Hericium coralloides (Scop.) Pers.	HHB-9082-Sp	Acer saccharum Marsh/ USA (MI)	USDA-FPL	AM269840		
IHO-62-149 Acer saccharum Marsh/ USA (M) USDA-FPL AM269841 FN106 Lithocapus densifiorus (Hook. & Am.) US Berkeley A4406493 FN105 Lithocapus densifiorus (Hook. & Am.) UC Berkeley AN269842 FRhder / USA (CA) UC Berkeley AN269842 FRhder / USA (CA) UC Berkeley AN269842 FRhder / USA (CA) UC Berkeley AN269843 FRHder / USA (CA) USDA-FPL AN269843 CAS-IM Unknown / Czech Republic CAS-IM T1545 Unknown / USA (OH) USDA-FPL AN269843 T1545 Unknown / USA (OH) USDA-FPL AN269843 T03 Unknown / USA (OH) USDA-FPL AN269843 T1545 Unknown / USA (OH) USDA-FPL AN269844 T03 Unknown / USA (OH) USDA-FPL AN269844 T03 Unknown / USA (OH) USD	Hericium erinaceum (Bull.) Pers.	654	Unknown/ Czech Republic	CAS-IM	AM269839	AM269779	
at SP106 Lithocarpus densifious (Hook. & Am.) UC Berkeley Al406493 art SP106 Lithocarpus densifious (Hook. & Am.) UC Berkeley AN269842 Rehder/ USA (CA) UC Berkeley AN269842 SF7 Unknown/ Czech Republic C.A.) UC Berkeley 557 Unknown/ Czech Republic C.A.) UC Berkeley 11545 Unknown/ USA (OH) USDA-FPL AN269843 703 Unknown/ USA (OH) USDA-FPL AN269843 703 Unknown/ USA (OH) USDA-FPL AN269843 703 Unknown/ USA (OH) USDA-FPL AN269845 704 RENCLES OLICLES <td>H. erinaceum</td> <td>JHO-62-149</td> <td>Acer saccharum Marsh/ USA (MI)</td> <td>USDA-FPL</td> <td>AM269841</td> <td></td> <td></td>	H. erinaceum	JHO-62-149	Acer saccharum Marsh/ USA (MI)	USDA-FPL	AM269841		
at:5 SP106 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AF135171 at:5 SP8 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AM269842 at:6 Rehder/ USA (CA) UC Berkeley AM269842 557 Unknown/ Czech Republic CA> USDA-FPL 11545 Unknown/ USA (OH) USDA-FPL AM269843 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ USA (OH) USDA-FPL AM269845 6(61)5-20-A Quercus prinus L/ USA (OH) USDA-FPL AM269845 703 Unknown/ Czech Republic CAS-IM AM269845 6 FH2 Malus sp./ Italy USDA-FPL AM269845 71010 USDA-FPL AM269845 AM269845 7101 UNKnown/ Czech Republic CAS-IM AM269845 <	H. erinaceum†			EMBL-EBI	AJ406493	AY534601	
F106 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley AM269842 Rehder/ USA (CA) UC Berkeley AM269842 557 Unknown/ Czech Republic UC Berkeley AM269843 1(61)11-14-C Quercus velutina Lam./ USA (CH) USDA-FPL AM269843 157 Unknown/ Czech Republic CAS-IM AM269843 157 Unknown/ USA (CH) USDA-FPL AM269843 1545 Unknown/ USA (OH) USDA-FPL AM269843 703 Unknown/ USA (OH) USDA-FPL AM269843 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ Czech Republic CAS-IM AM269845 703 Unknown/ Czech Republic CAS-IM AM269845 8<	Hohenbuehelia tristis G. Stev.†¶			EMBL-EBI	AF135171		
n‡5 SP8 Lithocarpus densifiorus (Hook. & Am.) UC Berkeley Rehder / USA (CA) 557 Unknown / Czech Republic CAS-IM (61)11-14-C Quercus velutina Lam / USA (CH) USDA-FFL AM269843 Unknown / USA (CH) USDA-FFL AM269843 71545 Unknown / USA (CH) USDA-FFL AM269843 703 Unknown / USA (CH) USDA-FFL AM269843 703 Unknown / Czech Republic CAS-IM AM269845 8 FH2 Quercus agrifolia Née / USA (CH) USDA-FFL AM269845 703 Unknown / Czech Republic CAS-IM AM269845 8 FH2 Malus sp. / Italy Unknown / Czech Republic CAS-IM AM269845 711012 8 FH2 Malus sp. / Italy USDA-FFL AM269845 7156 Quercus prinus L./ USA (CH) USDA-FFL AM269845 71012 UNACCUS PRINUS (CA) EMBL-EBI AF311012 703 Unknown / Czech Republic CAS-IM AM269848 71012 EMBL-EBI AF311012 713 276 Unknown / Czech Republic CAS-IM AF311013 713 276 Unknown / Czech Republic CAS-IM AF311014 728 FMBL-EBI AF311014 729 FMBL-EBI AF311014 720 Unknown / Czech Republic CAS-IM AF81 AF311014 720 CAS-IM AF81 AF311014 720 Unknown / Czech Republic CAS-IM AF81 AF311014 720 CAS-IM AF81 AF311014 720 Unknown / Czech Republic CAS-IM AF311014 72100	Hypoxylon thouarsianum var.	SP106	Lithocarpus densiflorus (Hook. & Arn.)	UC Berkeley	AM269842	AM269780	
 AF8 Lithocarpus densifiorus (Hook. & Am.) 557 Lithocarpus densifiorus (Hook. & Am.) 557 Unknown/ Czech Republic 557 Unknown/ Czech Republic 573 Unknown/ USA (OH) 5823 Unknown/ USA (OH) 5823 Unknown/ USA (OH) 5823 Unknown/ USA (OH) 5824 5823 Unknown/ USA (OH) 703 Unknown/ Czech Republic 705 EMBL-EBI 711012 71014 71014 71014 71014 71014 71019 71019 	thouarsianum (Lév.) Lloyd‡		Rehder∕ USA (CA)				
57 Unknown/ Czech Republic CAS-IM L(61)11-14-C Quercus velutina Lam./ USA (OH) USDA-FPL SP23 Quercus visilizeni A. DC./ USA (OH) USDA-FPL T1545 Unknown/ USA (OH) USDA-FPL 703 Unknown/ Czech Republic CAS-IM 703 Unknown/ USA (OH) USDA-FPL 703 Unknown/ Czech Republic CAS-IM 71012 Di.Va.P.R.A. AM269845 71012 Di.Va.P.R.A. AM269845 71013 ST/6 Unknown/ Czech Republic 71014 CAS-IM AM269848 71014 CAS-IM AM269848 71014 CAS-IM AM269848 74 Malus sp./ Italy <td>H. thouarsianum var. thouarsianum‡§</td> <td>SP8</td> <td>Lithocarpus densiflorus (Hook. & Arn.) Rehder/ USA (CA)</td> <td>UC Berkeley</td> <td></td> <td></td> <td></td>	H. thouarsianum var. thouarsianum‡§	SP8	Lithocarpus densiflorus (Hook. & Arn.) Rehder/ USA (CA)	UC Berkeley			
L(61)11-14-C Quercus velutina Lam./ USA (OH) USDA-FPL SP23 Quercus velutina Lam./ USA (OH) USDA-FPL SP23 Quercus velutina Lam./ USA (OH) Phyt. Res. T1545 Unknown/ USA (OH) USDA-FPL 703 Unknown/ Czech Republic CAS-IM 704 Quercus agrifolia Née/ USA (CA) Phyt. Res. 705 FIH2 Malus sp. / Italy 706082-T Quercus phellos L./ USA (MS) USDA-FPL 705 Unknown/ Czech Republic CAS-IM 705 Unknown/ Czech Republic CAS-IM 706082-T Quercus phellos L./ USA (MS) USDA-FPL 705 Unknown/ Czech Republic CAS-IM 705 Unknown/ Czech Republic CAS-IM 705 Unknown/ Czech Republ	Inonotus andersonii (Ellis & Everh.)	557	Unknown/ Czech Republic	CAS-IM			
L(61)11-14-C Quercus velutina Lam./ USA (OH) USDA-FPL SP23 Quercus velutina Lam./ USA (OH) Phyt. Res. AM269843 SP23 Unknown/ USA (OH) USDA-FPL AM269844 SP23 Unknown/ USA (OH) USDA-FPL AM269844 T1545 Unknown/ USA (OH) USDA-FPL AM269844 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ Czech Republic CAS-IM AM269845 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ USA (OH) USDA-FPL AM269845 703 Unknown/ Czech Republic CAS-IM AM269845 67910 USDA-FPL AM269845 AM269845 703 Unknown/ USA (CA) Phyt. Res. AM269845 71012 Malus sp./ Italy USDA-FPL AM269845 71012 FIH2 Malus sp./ Italy USDA-FPL AM269848 75 FIH2 Malus sp./ Italy USDA-FPL AM269848 75 Unknown/ Czech Republic CAS-IM A721012 A7237732 8 Z75 </td <td>Nikol.§</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Nikol.§						
SP23 Quercus wisizeni A. DC./ USA (OH) Phyt. Res. AM269843 T1545 Unknown/ USA (OH) USDA-FPL AM269844 703 Unknown/ USA (OH) USDA-FPL AM269844 703 Unknown/ USA (OH) USDA-FPL AM269847 703 Unknown/ USA (OH) USDA-FPL AM269847 703 Unknown/ Czech Republic CAS-IM AM269845 16(1)5-20-A Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 FIH2 Malus sp./ Italy USDA-FPL AM269845 FMBL-EBI AF311012 EMBL-EBI AF311012 Statt S Z76 Unknown/ Czech Republic CAS-IM AM269848 ev& & Z76 Unknown/ Czech Republic CAS-IM AF311012 ev& & Z76 Unknown/ Czech Republic CAS-IM AF311014 ev& & Z76 Unknown/ Czech Republic CAS-IM AF237732 ev& & EMBL-EBI AF231732 <t< td=""><td>. andersonii</td><td>L(61)11-14-C</td><td>Quercus velutina Lam./ USA (OH)</td><td>USDA-FPL</td><td></td><td>AM269781</td><td></td></t<>	. andersonii	L(61)11-14-C	Quercus velutina Lam./ USA (OH)	USDA-FPL		AM269781	
T1545 Unknown/ USA (OH) USDA-FPL AM269844 703 Unknown/ USA (OH) USDA-FPL AM269847 703 Unknown/ Czech Republic CAS-IM AM269847 703 Unknown/ USA (OH) USDA-FPL AM269847 1(61)5-20-A Quercus prinus L/ USA (OH) USDA-FPL AM269845 8P25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 6 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 7 RFL2 Malus sp. / Italy USA-FPL AM269848 AF311012 6 FIH2 Malus sp. / Italy USDA-FPL AM269848 AF311012 8 FIH2 Malus sp. / Italy USDA-FPL AM269848 AF311012 8 FIH2 Malus sp. / Italy USDA-FPL AM269848 AF311012 8 FIH2 Malus sp. / Italy USDA-FPL AM269848 8 FIH2 Malus sp. / Italy USDA-FPL AM269848 8 FIH2 Quercus phellos L./ USA (MS) <td>l. andersonii‡</td> <td>SP23</td> <td>Quercus wislizeni A. DC./ USA (OH)</td> <td>Phyt. Res.</td> <td>AM269843</td> <td></td> <td></td>	l. andersonii‡	SP23	Quercus wislizeni A. DC./ USA (OH)	Phyt. Res.	AM269843		
703 Unknown/ Czech Republic EMBL-EBI AY059041 703 Unknown/ Czech Republic CAS-IM AM269847 L(61)5-20-A Quercus prinus L/ USA (OH) USDA-FPL AM269846 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus phellos L/ USA (CA) Di.Va.P.R.A. AM269848 FP-106082-T Quercus phellos L/ USA (MS) USDA-FPL AM269848 rst. § Z76 Unknown/ Czech Republic CAS-IM AF311014 ev & Z76 Unknown/ Czech Republic CAS-IM AF31732 ev & EMBL-EBI AF311019 AF31732	I. andersonii	T1545	Unknown/ USA (OH)	USDA-FPL	AM269844		
703 Unknown/ Czech Republic CAS-IM AM269847 L(61)5-20-A Quercus prinus L/ USA (OH) USDA-FPL AM269846 L(61)5-20-A Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 SP26 Quercus phellos L/ USA (MS) Di.Va.P.R.A. AM269848 FP-106082-T Quercus phellos L/ USA (MS) USDA-FPL AM269848 rist. § 276 Unknown/ Czech Republic CAS-IM AF311014 ev & & CAS-IM AF31732 AF311019	I. andersonii†			EMBL-EBI	AY059041	AY558599	
L(61)5-20-A Quercus prinus L./ USA (OH) USDA-FPL AM269846 SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 AM269845 AM269845 FIH2 Malus sp./ Italy Di.Va.P.R.A. AM269848 FP-106082-T Quercus phellos L./ USA (MS) USDA-FPL AM269848 CAS-IM AF311014 276 Unknown/ Czech Republic CAS-IM AF311014 AF311019 AF311019 AF311019	Inonotus dryophilus (Berk.) Murril	703	Unknown/ Czech Republic	CAS-IM	AM269847		
SP25 Quercus agrifolia Née/ USA (CA) Phyt. Res. AM269845 FIH2 Amble Sp./ Italy EMBLEBI AF311012 FIH2 Malus sp./ Italy Di.Va.P.R.A. Am2669848 FP-106082-T Quercus phellos L./ USA (MS) USDA-FPL Am2669848 276 Unknown/ Czech Republic CAS-IM AF311014 276 Unknown/ Czech Republic CAS-IM AF337732 EMBL-EBI AF311019 AF311019	I. dryophilus	L(61)5-20-A	Quercus prinus L./ USA (OH)	USDA-FPL	AM269846	AM269783	
FIH2 Malus sp./ Italy EMBL-EBI AF311012 FIH2 Malus sp./ Italy Di.Va.P.R.A. Di.Va.P.R.A. FP-106082-T Quercus phellos L./ USA (MS) USDA-FPL AM269848 276 Unknown/ Czech Republic CAS-IM AF311014 276 Unknown/ Czech Republic CAS-IM AF337732 EMBL-EBI AF311019 AF311019	l. dryophilus‡	SP25	Quercus agrifolia Née/ USA (CA)	Phyt. Res.	AM269845	AM269782	
FIH2 Malus sp./ Italy Di.Va.P.R.A. FP-106082-T Quercus phellos L./ USA (MS) USDA-FPL AM269848 EMBL-EBI AF311014 276 Unknown/ Czech Republic CAS-IM EMBL-EBI AF31732 EMBL-EBI AF31732 EMBL-EBI AF311019	l. dryophilus†			EMBL-EBI	AF311012		
FP-106082-T Quercus phellos L./ USA (MS) USDA-FPL AM269848 EMBL-EBI AF311014 276 Unknown/ Czech Republic CAS-IM EMBL-EBI AF31732 EMBL-EBI AF31014	Inonotus hispidus (Bull.) P. Karst.‡ §	FIH2	<i>Malus sp./</i> Italy	Di.Va.P.R.A.			
EMBL-EBI 276 Unknown/ Czech Republic CAS-IM EMBL-EBI EMBL-EBI	I. hispidus	FP-106082-T	Quercus phellos L./ USA (MS)	USDA-FPL	AM269848	AM269784	
276 Unknown/ Czech Republic CAS-IM EMBL-EBI EMBL-EBI	I. hispidus†			EMBL-EBI	AF311014		
EMBL-EBI	Inonotus radiatus (Sowerby) P. Karst. §	276	Unknown/ Czech Republic	CAS-IM			
EMBL-EBI	I. radiatus†			EMBL-EBI	AF237732		
	Inonotus rheades (Pers.) Bondartsev &			EMBL-EBI	AF311019		

Table 1 Continued

© 2007 The Authors Journal compilation © 2007 The Society for Applied Microbiology, Journal of Applied Microbiology **103** (2007) 1490–1507

1493

				GenBank Accession numbers	sion numbers	
Species	ID collection	Host/geographic origin	Source*	Nuc LSU (5')	ITS	Mt SSU
Inonotus tamaricis (Pat.) Maire†			EMBL-EBI	AF311021		
Laetiporus sulphureus (Bull.) Murril§	FLS1	Prunus cerasus L./ Italy	Di.Va.P.R.A.			
L. sulphureus	FLS2	Prunus cerasus L./ Italy	Di.Va.P.R.A.	AM269849		
L. sulphureus	FP-101671-T	Quercus sp./ USA (WI)	USDA-FPL	AM269851	AM269786	
L. sulphureus‡	SP35	Unknown/ USA (CA)	USDAFPL	AM269850	AM269785	
L. sulphureus†				АҮ218414; лубвитер	AF229196; AY835668	
Laxitextum bicolor (Pers.) Lentz	NO-7316-Sp	Salix sp. / USA (LA)	USDA-FPL		AM269787	
L. bicolor+			EMBL-EBI	AF287871		
Perenniporia fraxinea (Bull.) Ryvarden	DP6	Fagus sylvatica L./ Italy	Di.Va.P.R.A.	AM269852	AM269788	
P. fraxinea	DP83	Robinia pseudoacacia L./ Italy	Di.Va.P.R.A.	AM269853	AM269789	
P. fraxinea	FPF1	Platanus hybrida Brot./ Italy	Di.Va.P.R.A.	AM269854	AM269790	
P. fraxinea	FPF2	Robinia pseudoacacia L./ Italy	Di.Va.P.R.A.	AM269855	AM269791	
P. fraxinea	FPF3	Robinia pseudoacacia L./ Italy	Di.Va.P.R.A.		AM269792	
P. fraxinea	FPF5	Ulmus pumila L./ Italy	Di.Va.P.R.A.	AM269856	AM269793	
P. fraxinea	FPF6	Robinia pseudoacacia L./ Italy	Di.Va.P.R.A.		AM269794	
Perenniporia ochroleuca (Berk.)			EMBL-EBI	AY515330		
Ryvarden †¶						
Perenniporia subacida (Peck) Donk†¶			EMBL-EBI		AY089739	
Phaeolus schweinitzii (Fr.) Pat.‡¶	SP39	Picea sitchensis (Bong.) Carr./ USA (CA)	UC Berkeley	AM269857		
Phellinus gilvus (Schwein.) Pat.‡	SP18	Quercus agrifolia Née/ USA (CA)	UC Berkeley	AM269858	AM269795	
P. gilvus‡	SP20	Quercus agrifolia Née/ USA (CA)	UC Berkeley	AM269859	AM269796	
P. gilvus†			EMBL-EBI	AY059025	AY089739	
Phellinus igniarius var. cinereus L. (Quél.)	575	Unknown/ Czech Republic	CAS-IM	AM269860	AM269797	
P. igniarius var. cinereus†			EMBL-EBI	AF287884	AF110991	
Phellinus pini (Brot.) Bondartsev & Singer	578	Unknown/ Czech Republic	CAS-IM	AM269861	AM269798	
Phellinus punctatus (Fr.) Pilát	262	Unknown/ Czech Republic	CAS-IM	AM269863	AM269800	
P. punctatus	DP25	<i>Tilia x vulgaris</i> Heyne∕ Italy	Di.Va.P.R.A.	AM269862	AM269799	
P. punctatus†			EMBL-EBI	AF311007		
<i>Phellinus robustus</i> P. Karst (Bourdot & Galzin)	587	Unknown/ Czech Republic	CAS-IM		AM269802	
P. robustus	RLG-9585-T	Salix sp. / USA (MN)	USDA-FPL	AM269864	AM269801	
P. robustus†			EMBL-EBI	AF311008		
Phellinus torulosus Pers. (Bourdot & Galzin) P. torulosus†	759	Unknown/ Czech Republic	CAS-IM EMBL-EBI	AM269865 AF311041	AM269803	
Phellinus tremulae (Bondartsev) Bondartsev &	243	Unknown/ Czech Republic	CAS-IM		AM269804	
P. tremulae†			EMBL-EBI	AF311042		
Phellinus tuberculosus (Bauma) Niemelä	265	Unknown/ Czech Republic	CAS-IM	AM269866	AM269805	

1494

Table 1 Continued

© 2007 The Authors Journal compilation © 2007 The Society for Applied Microbiology, Journal of Applied Microbiology **103** (2007) 1490–1507

Species P. tuberculosus P. tuberculosus† Pleurotus ostreatus (Jaca.) P. Kumm.						
P. tuberculosus P. tuberculosus† Pleurotus ostreatus (Jaca.) P. Kumm.	ID collection	Host/geographic origin	Source*	Nuc LSU (5')	ITS	Mt SSU
P. tuberculosus† Pleurotus ostreatus (Jacq.) P. Kumm.	DP40	Prunus pissardi Carrière⁄ Italy	Di.Va.P.R.A.		AM269806	
Pleurotus ostreatus (Jaca.) P. Kumm.			EMBL-EBI	AF311043		
	2470	Unknown/ Italy	Di.Va.P.R.A.	AM269868		
P. ostreatus§	FP-101798-Sp	Populus tremuloides Michx./ USA (WI)	USDA-FPL			
P. ostreatus‡§	SP29	Alnus rubra Bong./ USA (CA)	UC Berkeley			
P. ostreatus‡	SP37	Alnus rubra Bong./ USA (CA)	UC Berkeley	AM269867		
P. ostreatus†			EMBL-EBI	AY645052	AY636055	
Pleurotus populinus Hilber & Miller†			EMBL-EBI		U04080	
Pleurotus pulmonarius (Fr.) Quél.¶	JPL-531-Sp	<i>Abies lasiocarpa</i> (Hook.) Nutt./ USA (AZ)	USDA-FPL	AM269869	AM269807	
P. pulmonarius†			EMBL-EBI	AY450349	AY368669	
Pseudoinonotus dryadeus (Pers.:Fr.) Murr.	FP-105836-4	Quercus alba L./ USA (OH)	USDA-FPL	AM269870	AM269808	
P. dryadeus†			EMBL-EBI	AF311011		
Pycnoporus sanguineus (L.) Murril†¶			EMBL-EBI		AF363759	
Schizophyllum commune Fr.	DP61	Acer pseudoplatanus L./ Italy	Di.Va.P.R.A.	AM269871	AM269809	
S. commune	Jacquiot	<i>Carya sp./</i> France	USDA-FPL	AM269872		
S. commune†			EMBL-EBI	AJ406555	AF249379; AF249386;	
					AY573544; AY636062	
Schizophyllum radiatum (Sw.) Fr.	CBS-301·32	Unknown/ USA (CA)	USDA-FPL	AM269873		
S. radiatum†			EMBL-EBI	AY571023		
Stereum hirsutum (Willd.) Pers.	DP49	<i>Prunus pissardi</i> Carrière⁄ Italy	Di.Va.P.R.A.	AM269874	AM269810	
S. hirsutum‡	SP9	Lithocarpus densiflorus (Hook. & Arn) Rehder / IISA (CA)	UC Berkeley	AM269875		
5. hirsutum:			EMBL-EBI	AYU3933U	AY854063	
Stereum rugosum Pers.	388020	Unknown/ UK	CABI-NCWRF	AM269876	AM269811	
Stereum sanguinolentum (Alb. & Schwein.)†			EMBL-EBI		AY618670; AF533962	
Stereum sp.†			EMBL-EBI	AF506483	AY207328	
Stereum subtomentosum Pouzar†			EMBL-EBI		AF506482	
Trametes cervina (Schwein.) Bres. §	FP105490-Sp	Quercus sp./ USA (MD)	UC Berkeley			
Trametes gibbosa (Pers.) Fr.†			EMBL-EBI	AF291371		
<i>Trametes hirsuta</i> (Wulfen) Pilát†			EMBL-EBI		AY534110; AY787683	AF042154
Trametes. pubescens (Schumach.) Pilát†			EMBL-EBI	AY515341		
Trametes suaveolens (L.) Fr.†			EMBL-EBI	AF261537		U27079
Trametes versicolor L Loyd	2473	Unknown/ Switzerland	Di.Va.P.R.A.	AM269878	AM269814	AM269880
T. versicolor§	DP37	Platanus acerifolia Willd./ Italy	Di.Va.P.R.A.			
T. versicolor	Mad-697	Fagus grandifolia Ehrh./ USA (VT)	USDA-FPL		AM269813	
T. versicolor‡§	SP27	Picea sitchensis (Bong.) Carr./ USA (CA)	UC Berkeley			
T. versicolor‡	SP33	Alnus rubra Bong./ USA (CA)	EMBL-EBI	AM269877	AM269812	
T. versicolor†			EMBL-EBI	AY684159	AY636060	AF042324; U27080
Trametes villosa (Sw.) Kreisel†			EMBL-EBI			AF042325

F. Guglielmo et al.

Table 1 Continued

© 2007 The Authors Journal compilation © 2007 The Society for Applied Microbiology, Journal of Applied Microbiology **103** (2007) 1490–1507

1495

				GenBank Accession numbers	n numbers
Species	ID collection	Host/geographic origin	Source*	Nuc LSU (5')	ITS Mt SSL
Trametes zonatella Ryvarden§ Trichaptum abietinum (Dicks.) Rvvarden†¶	FTZ1	Quercus robur L./ Italy	Di.Va.P.R.A. EMBL–EBI	AY059063	
Trichaptum biforme (Fr.) Ryvarden	L-15822-Sp	Unknown/ USA (NY)	USDA-FPL		AM269815
Trichaptum fuscoviolaceum (Ehrenb.) Ryvarden	L-15378-Sp	Abies balsamea (L.) P. Mill./ USA (NY)	USDA-FPL	AM269879	AM269816
*CABI–NCWRF, National Collection of Wood Rotting Fun- Videnska (Czech Republic); Di.Va.P.R.A., Department of Ex lar Biology Laboratory – European Bioinformatics Institute ence, Policy and Management, Berkeley (USA); USDA–AR United States Department of Agriculture Forest Products La *Species not included in the fungal collections but whose	od Rotting Fungi, Gars epartment of Exploitatio matics Institute nucleoti JSA); USDA-ARS, Unite- orest Products Lab, Mad ons but whose rDNA se	*CABI–NCWRF, National Collection of Wood Rotting Fungi, Garston (UK); CAS–IM, Academy of Sciences of Czech Republic, Institute of Microbiology, Department of Experimental Mycology. Videnska (Czech Republic); Di.Va.P.R.A., Department of Exploitation and Protection of the Agricultural and Forestry Resources, University of Torino, Grugliasco (Italy); EMBL–EBI, European Molecu- lar Biology Laboratory – European Bioinformatics Institute nucleotide sequences database; Phyt. Res. Phytosphere Research, Vacaville, CA (USA); UC Berkeley, Department of Environmental Sci- ence, Policy and Management, Berkeley (USA); USDA–ARS, United States Department of Agricultural Research, Service, Davis, CA (collection from Kendra Baumgartner); USDA–FPL, United States Department of Agriculture Forest Products Lab, Madison WI (USA); WSL, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf (Switzerland). †Species not included in the fungal collections but whose rDNA sequences were used for primer design.	ech Republic, Institute y Resources, University e Research, Vacaville, C Il Research Service, Dav Forest, Snow and Lands	of Microbiology, Depa of Torino, Grugliasco (I A (USA); UC Berkeley, is, CA (collection from scape Research, Birmen	ttment of Experimental Mycology taly); EMBL–EBI, European Molecu Department of Environmental Sci Kendra Baumgartner); USDA–FPL sdorf (Switzerland).

Species used as outgroups for target taxon. B. myosura for Armillaria spp.; D. confragosa and P. sanguineus for Trametes spp.; D. concentrica for H. thouarsianum var. thouarsianum; F. fasciatus :Collections from fruit bodies (no pure fungal cultures obtained) §Collections exclusively used for taxon-specific primers testing.

tristis for Pleurotus spp.; L. bicolor for Hericium spp.; P. ochroleuca and P. subacida for P. fraxinea; P. schweinitzii for Laetiporus spp. fuscoviolaceum for Inonotus/Phellinus-group pulmonarius for Schizophyllum spp.; T. biforme and T. Stereum spp.; H. for porosum 6 spp.; Ganoderma ğ

Cultures were either provided by CABI Bioscience National Centre of Wood Rotting Fungi, CAS Institute of Microbiology, USDA Forest Products Lab, USDA Agricultural Service and WSL Swiss Federal Research Institute, or obtained from fruit bodies collected in California and Italy and identified through analytical keys (Hickman and Perry 1997; Bernicchia 2005) (Table 1). Pure fungal cultures were isolated from the context of fruit bodies by using potato dextrose agar (PDA; Merck KGaA, Darmstadt, Germany) medium with $0.2 \text{ g} \text{ l}^{-1}$ of streptomycin sulfate. Prior to DNA extraction, isolates were subcultured in a 2% (w/v) liquid malt extract (ME; AppliChem GmbH, Darmstadt, Germany) medium for approximately 2 weeks at room temperature. Liquid cultures were harvested by filtration and lyophilized. Alternatively, mycelia were harvested from plugs inoculated on 16 cm² discs of gel-drying film (Promega, Madison, WI, USA) and incubated at room temperature on PDA plates for 2 weeks.

DNA extractions, PCR and sequencing conditions

DNA was extracted from lyophilized mycelia or dried fruit body specimens using a modified cetyltrimethylammonium bromide (CTAB) extraction method (Hayden et al. 2004). Fifty milligrams of lyophilized tissue were pulverized in a 2-ml screw cap tube by shaking for 30 s at 4.5 m s⁻¹ in a FastPrep FP120 Cell Disrupter (Qbiogene, Irvine, CA, USA) with 6.35 or 2.00 mm-diameter glass beads. Pulverized tissue was subjected to two repetitions of freezing (on dry ice for 2 min) and thawing (at 75°C for 2 min) in 500 µl of CTAB. DNA was purified using 500 μ l of phenol/chloroform/isoamyl alcohol 25/24/1 (v/v/v) followed by further purification using the GeneClean Turbo kit (Qiagen, Valencia, CA, USA). DNA was extracted directly from wood chips using the QIAamp DNA Stool Mini Kit (Qiagen) after the pulverization step previously described. The concentration of nucleic acid extracts was estimated by comparing the genomic DNA with the quantified bands of GeneRuler 100 bp DNA ladder (Fermentas GmbH, St.Leon-Rot, Germany) visualized on a 0.8% (w/v) standard agarose gel (AppliChem GmbH, Darmstadt, Germany).

Ribosomal DNA amplifications of the 5'-end portion of the nuc LSU and of the portion including ITSI and ITSII were performed using fungal-specific primers. The nuc LSU with two variable domains (D1, D2) was amplified with primers ctb6 and tw13 (White *et al.* 1990; O'Donnell 1993). The ITSI, 5·8S, ITSII were amplified with primers ITS1-F and ITS4 (White *et al.* 1990; Gardes and Bruns 1993). For taxa lacking suitable portions for taxon-specific primer design in the above regions, a portion of mt SSU was amplified using primers MS1 and MS2 (White *et al.* 1990). PCR was performed in a 25 μ l

Table 1 Continued

volume containing 1x PCR buffer, 1.5 mmol l-1 of MgCl₂, 0.2 mmol l^{-1} of dNTPs, 0.5 μ mol l^{-1} of each primer, 0.025 U μl^{-1} of Tag polymerase (Invitrogen Corporation, Carlsbad, CA, USA) and at least 1 ng of genomic DNA. Thermocycling was conducted as follows: 94°C for 1 min, 35 cycles of 93°C for 45 s, 58°C for 50 s, 72°C for 45 s with a 1 s increment every cycle, and 72°C for 10 min. Detection and quantification of PCR products were carried out after electrophoresis on a 1.5% (w/v) standard agarose gel. PCR products were cleaned by using Qia-quick purification kit (Qiagen), and cycle-sequenced with a BigDye Terminator v. 3.1 cycle-sequencing kit (Applied Biosystems, Foster City, CA, USA) in a reaction mix with $0.8 \ \mu mol \ l^{-1}$ of reverse or forward primers. Cycle-sequencing was performed using the following cycling parameters: 25 cycles of 96°C for 10 s, 50°C for 5 s, 60°C for 4 min. Sequenced products were precipitated with $0.8 \text{ mol } l^{-1}$ of sodium acetate at pH 4.8, 3.4 mmol l^{-1} of EDTA and 25 μ l of 100% (v/v) ethanol. Products were washed in 70% (v/v) ethanol. Sequencing reactions were loaded on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems).

Sequences alignment, taxon-specific primer design for multiplex PCR

The quality of each sequence and the congruity of sense and anti-sense DNA strands were compared with Sequencher 4.1.4 (Gene Codes Corporation, Ann Arbor, MI, USA). Additional sequences available in the European Bioinformatics Institute nucleotide sequences database (EMBL-EBI; http://www.ebi.ac.uk/) were used to increase the sample size of target taxa and ensure specificity of primers by including as many representatives as possible of the target taxon and closely related nontarget taxa (Table 1). Domains conserved within a taxon, but variable among taxa, were chosen as target regions for taxonspecific primer design. To identify these regions, all sequences from a given taxon were aligned, using CLUSTALW (Thompson et al. 1994), with one sequence of a closely related species used for outgroup comparison. Sequences of outgroup taxa were obtained either by sequencing PCR products of pure culture or fruit bodies DNA extracts, as formerly described, or from nucleotide resources of EMBL-EBI (Table 1).

Taxon-specific primers to be used in multiplex PCR were designed on the selected regions using the software PRIMER3 (http://www.genome.wi.mit.edu/cgi-bin/primer/ primer3). Taxon-specific reverse primers were designed according to the following guidelines: (i) lack of complementation with the outgroup sequences especially for base substitutions at the 3'-end and/or for the presence of INDELS (insertions or deletions); (ii) similar melting

temperatures; (iii) no formation of secondary structures either for self or primer complementation; (iv) amplified DNA fragments of different lengths for visualization and scoring. The likelihood of secondary structure formation was estimated by the calculation of the change of Gibbs free energy (ΔG) from single strand oligonucleotides to reduce the chance of heteroduplex formation using the software OLIGOANALYZER 3·0 (http://www.idtdna.com/ analyzer/Applications/OligoAnalyzer/). Significant matches of taxon-specific primers with sequences derived from other organisms were further investigated by using the Basic Local Alignment Search Tool (BLAST; http:// www.ncbi.nlm.nih.gov/BLAST/).

Taxon-specific primer testing and multiplex PCR development

The specificity and efficiency of PCR-based DNA amplification using taxon-specific primers were evaluated on DNA extracts obtained from all the above listed fungal collections (Table 1), and on further DNA extracts obtained from other fungal taxa known to be saprophytes or fungi responsible for decay commonly found on wood substrates (Table 4). The annealing temperature of each primer pair was optimized using a thermocycling gradient in order to improve PCR efficiency with the highest stringency. The PCR conditions were the same used for the amplification of rDNA regions except for the use of a 0.25 μ mol l⁻¹ forward primer fluorescently labelled at the 5'-end with 6-FAM. Fragment analysis was performed in an ABI PRISM 3100 Genetic Analyzer using the GeneScan-500 ROX sizing standard. The fragment intensity and size were estimated with the ABI PRISM 3100 GeneScan analysis software v. 3.7 (Applied Biosystems).

Multiplex PCR was performed by combining taxonspecific reverse primers with similar annealing temperatures and variable amplicon sizes. In order to evaluate the PCR efficiency and specificity of the combination of taxon-specific primers, multiplex PCR were performed on DNA extracts from all fungal isolates after optimization of annealing temperature. Multiplex PCR assays were tested by adjusting the concentration of MgCl₂ $(1.5 \text{ mmol } l^{-1} \text{ and } 3.0 \text{ mmol } l^{-1})$ and by adding 0.5 μ g μ l⁻¹ of Bovin Serum Albumin (BSA). In the case of simultaneous amplification of DNA fragments of highly different size, the primers corresponding to the smaller amplicons were tested either with the same concentration of primers flanking the longer amplicons or with a lower primer concentration $(0.5 \ \mu \text{mol} \ l^{-1} \ \text{or}$ 0.25 μ mol l⁻¹, respectively). Amplified DNA fragments were visualized on a gel containing 1% (w/v) of high resolution MetaPhor (Cambrex Bio Science Inc., Rockland, ME, USA) and 1% (w/v) of standard agarose, after electrophoretic migration (4 V cm^{-1}).

Sensitivity of the multiplex PCR assays

We tested the sensitivity of detection of taxon-specific primers under simulated natural conditions by adding known amounts of pure fungal DNA (10 pg to 10^{-4} pg) to a 100 μ l DNA extracts solution (concentration about 200 ng μ l⁻¹) obtained from 100 mg (dry weight) of both *Quercus agrifolia* and *Platanus hybrida* wood using the QIAamp DNA Stool Mini Kit. Multiplex PCR were performed for each fungal DNA dilution in a 25 μ l volume containing 1x PCR buffer, 1·5 mmol l⁻¹ of MgCl₂, 0·2 mmol l⁻¹ of dNTPs, 0·5 μ mol l⁻¹ of each primer, 0·025 U μ l⁻¹ of *Taq* polymerase (Invitrogen Corporation), 0·5 μ g μ l⁻¹ of BSA and 1 μ l of DNA dilution. The presence and intensity of multiplex PCR amplicons were estimated after electrophoretic migration on agarose gels as previously described.

Validation of the multiplex PCR assay on field samples

In order to test the sensitivity and reliability of the developed assay, 114 samples from symptomatic trees were analysed. Fifty-eight wood samples were collected from Quercus spp. in central California. Using a scalpel, small portions of sapwood and/or heartwood with evidence of decay were cut out from recent tree failures, placed in paper envelopes and held in a dessicator at -19°C (Swiecki et al. 2006). The remaining 56 samples were collected in northern Italy from broadleaved trees belonging to 19 different species and 15 genera including Acer, Aesculus, Cedrus, Celtis, Fagus, Juglans, Malus, Platanus, Populus, Prunus, Quercus, Robinia, Sophora, Tilia and Ulmus. Trees were selected on the basis of presence of a visible fruit body (Nicolotti et al. 2004). Twenty-seven samples were wood cores extracted using a swedish increment borer, and 29 samples were portions of decayed sapwood and/or heartwood excised as described above near the fruit body. In order to avoid DNA contaminations, the scalpel and the borer were cleaned with a 0.5 % NaClO solution (w/v) between each sample. A visual identification of the decay fungus involved was performed by analysing the macroscopic features of the fruit bodies (Hickman and Perry 1997; Bernicchia 2005).

Approximately 100 mg of fresh wood was lyophilized, homogenized and extracted with the QIAamp DNA Stool Mini Kit following the protocol previously described. Each DNA extract was diluted 100-fold and amplified through the multiplex PCR-based diagnostic assay to detect and identify the decay fungi. The ability of our assay to correctly identify decay fungi known to be present in each sample was interpreted as a level of diagnostic efficiency. When the PCR-based assay detected a fungus other than the visible ones, fungal rDNA operons were sequenced directly from wood and the 'unknown' fungus was identified using a BLAST search analysis.

Results

Taxon-specific primers

Eleven taxon-specific reverse PCR primers and two forward primers were designed to detect the target taxa (Table 2). A single universal forward primer (25sF; Table 2) was designed in conjunction with reverse primers that amplified Hericium spp., Laetiporus spp. and Pleurotus spp. DNA fragments ranging from 146 bp to 200 bp on the nuc LSU. DNA sequences obtained from PCR amplification of the ITSII were used to design the reverse primers specific for Armillaria spp., H. thouarsianum var. thouarsianum, P. fraxinea, Schizophyllum spp. and Stereum spp. (Table 2). Used in conjunction with the universal forward primer ITS3 (White et al. 1990), these reverse primers amplified the target DNA fragments. The Armillaria reverse primer did not perfectly match all sequences, but included one substitution in the 3rd bp (A. gallica) and 11th bp (A. nabsnona) positions of the priming region. Because the mismatches were not positioned in the 3' priming region, no inefficiency in PCR amplification was observed. The size of PCR products amplified for Stereum ranged from 231 to 236 bp. The ITSI was suitable for the design of a Ganoderma spp.-specific primer to be used in conjunction with the universal forward primer ITS1-F. Although the primer was not a perfect match for one isolate of Ganoderma lucidum from North America (SP26; Table 1) because of two substitutions in the 6th and 14th bp positions and one insertion in the 7th bp position, successful amplification of the expected 226-228 bp amplicon from all isolates was obtained with a 55°C annealing temperature. A reverse primer for Trametes spp. was designed on the mt SSU in combination with MS1 to amplify a diagnostic 220 bp fragment.

It was not possible to design taxon-specific primers for *Inonotus* spp. and for *Phellinus* spp. on nuc LSU, because this region lacks sequences that are homologous within these two taxa and variable between them. Similarly, the ITS region was not suitable for taxon-specific primer design as a result of significant sequence divergence within these two taxa. Instead, a reverse primer specific to the *Inonotus/Phellinus*-group and a forward universal primer were designed on the nuc LSU. This primer combination amplified a 111 bp PCR product from all DNA extracts of *Inonotus/Phellinus*-group (Table 2).

Primer name	Nucleotide sequence (5'-3')	Tm*	Gene Region	Use in taxon- specific PCR	PCR product size (bp)	Identified taxon	Reference
Armi2R	ΑΑΑCCCCCATAATCCAATCC	56°C	ITS II	Reverse primer with the forward ITS3	185	Armillaria spp.	This study
Gano2R	TATAGAGTTTGTGATAAACGCA	55°C	ITS I	Reverse primer with the forward ITS1-F	226–228	Ganoderma spp.	This study
Heri2R	CAGCCCTTGTCCGGCAGT	61°C	nuc LSU	Reverse primer with the forward 25sF	200	Hericium spp.	This study
Hyme2R	TGCDCCCCTYGCGGAG	60/64°C	nuc LSU	Reverse primer with the forward F115	111	Inonotus/ Phellinus-group	This study
HypoR	GCTACGCTTAGGGGATGCTA	60°C	ITS II	Reverse primer with the forward ITS3	219	H. thouarsianum var. thouarsianum	This study
LaetR	CCGAGCAAACGAATGCAA	54°C	nuc LSU	Reverse primer with the forward 25sF	146	Laetiporus spp.	This study
PerR	ATCTGCAAAGACCGGTAAGGT	60°C	ITS II	Reverse primer with the forward ITS3	152	P. fraxinea	This study
Pleu2R	AACCAGGAAGTACGCCTCAC	60°C	nuc LSU	Reverse primer with the forward 25sF	158	Pleurotus spp.	This study
Schi2R	CTCCAGCAGACCTCCACTTC	63°C	ITS II	Reverse primer with the forward ITS3	190	Schizophyllum spp.	This study
Ste2R	GTCGCAACAAGACGCACTAA	58°C	ITS II	Reverse primer with the forward ITS3	231–236	Stereum spp.	This study
TraR	TTCATAGTCTTATGGAAACCGC	58°C	mt SSU	Reverse primer with the forward MS1	220	Trametes spp.	This study
25sF	TGGCGAGAGACCGATAGC	58°C	nuc LSU	Forward			This study
F115	TAAGCGACCCGTCTTGAAAC	58°C	nuc LSU	Forward			This study
ITS1-F	CTTGGTCATTAGAGGAAGTAA	55°C	nuc LSU	Forward			Gardes and Bruns (1993)
ITS3	GCATCGATGAAGAACGCAGC	60°C	5·8S	Forward			White <i>et al.</i> (1990)
ITS4	TCCTCCGCTTATTGATATGC	56°C	nuc LSU	Reverse			White <i>et al.</i> (1990)
MS1	CAGCAGTCAAGAATATTAGTCAATG	61°C	mt SSU	Forward			White <i>et al.</i> (1990)

T A b		tet in the second se	1 A A A A A A A A A A A A A A A A A A A	· · ·	
lable 2 Primer sequences.	primina reaions.	melting temperatures	s and farget amplicor	i size for faxon-	specific PCR of wood rot fungi

*Tm indicates the salt-adjusted melting temperature (see Howley et al. 1979).

Multiplex PCR development

Primers for taxon-specific priming were combined in three multiplex PCR reactions (Table 3). Because the reverse primer HypoR was highly specific to the *H. thouarsianum* var. *thouarsianum* species with limited geographic distribution, this primer was excluded from multiplex reactions. The universal fungal primers ITS1-F and ITS4 were used in one multiplex (M1) to evaluate the efficiency of fungal DNA extraction, thus avoiding possible false negatives because of either undetectable DNA quantities or PCR inhibitory compounds.

PCR efficiency was comparable between simplex and multiplex reactions, and PCR amplification was not significantly affected by changing the concentration of $MgCl_2$ in PCR reactions (Fig. 1). Using optimized reaction parameters (Table 3), no cross-reactivity with nontarget

DNA was found, and multiplex reactions did not produce any ambiguous or extra amplicons (Table 4).

The amplified fragments in multiplex reactions were easily differentiated and scored according to size using standard agarose gels (Fig. 2). Our results showed that amplicons of similar molecular size, such as *Pleurotus* spp. and *Laetiporus* spp.-specific DNA fragments in M2 or *Stereum* spp. and *Trametes* spp.-specific DNA fragments in M3, were easily separated and scored (Fig. 2).

Sensitivity of the method under simulated natural conditions

The sensitivity assay performed by spiking DNA obtained from the host with DNA of the target organisms determined that the threshold of DNA detection ranged from 10^{-2} pg to 1 pg depending on the set of primers (Fig. 3).

Multiplex	Primers co	mbination		
PCR name	Forward	Reverse	Diagnostic purpose	Cycling parameters
M1	ITS1-F	ITS4	Fungi	5 min denaturation at 95°C; 35 cycles of: 45 s at 95°C, 45 s at 55°C,
		Gano2R	Ganoderma spp.	45 s at 72°C; 10 min final extension at 72°C
	F115	Hyme2R	Inonotus/Phellinus-group	
M2	ITS3	Armi2R	Armillaria spp.	5 min denaturation at 95°C; 35 cycles of: 45 s at 95°C, 45 s at 60°C, 45 s
	25sF	LaetR	Laetiporus spp.	at 72°C; 10 min final extension at 72°C
		Pleu2R	Pleurotus spp.	
		Heri2R	Hericium spp.	
M3	ITS3	PerR	P. fraxinea	5 min denaturation at 95°C; 35 cycles of: 45 s at 95°C, 45 s at 63°C, 45 s
		Schi2R	Schizophyllum spp.	at 72°C; 10 min final extension at 72°C
		Ste2R	Stereum spp.	
	MS1	TraR	Trametes spp.	

 Table 3 Multiplex PCR primers combination, conditions and diagnostic purposes

Figure 1 M1 PCR conditions assay. Comparison of PCR outcomes by using different primers and MgCl₂ concentrations. In the first and second reactions (M1-mix1 and M1-mix2), each primer is 0.5μ mol l^{-1} , whereas in the mix 3 and 4 primers ITS1f and ITS4 are 0.5μ mol l^{-1} , primers Gano2R, Hyme2R and F115 are 0.25μ mol l^{-1} . MgCl₂ concentration in mix1 and mix3 was1.5 mmol l^{-1} ; in the mix2 and 4 the MgCl₂ concentration was 3.0 mmol l^{-1} . The PCR assay was performed on 0.5 ng of *Ganoderma resinaceum* (lane 1), *Phellinus tuberculosus* (lane 2) and *Trametes versicolor* (lane 3) genomic DNA as well as on artificial mix containing 0.5 ng of *G. resinaceum* and *P. tuberculosus* (lane 4), of *G. resinaceum* and *T. versicolor* (lane 5), of *P. tuberculosus* and *T. versicolor* (lane 6) and of *G. resinaceum*, *P. tuberculosus* and *T. versicolor* (lane 7) genomic DNA. The negative controls of PCR reactions are loaded in the lane 8. M = Molecular weight marker GeneRuler 50 bp DNA ladder (DNA Ladder, Fermentas GmbH, St.Leon-Rot, Germany).

In some multiplex reactions, lower concentrations $(10^{-2}$ to 10^{-1} pg) of DNA were detected in *P. hybrida* wood than in *Q. agrifolia* wood (1 to 10^{-1} pg), indicating that for some target taxa the sensitivity of the multiplex PCR assay was affected by host tissues (Table 5). Nonetheless, sensitivity of the assay was extremely high for both tree species tested in this study.

Validation of the method on field samples

The fungal rDNA of 92% of 114 samples was successfully amplified. In 82% of the samples, at least one of

our target decay fungi was detected (Fig. 4). In 65% of samples, we found consistent matches between multiplex PCR-based and visual-based diagnosis of decay fungi. Most of the missed target fungi included *Stereum* spp., *Trametes* spp. and *H. thouarsianum* var. *thouarsianum*. (Fig. 4). BLAST search analysis based on fungal DNA directly sequenced from wood confirmed all but one diagnoses not matched by a visible fungal fruit body (Fig. 5).

Fungal taxa using universal primers were identified in 93% and 89% of decayed wood and wood core samples, respectively. Target decay fungi were detected in 64% and

Species	ID collection	M1*	M2	MЗ	Species	ID collection	M1*	M2	MЗ
Agrocybe aegerita (V. Brig.) Singer†	DP12	I	Т	I	<i>Omphalotus olearius</i> (DC.) Singer†	HHB-7441-Sp	I	I	I
Armillaria gallica	Napa-144;-141	I	185	I	Omphalotus olivascens H.E. Bigelow, O.K. Mill. & Thiers†	KPC-CA-1	I	L	I
Armillaria mellea	DP26; Mar-001;-016; T4D	I	185	I	Oxyporus corticola (Fr.) Ryvarden†	RLG-4894-Sp	I	I	I
Armillaria nabsnona	Men-017;-023	I	185	I	Oxyporus latemarginatus (Durieu &	FP-101894-Sp	I	I	I
					Mont.) Donk†				
Baeospora myosura†	OKM-3708-Sp	I	I	I	Oxyporus sp.†	SP32	I	I	I
Bjerkandera adusta (Willd.) P. Karst.†	DP66	I	I	I	Perenniporia fraxinea	ŝ	I	I	152
						2; 3; 5; 6			
Crepidotus mollis (Schaeff.) Stauder	SP36	I	I	I	Phaeolus schweinitzii†	SP39	I	I	I
Fistulina hepatica (Schaeff.) With.†	FP-103444-T	I	I	I	Phellinus gilvus	SP18; 20	111	I	I
Fomitopsis cajanderi (P. Karst.) Kotl. & Pouzar†	SP34	I	I	I	Phellinus igniarius var. cinereus	575	111	I	I
Fomes fasciatus†	FP-1061048-T	I	I	I	Phellinus pini	578	111	I	I
Fomitopsis pinicola (Sw.) P. Karst.†	SP6	I	I	I	Phellinus punctatus	262; DP25	111	I	I
Fomitopsis rosea (Alb. & Schwein.) P. Karst.†	SP7		I	I	Phellinus robustus	587; RLG-9585-T	111	I	I
Ganoderma adspersum	DP87; DP60; FGA1	228	I	I	Phellinus torulosus	759	111	I	I
Ganoderma lucidum	GIT099	228			Phellinus tremulae	243	111	I	I
Ganoderma lucidum	SP26	226	I	I	Phellinus tuberculosus	265; DP40	111	I	I
Ganoderma pfeifferi	G2/11	228	I	I	Pleurotus ostreatus	2470; FP-101798-Sp;	I	158	I
						SP29; 37			
Ganoderma resinaceum	DP1; FGR1; 3; 5; G4/13	228	I	I	Pleurotus pulmonarius	JPL-531-Sp	I	158	I
Ganoderma sp.	SP11; SP13; SP16	228	I	I	Pseudoinonotus dryadeus	FP-105836-4	111	I	I
Hericium coralloides	HHB-9082-Sp	I	200	I	Ramaria sp.†	SP31	I	I	I
Hericium erinaceum	654; JHO-62-149	I	200	I	Schizophyllum commune	DP61; Jacquiot	I	I	190
Hohenbuehelia atrocoerulea (Fr.) Singer†	FP-102477-Sp	I	I	I	Schizophyllum radiatum	CBS-301·32	I	I	190
Hypoxylon thouarsianum var. thouarsianum	SP8; SP106	I	I	I	Stereum hirsutum	DP49; SP9	I	I	236
Inonotus andersonii	557; L(61)11–14-C; SP23	111	I	I	Stereum rugosum	388020	I	I	231
Inonotus dryophilus	703; L(61)5-20-A; SP25	111	I	I	Trametes cervina	FP105490-Sp	I	I	220
Inonotus hispidus	FIH2; FP-106082-T	111	I	I	Trametes versicolor	2473; DP37;	I	I	220
						Mad-697; SP27;33			
Inonotus radiatus	276	111	I	I	Trametes zonatella	FTZ1	I	I	220
Laetiporus sulphureus	FP-101671-T; FLS1; 2;SP35	I	146	I	Trichaptum biforme†	L-15822-Sp	I	I	I
Laxitextum bicolor†	NO-7316-Sp	I	I	I	Trichaptum fuscoviolaceum†	L-15378-Sp	I	I	I
Lentinula edodes (Berk.) Pegler†	Ra-3-2E	I	I	I	Tricholoma robustum (Alb. &	DP65	I	I	I
					Schwein.) Ricken†				
Lenzites betulina (L.) Fr. †	SP4	I	I	I					

Journal compilation © 2007 The Society for Applied Microbiology, Journal of Applied Microbiology 103 (2007) 1490–1507

© 2007 The Authors

uct with any taxon-specific primers is indicated with –. †Fungal collections including other common wood rotting or saprophytic species used to test the specificity of the multiplex PCR assays.

Figure 2 The results of M1, M2, M3 visualized on a UV-Gel documentation system after a 2 h electrophoresis at 4 V cm⁻¹ on a 1% Metaphor 1% Standard agarose gel. M1: PCR products from DNA extracts of *Trametes* sp. (ITS band), of *Phellinus* sp. (ITS band + 111 bp) and *Ganoderma* sp. (ITS band + 228 bp) were loaded in the lanes 1, 2 and 3, respectively. M2: PCR products from DNA extracts of *Armillaria* sp. (185 bp), of *Hericium* sp. (200 bp), of *Laetiporus* sp. (146 bp) and of *Pleurotus* sp. (158 bp) were loaded in the lanes 1, 2, 3 and 4, respectively. M3: PCR products from DNA extracts of *Stereum* sp. (236 bp), of *Trametes* sp. (220 bp), of *Schizophyllum* sp. (190 bp) and of *P. fraxinea* (152 bp) were loaded in the lanes 1, 2, 3 and 4, respectively. M = Molecular weight marker 100 bp DNA ladder are shown.

67% of decayed wood and wood core samples, respectively.

Discussion

Taxon-specific primers were successfully designed and were confirmed to be highly sensitive and specific for their target organisms. The combination of primer pairs in multiplex PCR reactions allowed for the development of a reliable, rapid and sensitive protocol for the identification of some wood decay fungi known to be responsible for tree failures in the temperate regions of the northern hemisphere. The validation of the assay on field samples collected from decay-affected trees proved that the assay can be successfully performed directly from wood DNA extracts, thus bypassing the difficult and laborious step of culturing.

In order to design an assay that would detect selected wood decay agents in the northern temperate regions, we opted to work at the 'generic' rather than the individual species rank. The resulting assay allows for the reliable detection of decay fungi based on the size determination of 11 PCR amplicons. The need for assays based on individual fungal groups arises from the impossibility to design a single assay encompassing all known species of decay fungi. Furthermore, species-level diagnosis is complicated not only by the large number of species involved, but also by the presence of intra-specific DNA sequence variations among samples of different provenances. Finally, closely related species within a genus often share similar decay characteristics and, thus, are similar in terms of overall effects on the structural integrity and type of decay.

Although the assay described here was mostly based on genus-level specific primers, there were some exceptions. On one hand, species-level primers were developed for two important decay fungi: *H. thouarsianum* var. *thouarsianum* and *P. fraxinea*; on the contrary, *Inonotus* spp. and *Phellinus* spp. were considered as a unique target. Species-level diagnoses for the above two taxa are justified by their important role in wood decay processes. *Hypoxylon thouarsianum* var. *thouarsianum* has been reported to be significantly associated to bole failures of oaks in California (Swiecki *et al.* 2006). Similarly, *P. fraxinea* is one of the most widespread species causing butt rot on several broadleaved trees in northern Italy, as confirmed by a recent study conducted by Nicolotti *et al.* (2004).

A unique primer specific to both *Inonotus* spp. and *Phellinus* spp. was designed out of necessity because of the complex evolutionary history and non-monophyletic nature of the two genera belonging to Hymenochaetales (Wagner and Fischer 2002).

The nuc LSU was targeted for primer design at the 'generic' rank because it is often used for resolving phylogenetic relationships at higher taxonomic level (Moncalvo *et al.* 2000; Binder and Hibbett 2002). One of the two

Figure 3 Outcomes from sensitivity assays performed for M1, M2, M3 and *H. thouarsianum*-specific-PCR on 10-fold dilutions of *Phellinus tuberculosus, Pleurotus ostreatus, Stereum hirsutum* and *Hypoxylon thouarsianum* var. *thouarsianum* DNA extracts, respectively. The dilutions were carried out in wood DNA extracts either from *Platanus hybrida* or from *Quercus agrifolia*. 1P = 100 pg fungal DNA in wood DNA extract solution of *P. hybrida*; 3P = 1 pg fungal DNA in wood DNA extract solution from *P. hybrida*; 3P = 10 pg fungal DNA in wood DNA extract solution from *P. hybrida*; 4P = 10⁻¹ pg fungal DNA in wood DNA extract solution from *P. hybrida*; 5P = 10⁻² pg fungal DNA in wood DNA extract solution from *P. hybrida*; 1Q = 100 pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 3Q = 10 pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 4Q = 10⁻¹ pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 4Q = 10⁻¹ pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA in wood DNA extract solution from *Q. agrifolia*; 5Q = 10⁻² pg fungal DNA; C-P = DNA extract solution from *P. hybrida*; C-Q = DNA extract solution from *Q. agrifolia*. M = Molecular weight marker of 100 bp DNA ladder.

		DNA amount threshold	*
PCR protocol tested	Species and related specimen used	Quercus agrifolia	Platanus hybrida
M1	Ganoderma resinaceum-FGR1	10 ⁻¹ pg	10 ⁻² pg
	Phellinus tuberculosus-FPT1	1 pg	1 pg
	Inonotus hispidus-FIH2	1 pg	1 pg
M2	Hericium flagellum-654	10 ⁻¹ pg	10 ⁻² pg
1112	Pleurotus ostreatus-2470	10^{-1} pg	10 ⁻¹ pg
	Laetiporus sulphureus-FLS2	10 ⁻¹ pg	10 ⁻¹ pg
	Armillaria spT4D	1 pg	1 pg
M3	Stereum hirsutum-DP49	10 ⁻¹ pg	10 ⁻¹ pg
	Trametes. versicolor-2473	1 pg	1 pg
	Schizophyllum commune-DP61	10 ⁻¹ pg	10 ⁻¹ pg
	Perenniporia fraxinea-FPF5	10 ⁻¹ pg	10 ⁻¹ pg
H. thouarsianum-specific PCR	Hypoxylon thouarsianum var. thouarsianum-P1	10 ⁻¹ pg	10 ⁻¹ pg

Table 5 Minimum DNA amount threshold detectable by multiplex PCR 1, 2, 3 and by Hypoxylon thouarsianum-specific PCR

*The reported values indicate the minimum amount of target fungal DNA in wood DNA solution obtained from one mg of either *Q. agrifolia* or *P. hybrida* wood (details in the text).

Figure 4 Efficiency of the method on wood samples from decayaffected trees. Comparison of the results from visual analysis to the multiplex PCR-based diagnosis. No fungi detected means no fungal rDNA amplification (□). No corresponding target taxon detected means no rDNA amplification of the target taxon visually identified (□). The corresponding target taxon detected for trees where no fruit bodies were detected was obtained from BLAST search analysis of the sequenced rDNA amplicon (□).

divergent domains amplified (D2) showed sufficient inter-generic heterogeneity for taxon-specific priming of Hericium spp., Laetiporus spp. and Pleurotus spp. Thus, it was possible to develop multiplex PCR reactions with a common forward oligonucleotide and taxon-specific reverse primers for selective amplification of rDNA fragments. The divergent domain D3, not included in the nuc LSU region sequenced in this study but available from EMBL-EBI accessions, was used to design a reverse primer specific to the Inonotus/Phellinus-group. Conversely, in four of the target decay fungi (Armillaria spp., Ganoderma spp., Schizophyllum spp. and Stereum spp.), the taxon-specific primers designed on the nuc LSU cross-reacted and amplified nontarget fungal taxa under highly stringent PCR conditions (data not shown). Reverse primers both at the generic (Armillaria spp., Schizophyllum spp. and Stereum spp.) and at the specific rank (H. thouarsianum var. thouarsianum and P. fraxinea) were designed in the ITSII. A Ganoderma spp.-specific primer was designed in the ITSI, instead. Because both intra-specific variation and heterotype variation in ITSI and ITSII among fungal isolates have been proved in other studies (O'Donnell 1992; Kauserud and Schumacher 2001), the investigation on the efficiency in PCR amplification of different isolates within a same taxon was par-

Figure 5 Specificity of the method on wood samples from decayaffected trees. Comparison of the results obtained from the multiplex PCR-based diagnosis to the outcomes from visual analysis and BLAST search analysis of the sequenced rDNA amplicon. So No confirmation; □ no visual analysis confirmation but BLAST search analysis confirmation; □ visual analysis confirmation.

ticularly significant for taxon-specific primers designed in such region. When a capillary electrophoretic system was used to more precisely estimate amplicon size obtained by the assay, the size of amplicons matched the expected size for each target taxon in most instances. Although slight size variations were detected for Stereum spp. and Ganoderma spp. owing to INDELS, such limited variations did not result in any misinterpretation of the multiplex PCR results. It was also observed that the amplicon from North American G. lucidum isolates was two bases smaller than European G. lucidum isolates. However, such a level of sequence polymorphism among the two groups is not surprising, because ITS and nuc LSU sequence analyses have shown that North American G. lucidum isolates collected from hardwood and European G. lucidum are included in different phyletic groups (Moncalvo et al. 1995). For Trametes spp., no suitable priming site could be found on the nuclear rDNA; however, the mt SSU was suitable for the design of a taxon-specific primer.

Although each primer pair can be used individually, we designed and tested optimal conditions for multiplex PCR assays in order to simultaneously detect multiple taxa in a single reaction. The use of different primers that anneal in the same region will favour the priming of primer with

the best sequence match by potentially increasing the reliability of PCR amplification as a result of competition among primers for the same priming site (Garbelotto *et al.* 1996). However, by multiplexing, PCR sensitivity may be reduced. In our multiplex reactions, a detection threshold of 10^{-1} pg of target DNA per milligram of wood DNA extracts was found. Reactions targeting *Armillaria* spp., *Inonotus/Phellinus*-group and *Trametes* spp. had a threshold one order of magnitude higher. Differences in sensitivity among primer pairs may be explained by differences in melting temperatures, GC content, degree of mismatch between primer and priming site, and by the differences including copy numbers between priming sites in the nuclear and the mitochondrial regions.

Differences in detection thresholds between O. agrifolia and P. hybrida wood samples are most likely due to the presence of different inhibitory compounds and warrants the need to test the sensitivity assay on each plant species of interest. Moreover, this method was successfully used on 19 tree species, thus proving its potential for a broad application on a wide range of hosts. It may be noteworthy to highlight that the assay was also successfully employed on samples at advanced stages of decay, in spite of the high concentration of inhibitory compounds normally present in such substrates (Jasalavich et al. 2000). In 10% of the samples, a fungus was detected by the amplification of rDNA fragments with fungal universal primers ITS1-F and ITS4, but there was no detection of target decay taxa. DNA amplicons from these samples were sequenced and BLAST search analysis indicated that the amplified organisms displayed high DNA sequence homology with anamorphic ascomycetes, such as Penicillium spp. and Phialemonium spp., or with secondary wood rotting basidiomycetes. The presence of anamorphic ascomycetes, known as wood saprophytes or soft rot agents, may thus reduce the efficiency of detection of wood decay basidiomycetes (Adair et al. 2002).

The molecular analysis detected wood decay basidiomycetes other than the one producing the fruit body in 35% of samples. The reason for this lack of concordance may be the misidentification of fruit body and/or patchy patterns of wood localization of the target decay fungus. The most frequently missed organism was the ascomycete H. thouarsianum var. thouarsianum. The difficulty in detecting such species from sapwood and heartwood samples of trees displaying typical fruit bodies may be explained by the fact that Hypoxylon spp. are reported as colonizers of living bark tissue and soft rot agent of peripheral sapwood (Tainter and Baker 1996), and their presence may be limited in wood where Hypoxylon are out-competed by more aggressive decay organisms. The presence of aggressive decay fungi in trees with H. thouarsianum var. thouarsianum fruit bodies were typically identified as those assigned to the *Inonotus/Phellinus*-group and *Stereum* spp. *P. fraxinea* and *Ganoderma* spp. were detected in the same trees both through multiplex-PCR and through a combination of visual and molecular diagnosis. The simultaneous presence of two such taxa has been already observed and deemed to be responsible for hazardous butt and root rots in urban broadleaved trees (Nicolotti, unpublished).

The fact that the success of PCR-based identification from wood cores extracted with a swedish increment borer was comparable to that obtained from samples of decayed wood portions suggests that this multiplex PCRbased method may be employed by arborists as a complement to VTA analysis. The method described here can be easily performed in disease diagnostic clinics equipped with basic molecular biology instruments.

The ability to detect and identify the genus of fungal agents during early stages of decay enhances the ability to predict the rate of decay progression both within and between trees (Lonsdale 1999). However, in some cases, closely related species may form associations with different hosts and affect their hosts in substantially different ways. For example, Ganoderma includes species known to be butt and root rot agents (Ganoderma adspersum, G. resinaceum) as well as species known to be less aggressive stem decay agents, unlikely to affect the structural deterioration of woody tissues (European G. lucidum) (Bernicchia 2005). Within the Hymenochaetales, Pseudoinonotus dryadeus and Phellinus torulosus should be identified at the species level, because they are reported to be active butt and root rot agents of Quercus spp. and responsible for rapid and aggressive decay (Lonsdale 1999; Bernicchia 2005). The development of species-level assays for these relevant cases is in progress, and will be the subject of a further publication.

Acknowledgements

We gratefully acknowledge Jessie Micales at the USDA Forest Products Lab and Kendra Baumgartner at USDA Agricultural Research Service for the generous donation of several cultures. We also thank Ted Swiecki for assistance with identification of several collections and his support throughout the duration of this project. Particular thanks to Chiara Billi for her contribution to this study. This research was supported by a grant of the Comune di Torino-Settore Verde Pubblico and by a grant from the California Department of Forestry and Fire Protection.

References

Adair, S., Kim, S.H. and Breuil, C. (2002) A molecular approach for early monitoring of decay basidiomycetes in wood chips. *FEMS Microbiol Lett* **211**, 117–122. Anselmi, N. and Bragaloni, G. (1992) A method to identify wood decay basidiomycetes by using enzymatic comparisons. *Micologia Italiana* 2, 15–20.

Bahnweg, G., Möller, E.M., Anegg, S., Langebartels, C., Wienhaus, O. and Sandermann, H. Jr (2002) Detection of *Heterobasidion annosum* s.l. [(Fr.) Bref.] in Norway spruce by polymerase chain reaction. J Phytopathol 150, 382–389.

Bernicchia, A. (2005) *Polyporaceae s.l.* Fungi Europaei, Vol. 10. Italy: Edizioni Candusso.

Binder, M. and Hibbett, D.S. (2002) Higher-level phylogenetic relationships of homobasidiomycetes (mushroom-forming fungi) inferred from four rDNA regions. *Mol Phylogenet Evol* 22, 66–90.

Blanchette, R.A. (1991) Delignification by wood-decay fungi. Annu Rev Phytopathol **29**, 381–398.

Bruns, T.D. and Shefferson, R.P. (2004) Evolutionary studies of ectomycorrhizal fungi: recent advances and future directions. *Can J Bot* 82, 1122–1132.

Buchan, A., Newell, S.Y., Moreta, J.I.L. and Moran, M.A. (2002) Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. *Microb Ecol* 43, 329–340.

Clausen, C.A. (2003) Detecting decay fungi with antibodybased tests and immunoassays. *Wood Deterior Preserv* 845, 325–336.

Corbiere Morot-Bizot, S., Talon, R. and Leroy, S. (2004) Development of a multiplex PCR for the identification of *Staphylococcus* genus and four staphylococcal species isolated from food. *J Appl Microbiol* **97**, 1087–1094.

Elnifro, E.M., Ashshi, A.M., Cooper, R.J. and Klapper, P.E. (2000) Multiplex PCR: optimization and application in diagnostic virology. *Clin Microbiol Rev* 13, 559–570.

Fischer, M. and Wagner, T. (1999) RFLP analysis as a tool for identification of lignicolous basidiomycetes: European polypores. *Eur J Forest Pathol* 29, 295–304.

Garbelotto, M., Ratcliff, A., Bruns, T.D., Cobb, F.W. and Otrosina, W.J. (1996) Use of taxon-specific competitivepriming PCR to study host specificity, hybridization, and intergroup gene flow in intersterility groups of *Heterobasidion annosum*. *Phytopathology* **86**, 543–551.

Gardes, M. and Bruns, T.D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. *Mol Ecol* **2**, 113–118.

Gonthier, P., Garbelotto, M. and Nicolotti, G. (2003) Swiss stone pine trees and spruce stumps represent an important habitat for *Heterobasidion* spp. in subalpine forests. *For Pathol* 33, 191–203.

Habermehl, A., Ridder, H.W. and Seidl, P. (1999) Computerized tomographic systems as tools for diagnosing urban tree health. *Acta Horticoltura* **496**, 261–268.

Harrington, T.C. and Wingfield, B.D. (1995) A PCR-based identification method for species of *Armillaria*. *Mycologia* 87, 280–288.

Hayden, K.J., Rizzo, D., Tse, J. and Garbelotto, M. (2004) Detection and quantification of *Phytophthora ramorum* from California forests using a real-time polymerase chain reaction assay. *Phytopathology* **94**, 1075–1083.

- Hickman, G.W. and Perry, E.J. (1997) *Ten Common Wood Decay Fungi on Landscape Trees – Identification Handbook.* Sacramento: Western Chapter, ISA.
- Hong, S.G., Jeong, W. and Jung, H.S. (2002) Amplification of mitochondrial small subunit ribosomal DNA of polypores and its potential for phylogenetic analysis. *Mycologia* 94, 823–833.

Howley, P.M, Israel, M.F., Law, M-F. and Martin, M.A. (1979) A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes. J Biol Chem 254, 4876–4883.

Kauserud, H. and Schumacher, T. (2001) Outcrossing or inbreeding: DNA markers provide evidence for type of reproductive mode in *Phellinus nigrolimitatus* (Basidiomycota). *Mycol Res* 105, 676–683.

Kennedy, N. and Clipson, N. (2003) Fingerprinting the fungal community. *Mycologist* 17, 158–164.

Jasalavich, C.A., Ostrofsky, A. and Jellison, J. (2000) Detection and identification of decay fungi in spruce wood by restriction fragment length polymorphism analysis of amplified genes encoding rRNA. *Appl Environ Microbiol* **66**, 4725–4734.

Jellison, J. and Jasalavich, C. (2000) A review of selected methods for the detection of degradative fungi. *Int Biodeterior Biodegradation* **46**, 241–244.

Johannesson, H. and Stenlid, J. (1999) Molecular identification of wood-inhabiting fungi in an unmanaged *Picea abies* forest in Sweden. *For Ecol Manage* **115**, 203–211.

Lonsdale, D. (1999) *Principles of Tree Hazard Assessment and Management. Research for Amenity Trees 7.* London: The Stationery Office.

Mattheck, C. and Breloer, H. (1992) Feldaleitung fur Baumkkontrollen mit VTA. *Landschaftarchitektur*.

Moncalvo, J.M., Wang, H.F. and Hseu, R.S. (1995) Gene phylogeny of the *Ganoderma lucidum* complex based on ribosomal DNA sequences: comparison with traditional taxonomic characters. *Mycol Res* **99**, 1489– 1499.

Moncalvo, J.-M., Lutzoni, F.-M., Rehner, S.A., Johnson, J. and Vilgalys, R. (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. *Syst Biol* **49**, 278–305.

Moreth, U. and Schmidt, O. (2001) Identification of indoor rot fungi by taxon-specific priming polymerase chain reaction. *Holzforschung* 54, 1–8.

Müller, U., Bammer, R., Halmschlager, E. and Wimmer, R. (2001) Detection of fungal wood decay using magnetic resonance imaging. *Holz Roh-Werkstoff* 59, 190–194.

Nicolotti, G., Gonthier, P. and Pecollo, D. (2004) Ecologia e grado di preferenza d'ospite dei funghi agenti di carie/ I parte. *Acer* 1, 47–51.

Nobles, M.K. (1965) Identification of cultures of wood-inhabiting hymenomycetes. *Can J Bot* **44**, 1097–1165. O'Donnell, K. (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopatogenic ascomycete *Fusarium sambucinum* (*Gibberella pulicaris*). *Curr Genet* **22**, 213–220.

O'Donnell, K. (1993) Fusarium and its near relatives. In The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. ed.Reynolds, D.R. and Taylor, J.W. pp. 225–233. Wallingford, UK: CAB International.

Oh, S., Kamdem, D.P., Keathley, D.E. and Han, K. (2003) Detection and species identification of wood-decaying fungi by hybridization of immobilized sequenze-specific oligonucleotide probes with PCR-amplified fungal ribosomal DNA internal transcribed spacers. *Holzforschung* 57, 346–352.

Sambuelli, L., Socco, L.V., Godio, A., Nicolotti, G. and Martinis, R. (2003) Ultrasonic, electric and radar measurements for living tree assessment. J Earth Sci 44, 253–279.

Stalpers, J.A. (1978) Identification of wood-inhabiting aphyllophorales in pure culture. *Stud Mycol* **16**, 1–248.

Swiecki, T.J., Bernhardt, E., Drake, C. and Costello, L.R. (2006) Relationships between *Phytophthora ramorum* canker (sudden oak death) and failure potential in coast live oak. Gen. Tech. Rep. PSW-GTR-196. In *Proceedings of the Sudden Oak Death Second Science Symposium*. 19–21 January, 2005; Monterey, CA. pp. 427–453. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. Tainter, F.H. and Baker, F.A. (1996) *Principles of Forest Pathology*. USA: John Wiley & Sons, Inc.

Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUS-TALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. *Nucleic Acids Res* 22, 4673–4680.

Tomikawa, Y., Iwase, Y., Arita, K. and Yamada, H. (1990) Nondestructive inspection of wooden poles using ultrasonic computed tomography. *IEEE Trans UFFC* 33, 354– 358.

Vainio, E.J. and Hantula, J. (2000) Direct analysis of woodinhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. *Mycol Res* 104, 927–936.

Wagner, T. and Fischer, M. (2002) Proceedings towards a natural classification of the worldwide taxa *Phellinus* s.l. and *Inonotus* s.l., and phylogenetic relationships of allied genera. *Mycologia* 94, 998–1016.

White, T.J., Bruns, T.D., Lee, S. and Taylor, J.W. (1990)
Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: a Guide to Methods and Applications* ed. Innes, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. pp. 315–322. San Diego, CA: Academic Press.

Worrall, J.J., Anagnost, S.E. and Zabel, R.A. (1997) Comparison of wood decay among diverse lignicolous fungi. *Mycologia* 89, 199–219.