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Severity of ASD Symptoms and Their Correlation with the
Presence of Copy Number Variations and Exposure to First
Trimester Ultrasound

Sara Jane Webb, Michelle M. Garrison, Raphael Bernier, Abbi M. McClintic, Bryan H. King, and
Pierre D. Mourad

Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise
through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally
considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to
ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain
development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, 2010] to
assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the
first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis
of data from the SSC (Simon’s Simplex Collection) autism genetic repository funded by the Simons Foundation
Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to
first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male
children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may
result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with
specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-
medical use of diagnostic ultrasound during pregnancy. Autism Res 2016, 0: 000–000. VC 2016 International Society
for Autism Research, Wiley Periodicals, Inc.
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Background
Heterogeneity of ASD

Current research supports the view that incidence and

the heterogeneity of symptoms of autism spectrum dis-

order (ASD) can arise through multiple factors.

In multifactorial disorders such as ASD, Casanova

[Casanova, 2007] proposed a triple hit hypothesis where

the convergence of three factors (1) the brain of a genetical-

ly at risk individual is (2) exposed during a time of critical

neurodevelopment to (3) an exogenous stressor, may con-

tribute to the incidence of ASD. First, the stressor occurs

during a critical period of brain development. In ASD, it

has been proposed that this insult occurs early in gestation

(e.g. 1st or 2nd trimester) [Chess, 1977; Ivarsson et al., 1990;

Rodier, 2002; Torrey et al., 1975] but not later [Yamashita

et al., 2003]. Second, the individual has an underlying

(genetic) vulnerability. In ASD, both specific genetic events

[Bernier et al., 2014; O’Roak et al., 2012] and genetic risk

factors [Klei et al., 2012; Werling & Geschwind, 2013] have

been proposed to play a role in the disorder. Third, there is

an exogenous gestational stressor. Proposed gestational

stressors are varied and have included (but are not limited

to): anticonvulsants and other psychotropic medications

[Christensen et al., 2013; Wood, 2014], maternal infection

and immune activation [Malkova et al., 2012; Mazina

et al., 2015; Patterson, 2011; Zerbo et al., 2013 ], and envi-

ronmental toxins such as air pollutants [Ehrenstein et al.,

2014], volatile organic compounds [McCanlies et al.,

2012], pesticides [Roberts et al., 2007; Roberts & English,

2013], and plasticizers [Kalkbrenner et al., 2014; Stein

et al., 2015; Testa et al., 2012].

Of interest to the present work is the possibility that diag-

nostic ultrasound could act as an exogenous stressor [Wil-

liams & Casanova 2010] and may be related to ASD severity.

Diagnostic Ultrasound Effects in Animal Models

Effects on brain structure, in vivo. There exist a

number of early studies that link ultrasound exposure
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in utero in rodents to changes in neuro-anatomy, sum-

marized in Stewart et al. [1985]. Ellisman, Palmer,&

Andr�e [1987] observed that 30 minutes of diagnostic

ultrasound applied to neonatal rat pups disrupted brain

myelination compared to sham exposed animals. Ang

et al. [2006] found distrupted cortical migratory pat-

terns in mice exposed to a 301 minutes of diagnostic

ultrasound in utero relative to shams. Li et al. [2015]

exposed rats to 20 minutes of diagnostic ultrasound in

utero and observed changes in mRNA and protein

expression levels of hippocampal N-methyl-D-aspartate

(NMDA) receptor units, brain-derived neurotrophic fac-

tor (BDNF), and the presence of damaged hippocampal

synapses.

Effects on behavior, in vivo. Ultrasound exposure

to rodents in utero can also alter their subsequent

behavior. For example, decreased locomotor and explor-

atory activities, as well as decreased learning ability was

found in mice exposed to prenatal ultrasound [Devi

et al., 1995; Suresh et al., 2002, 2008]. Similarly in mac-

aques exposed to prenatal ultrasound, the authors

reported reduced levels of physical activity as compared

with control monkeys, with all effects normalizing by

age 5–6 months [Tarantal & Hendrickx, 1989].

McClintic et al. [2013] found that that 30 minutes of pre-

natal ultrasound resulted in juvenile mice that were less

social and more hyperactive in social situations than

sham exposed mice. Finally, Li et al. [2015] observed a

reduction in spatial learning and memory abilities of rats

after their exposure to prenatal diagnostic ultrasound. It

is important to mention that there exist studies showing

negative results after prenatal ultrasound exposure. As an

example, Jensh et al. [1995] found that rats exposed to 35

minutes of ultrasound in utero did not exhibit any

changes in memory and anxiety tests.

Diagnostic Ultrasound in Prenatal Clinical Practice

Each decade since the introduction of ultrasound to

obstetric medicine, its popularity and use has escalated.

In modern obstetrics, it is standard clinical practice to

utilize ultrasound to diagnose, date, and monitor the

growth of the fetus. From an obstetric perspective, first

trimester ultrasound leads to improved prganancy dat-

ing, reducing antenatal testing and labor inductions

[Caughey, Nicholson, & Washington, 2008; Abramowicz,

2013]. Socio-emotional concerns may also guide ultra-

sound requests – to provide reassurance of fetal health,

to increase paternal and familial involvement, and to

provide pictorial momentos [Gudex, Nielsen, & Madsen,

2006]. While rates of use vary based on insurance type

and provider [O’Keeffe & Abuhamad, 2013], there has

been a significant increase in the utilization of obstetric

ultrasound in the last 5 years, including increases in

multiple general ultrasounds in low-risk pregnancies and

targeted ultrasound examinations intended for higher

risk concerns [You et al., 2010].

While generally considered safe, recent FDA state-

ments regarding the use of prenatal diagnostic ultra-

sound as well as on-going attention in the scientific

literature [Abramowicz, 2013] continue to stress its con-

servative use for medical purposes. Ultrasound consists

of high frequency sound, which when absorbed may

lead to thermal (hyperthermia) and non-thermal (cavi-

tation, radiation pressure) effects within tissue [Mourad,

2012]. Energy absorbtion depends on tissue type, expo-

sure, and ultrasound mode, such as for imaging or

blood-flow monitoring. The early FDA restriction on

intensity alone was replaced during the 1990s with a

nearly eight-fold increase in intensity along with impo-

sition of maximum values of a thermal index (TI) to

measure the tendency of ultrasound to warm tissue and

a mechanical index (MI) related to the likelihood of

ultrasound to produce cavitation. This is particularly

concerning as ultrasound technicians and maternal

fetal medicine fellows demonstrated poor knowledge

regarding safety levels [Meizner 2012; Houston,

Allsworth, & Macones, 2011; Sheiner, Shoham-Vardi, &

Abramowicz, 2007]. For example, although less estab-

lished in humans than in animal models [reviewed in

Edwards, 2006], the developing central nervous system,

particularly during the 1st trimester may be particularly

susceptible to hyperthermic injury [Edwards, 2006],

with maternal hyperthermia associated with increased

neural tube defects [Milunsky et al., 1992; Moretti

et al., 2005].

Effects on general child outcomes. In humans, a

number of non-randomized and randomized studies

have investigated ultrasound exposure and found no

signifcant (or consistent) relation to congenital anoma-

lies, birth size, cancer/tumors, heart disease, general

neonatal and child oucomes, and specific psychopathol-

ogy such as schizophrenia and psychosis [reviewed in

Houston et al., 2009]. A few notable differences were

found in case-control designs suggesting increased pres-

ence of speech delay [Campbell, Elford, & Brant, 1993]

but not in randomized trials [Kieler et al., 1998a,b;

Newnham et al., 2004; Salvesen et al., 1994]. There

have been several reports of increased left handendess

in males in relation to fetal ultrasound exposure [Kieler

et al., 1998a,b, 2002; Salvesen et al., 1993].

ASD incidence and ultrasound exposure. The

relation between ultrasound as a primary etiological fac-

tor and ASD diagnostic outcome has not been sup-

ported [Grether et al., 2010; Stoch et al,. 2012]. Stoch

et al. [2012] did not find a relation between child ASD
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diagnosis and randomized prenatal exposure to a single

second trimester ultrasound versus multiple second and

third trimester scans (at 18, 24, 34, 38 weeks); nor to

levels of adult autism traits in a primarily

“neurotypical” population. Grether et al. [2010] ana-

lyzed antenatal ultrasound exposure (primarily 2nd tri-

mester exposure) as a risk factor for ASD using medical

data from Kaiser Permanente of Northern California

Health Care System; there was no difference in number

of exposures during the entire gestation or by trimester

in 393 controls and 362 autism cases. Critical to the tri-

ple hit hypothesis and not addressed by previous

reports, ultrasound as an exogenous stressor would

have the most significant impact during the 1st trimes-

ter and only in those with specific genetic risk factors.

Current Project

Given the increase in ultrasound intensity and use,

extant animal studies, and lack of human data address-

ing ASD characteristics and ultrasound exposure during

the 1st trimester of pregnancy, we sought here to

explore a variant of Casanova’s triple hit hypothesis,

assessing factors that may influence the severity of ASD

symptoms rather than ASD incidence. Specifically, we

sought to study how (1) the presence of ultrasound (2)

within a period of high neural vulnerability (1st trimes-

ter) in a group (3) with underlying vulnerabilities

(males versus females; presence or absence of CNVs)

may relate to the severity of ASD symptoms. We used

linear regression models with autism severity outcomes

(including verbal and non-verbal IQ, adaptive skills,

social ability, and repetitive behaviors) to test if the

presence of an ultrasound, maleness, and CNVs are sig-

nificant risk factors. In this analysis, we calculated pro-

pensity scores to assess the predicted probability of a

first trimester ultrasound in order to adjust for

differences in baseline factors that influence prenatal

care and subsequent ultrasound exposure. We predicted

that first trimester ultrasound would be a statistically

significant risk factor for increased autism severity in

children made genetically vulnerable by CNVs, even

after adjusting for confounding factors because of dif-

ferences in likelihood of ultrasound.

Methods
Participants

This study uses data from the SSC (Simon’s Simplex

Collection) funded by the Simons Foundation Autism

Research Initiative [Fischbach & Lord, 2010]. Briefly,

2,644 families were successfully recruited from 12 sites

across the USA and included families with one child

with ASD aged 4 to 18 years (a “proband”), one unaf-

fected full sibling (>80% of cases), and the biological

mother and father. Inclusion/exclusion criteria can be

found at http://sfari.org. Approval was obtained at each

local human subject’s institutional review board and

parents and participants completed informed consent.

All probands were assessed on the Autism Diagnostic

Interview-Revised (ADI-R) [Lord, Rutter, & Le Couteur,

1994], the Autism Diagnostic Observation Schedule

(ADOS) [Lord et al., 2000], and DSM-IV [American Psy-

chiatric Association, 2000] as administered by experi-

enced clinicians. A description of the instruments can

be found at https://sfari.org/resources/simons-simplex-

collection/ssc-instruments.

Variables

Proband descriptive characteristics include measures of

cognitive ability (non-verbal and verbal subdomains of

the Differential Ability Scale [DAS], Elliott, 2007], social

ability (ADI-R Social Domain score [ADI-R SD], Lord

Table 1. Proband Age, Mean Standard Test Scores (SD), and Regression Results for All Children with ASD with Known
Absence or Presence of Identified CNV, and Absence (‘No U1’) or Presence (‘U1’) of First Trimester Ultrasound

Total (N 5 1749)

ASD

Beta 95%CI P-valueNo U1 U1

N 668 1081

Age (mos) 117.7 (44.2) 101.6 (40.3)

Adaptive and cognitive

VABS-II 72.6 (11.5) 73.6 (12.1) 20.73 21.87 to 0.43 0.22

Verbal IQ 77.5 (31.4) 78.5 (30.4) 0.13 23.02 to 3.28 0.94

Nonverbal IQ 85.3 (26.3) 84.9 (26.1) 21.28 23.94 to 1.38 0.35

Social affective behaviors

ADOS SA 11.3 (4.0) 11.0 (4.0) 20.45 20.86 to 20.04 0.03
ADI-R SD 20.4 (5.6) 20.1 (5.8) 0.28 20.29 to 0.85 0.33

SRS 79.9 (9.8) 79.5 (10.5) 0.53 20.50 to 1.56 0.31

Repetitive behaviors

ADOS REP 3.9 (2.1) 4.0 (2.0) 20.02 20.23 to 0.18 0.84

ADI-R RRB 6.4 (2.5) 6.6 (2.5) 0.34 0.09 to 0.60 0.008
RBS-R 26.7 (17.0) 27.7 (17.0) 1.36 20.38 to 3.10 0.13
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et al. 1994; ADOS Social Affective Domain score [ADOS

SA], Gotham, Risi, Pickles, & Lord, 2007; Social Respon-

siveness Scale [SRS], Constantino & Gruber, 2003], and

repetitive behaviors (ADI-R Restrictive and Repetitive

Behaviors score [ADI RRB], Lord et al., 1994; ADOS

Repetitive Domain score [ADOS REP], Gotham et al.

2007; Repetitive Behavior Scale-Revised [RBS-R],

Bodfish, Symons, & Lewis, 1999; Vineland Adaptive

Behavior Scale, Second Edition [VABS-II], Sparrow, 2011].

Observed child behaviors are derived from the DAS and

the ADOS. Parent report of behaviors is derived from the

ADI-R, VABS-II, SRS, and RBS. These tests were not

applied to the family members of probands.

Information regarding pregnancy and general medical

history for all probands was collected by a clinician in a

semi-structured interview. Specific to this study, we

assessed ultrasound exposure as whether or not the bio-

logical mother received an ultrasound during a time of

critical neurodevelopment of the fetus: the first

trimester.

Genetic data included analysis of the presence or

absence of ASD-associated CNVs of a subset (1749) of

the SCC children, made available via Girirajan et al.

[2013]. In order to set the context for the analysis of

that subpopulation that is at the heart of this paper, we

analyzed (SPSS Statistical Software, IBM Corporation,

Armonk, NY) our data for phenotype differences related

to the known presence (n 5 133) or absence (n 5 1616)

of a CNV [Mazina et al., 2015] and for differences relat-

ed to duplications (n 5 56) or deletions (n 5 77) [Girirajan

et al., 2013]. Children with ASD and an identified CNV

compared with those without a CNV had mothers and

fathers of similar age (F(1,147) <0.56, P >0.46), no differ-

ences in maternal and paternal education (x2(3)<4.2, P

>.33) or family income (x2(3)50.82, P 5 0.66), no differ-

ences in Verbal IQ (F(1,1747) 5 1.55, P 5 0. 21) or

Vineland Adaptive Behavior Composite

(F(1,1747) 5 1.78, P 5 0.18), nor did they differ on any of

the other autism symptom variables (Fs <2.36, P >0.13).

Relative to ASD children without identified CNVs, ASD

children with identified CNVs did trend towards a lower

Nonverbal IQ (F(1,1747) 5 3.73, p 5 .054). Also, with

regard to children with a duplication compared with a

deletion, they did not differ in any of the phenotypic var-

iables reported above (Fs(1,131)<1.34, P >0.25). This last

result differs from those of Girirajan et al who found

more impairment in the restricted and repetitive behav-

ior domain in children with duplications compared to

deletions.

Therefore, from the total of 2,644 SSC probands with

ASD, the final sample for our analysis consisted of 1749

children (66.1% of the total data set) with ASD for

whom we had information on the presence or absence

of CNVs and the presence or absence of a first trimester

ultrasound. Proband characteristics are in Supporting

Information Table 1; a descriptive list of CNVs by sex

and ultrasound exposure is presented in Supporting

Information Table 2. Rates of ultrasound use in the first

trimester did not differ between individuals with spe-

cific CNV types (duplications vs deletions or inherited

maternal/paternal or de novo mutations) as presented

in Supporting Information Table 3.

Statistical Analysis

We applied a multiple linear regression model (Stata SE,

version 12) for analysis of autism severity with first tri-

mester ultrasound as a dichotomous primary predictor,

and the propensity score as an additional covariate,

along with child sex and age in months at assessment.

Given that we hypothesize that child sex and CNV sta-

tus may be effective modifiers in the relationship

between first trimester ultrasound and ASD severity, we

Table II. Proband Age, Mean Standard Test Scores (SD), and Regression Results for All Children with ASD, with an Identified
CNV, and Absence (‘No U1’) or Presence (‘U1’) of First Trimester Ultrasound

ASD with CNV (N 5 133)

ASD 1 CNV

Beta 95%CI P-valueNo U1 U1

N 49 84

Age (mos) 118.5 (42.5) 111.4 (41.4)

Adaptive and cognitive

VABS-II 73.5 (10.1) 71.0 (13.4) 24.11 28.56 to 0.35 0.07

Verbal IQ 81.8 (32.6) 73.6 (30.5) 29.39 221.37 to 2.59 0.12

Nonverbal IQ 87.7 (27.6) 76.8 (25.8) 211.16 221.08 to 21.24 0.03
Social affective behaviors

ADOS SA 10.7 (3.8) 11.4 (3.9) 0.90 20.59 to 2.38 0.23

ADI-R SD 20.9 (5.3) 20.9 (5.9) 0.42 21.73 to 2.56 0.70

SRS 77.9 (12.3) 78.6 (11.0) 2.24 22.13 to 6.62 0.31

Repetitive behaviors

ADOS REP 3.5 (2.1) 4.2 (1.9) 0.69 20.04 to 1.43 0.06

ADI-R RRB 6.5 (2.6) 7.0 (2.8) 0.71 20.36 to 1.77 0.19

RBS-R 23.2 (14.1) 26.6 (15.2) 4.01 21.72 to 9.74 0.17
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included sub-analyses limited to: (1) all ASD children

with identified CNVs and (3) ASD males with identified

CNVs, and we formally tested for effect modification

using interaction terms and the Wald statistic.

We performed covariate adjustment using propensity

scores, as described by Austin [2011a,b] and as employed

by other researchers [Arabi et al., 2013; Goldin, Sawin,

Garrison & Christakis, 2007; Gagliardi, Bellu, Zanini,

Dammann, 2009; Lund et al., 2013 but see Brooks &

Ohsfeldt, 2013; Weitzen et al., 2004]. Propensity scores

were developed to adjust all regression analysis for poten-

tial confounding because of the likelihood of a mother

receiving a first trimester ultrasound. Specifically, mater-

nal and pregnancy characteristics may influence the like-

lihood of receiving a first trimester ultrasound [Caughey

et al., 2008] and may therefore influence child outcomes.

Variables included in the development of the propensity

scores were limited to those that would have been

known during the first trimester such as demographic

characteristics (e.g., race, income), maternal characteris-

tics (e.g., age, education), prior pregnancy history (e.g.,

use of fertility treatments, pregnancy loss, preterm birth),

and current pregnancy information (e.g., weight, weight

gain, timing of prenatal care initiation, and complica-

tions or procedures occurring during the first trimester)[-

Baxter et al. 2007; Ben Itzchak, Lahat, & Zachor, 2011;

Zachor & Ben Itzchak, 2011].

Results

For all 1749 SSC children with ASD (Table II), exposure

to 1st trimester ultrasound compared with those with

no exposure was related to lower observed social affec-

tive symptoms (ADOS SA), but greater parent reported

restrictive and repetitive behaviors (ADI-R RRB).

For all 133 SSC children with ASD and identified

CNVs (Table II), exposure to 1st trimester ultrasound

compared to those with no exposure was related to sta-

tistically significantly lower Nonverbal IQ. In addition,

there were trends towards more impaired adaptive

behaviors (VABS-II) via parent report, and trends toward

increased observed repetitive behaviors (ADOS REP).

For all 111 SSC male children with ASD and identified

CNVs (Table III), exposure to 1st trimester ultrasound

compared to those with no exposure was related to statis-

tically significantly lower nonverbal IQ and significantly

increased observed repetitive behaviors (ADOS REP). In

addition, there were trends in reduced verbal IQ and in

more parent reported repetitive symptoms (RBS-R).

Wald tests for interaction between ultrasound and

gender were statistically significant for parent report of

adaptive behaviors (VAB-II: beta 24.26, 95% CI 26.71

to 21.80, P 5 .001), social ability (SRS: beta 5.3, 95% CI

3.11 to 7.50, P< .001). Wald tests for the interaction

between ultrasound and CNVs within males were statis-

tically significant for Verbal IQ (beta 213.3 95% CI

225.8 to 20.78, P 5 0.04) and Nonverbal IQ (beta

212.0, 95% CI 221.5 to 22.5, P 5 0.01).

The small sample size of females with identified CNVs

precluded us from applying our model to this cohort.

Information on measurement means and standard devia-

tions for males or females, with and without identified

CNVs, and with and without 1st trimester ultrasound is

provided in Supporting Information Table 4.

Discussion

Supporting the hypothesis that ultrasound may act as

an exogenous stressor related to ASD severity, for male

children with ASD and an identified CNV, exposure to

Table III. Proband Age, Mean Standard Test Scores (SD), and Regression Results for Male Children with ASD, with an Identi-
fied CNV, and Absence (‘No U1’) or Presence (‘U1’) of First Trimester Ultrasound

Males with CNV (N 5 111)

Male 1 CNV

Beta 95%CI P-valueNo U1 U1

N 38 73

Age (mos) 115.8 (39.6) 113.7 (42.2)

Adaptive and cognitive

VABS-II 74.7 (10.3) 71.5 (13.0) 24.15 29.04 to 0.75 0.10

Verbal IQ 86.5 (32.5) 75.1 (29.7) 211.29 224.32 to 1.73 0.09

Nonverbal IQ 92.6 (26.8) 78.6 (24.4) 212.43 223.11 to 21.76 0.02
Social affective behaviors

ADOS SA 10.6 (3.6) 11.5 (3.6) 1.14 20.39 to 2.67 0.14

ADI-R SD 20.7 (5.0) 20.7 (6.0) 20.052 22.39 to 2.89 0.97

SRS 77.1 (11.8) 78.0 (11.2) 1.87 22.94 to 6.68 0.44

Repetitive behaviors

ADOS REP 3.4 (2.2) 4.2 (1.8) 0.90 0.12 to 1.69 0.02
ADI-R RRB 6.3 (2.6) 7.1 (2.8) 0.92 20.25 to 2.09 0.12

RBS-R 22.0 (12.9) 26.8 (15.4) 5.47 20.73 to 11.67 0.08
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1st trimester ultrasound was associated with poorer

Nonverbal IQ and increased repetitive behaviors. In

addition, we found that ultrasound may also contribute

to variability in outcome in children with ASD in a

double hit model. Specifically, exposure to 1st trimester

ultrasound in children with ASD, regardless of the

known presence or absence of an identified CNV, was

associated with less observed social affective severity,

but increased parental reports of repetitive behaviors.

Triple Hit Hypothesis

We could not test the original triple hit hypothesis of

Casanova, which speaks to the incidence of ASD,

because we did not have the requisite medical informa-

tion for the siblings of our probands.

In support of our modified triple hit hypothesis, how-

ever, males with ASD and an identified CNV with first

trimester ultrasound exposure had lower Nonverbal IQ

and increased repetitive behavior, with trends toward

lower Verbal IQ, all relative to males with an identified

CNV but not exposed to first trimester ultrasound. Giv-

en that lowered IQ and greater repetitive behaviors are

found in a number of other neurodevelopmental disor-

ders [Lewis & Kim, 2009] and in children with genetic

vulnerabilities [Girirajan et al., 2011, 2012; Pinto et al.,

2014], the specificity to ASD is unclear. Expanding con-

sideration of our modified triple hit hypothesis to other

neurodevelopmental disorders is therefore warranted.

As females with ASD with available data for this anal-

yses made up only 12.6% of the sample, and with

females with an identified CNV representing only 1.2%

of cases, addressing the impact of first trimester ultra-

sound on girls was not possible. Relative to the entire

sample, girls in the SSC sample were found to have

higher levels of social and communication symptoms

as well as lower verbal and non-verbal IQ [Frazier et al.,

2014], and more likely to have CNVs in deleterious

regions related to neurodevelopmental disorders

[Jacquemont et al., 2014; Robinson et al., 2013; Werling

& Geschwind, 2013]. The extent to which female sex

interacts with environmental hits remains to be tested.

All Children with ASD, Identified Absence/Presence of
CNVs, and 1st Trimester Ultrasound

All children with ASD known absence or presence of

CNVs and exposure to 1st trimester ultrasound had

increased repetitive behaviors, suggesting that an exoge-

nous stressor (here, diagnostic ultrasound), delivered

during a time of critical neurodevelopment can increase

the severity of at least one class of ASD symptom, con-

sistent with a ‘double hit’ hypothesis. This result holds

true when considering gender and the presence of

CNVs, discussed below.

In contrast to our hypothesis, however, children with

ASD, known absence or presence of identified CNVs

and exposure to 1st trimester ultrasound had a small

but statistically significant reduction in social affective

symptoms. The presence of a 1st trimester ultrasound

may also be related to numerous maternal variables

that influence child outcomes. Specifically, mothers in

our sample who received 1st trimester ultrasounds were

more likely to be older at time of conception, which

has been shown to increase risk for ASD [Sandin et al.,

2013], and more likely to have a higher household

income, found to be related to increased diagnostic

rates but also access to resources [Croen, Grether, &

Selvin, 2002; Johnson & Myers, 2007; Thomas et al.,

2012a,b]. In non-clinical samples, older maternal age,

higher parental education, and higher income are

strongly associated with better academic achievement,

cognitive ability, and social competence [Edwards &

Roff, 2010; Pati et al., 2011]. Similarly, utilization of

prenatal care is more likely in mothers with higher

income, more educated, or live in urban settings [Brave-

man et al., 2003; Chiavarini, Lanari, Minelli, & Salmasi,

2014; Stativa et al., 2014]. Pre-conception and pregnan-

cy health is related to better child outcomes [Liu et al.,

2015], with some disagreement [Noonan et al., 2012;

for review – Alexander, 2001]. Thus, it is possible that

despite our use of a propensity score to correct for like-

lihood of 1st trimester ultrasound, there remain residual

confounding factors. Disentangling the effect of ultra-

sound per se versus ultrasound as a proxy for other vari-

ables related to outcomes will be critical in future

studies.

Neural Vulnerability and External Hits

In this report, we focused on the 1st trimester as a peri-

od of neural vulnerability as supported by other studies

of environmental factors and their relevance to autism

[Dufour-Rainfray et al., 2011]. For example, the chemi-

cals valproate [Arndt, Stodgell, & Rodier, 2005], thalido-

mide [Miller et al., 2005], and misoprostol [Bandim

et al., 2003] cause up or down regulation of certain

genes involved in neural proliferation and migration

[Dufour-Rainfray et al., 2011]. Maternal infection and

fever generally [Atladottir et al., 2010; Lee et al., 2014;

Zerbo et al., 2013] and specifically during the first tri-

mester [Atladottir et al., 2010] have also been associated

with autism. Supporting a gene by environment inter-

action, Schwartzer et al. [2013] found maternal immune

activation was strain dependent in mice, and male mice

born to maternal immune activated mothers had more

disrupted social behaviors [Malkova et al., 2012]. Simi-

larly, Mazina et al. [2015] found that maternal infection

during pregnancy in children with CNVs resulted in

greater severity of autism symptoms.
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Mechanism

The rodent studies of Li et al. [2015] suggest one poten-

tial mechanism by which ultrasound may act. They

observed reduced expression of mRNA and proteins

associated with the NDMA receptor pathway and BDNF

in the hippocampus of rats exposed to three 20-minute

applications of ultrasound. Interestingly, a lower dose

exposure (4 minutes) resulted in increased expression in

NMDA (GluNR1 and GluNR2B subunits) and BDNF.

This interaction with dose and expression suggests an

overall sensitivity of these systems to ultrasound. The

NMDA system has a broad impact on variability in

social and cognitive functioning [Burnashev &

Szepetowski, 2015; Lee, Choi, & Kim, 2015]. Alterations

of NMDA receptors disrupt response inhibition and

social interaction in mice [Chung et al., 2015; Finlay

et al., 2015]. GRIN1 encodes for the NMDA GluN1 sub-

unit and is related to decreased social interaction in

knockout mice [Gandal, Anderson, & Billingslea, 2012;

Saunders et al., 2013]; GRIN2B encodes for the GluN2B

subunit, which has been found in rare mutations in

autism [O’Roak et al., 2011; Myers et al., 2011; Talkow-

ski et al., 2012; Yoo et al., 2012]. This complex pathway

is susceptible to disruption via both increases and

decreases in protein expression [Zito et al., 2009]. Addi-

tional animal studies are needed to elucidate the vul-

nerability of the NDMA system to genetic and

environmental disruption and their role in social and

non-social learning and memory.

BDNF is a neurotrophic factor related to neuronal

maturation and synaptic synthesis. BDNF is elevated in

children with ASD [Bryn et al., 2015; Kasarpalkar et al.,

2014; Zhang et al., 2014] and genes associated with

neurodevelopmental disorders impact BDNF expression

[Briz et al., 2013; Koh, Lim, Byun,& Yoo, 2014;

Louhivuori et al., 2011; Ouyang et al., 2013]. Prenatal

exposure to other environmental toxins impact BDNF:

Bisphenol A altered DNA methylation in mice

[Kundakovic et al., 2014] and valproate increased BDNF

mRNA and protein levels in mice and rats [Almeida,

Roby, & Krueger, 2014]. A relation between BDNF levels

(both hyper and hypo) and neural connectivity in ASD

has been proposed [Koh et al., 2014].

Limitations

Ultrasound exposure was assessed via parent report

with a 4 to 18 year old sample. Thus, recall error may

have influenced our results in regard to reporting on

the presence, absence, and the timing of ultrasounds,

although Olson et al. [1997] suggest that memory for

pregnancy related medical procedures is relatively high.

While presence/absence of an ultrasound is more likely

to be reported correctly, reporting an “early” ultrasound

as first versus second trimester may have induced

random error. Specifically, the first trimester spans

weeks 1 through 12 of pregnancy, with first trimester

ultrasound recommended between “10 to 13” weeks

[Salomon et al., 2012]. However, if a systematic recall

bias existed, it is unlikely this would differentially

impact reporting by child genotype, as genotype was

not known at time of ultrasound or at assessment.

Future research based on medical records that provide

exact dates and nature of ultrasound exams is necessary

to determine the influence of ultrasound timing and

therefore identify a specific window of vulnerability.

Lastly, there is some controversy regarding the use of

propensity scores to adjust for confounding in observa-

tional studies [Brooks & Ohsfeldt, 2013; Weitzen et al.,

2004]. Although it would have been theoretically possi-

ble to include all of the covariates used in creation of

the propensity score as individual covariates in the final

regression model, this would have resulted in even

smaller cell sizes throughout the regression matrices for

our models, especially given the relative rarity of CNVs

in the sample. The small cell size problem is a well-

documented rationale for using propensity scores to

address confounding in observational studies [Braitman

& Rosenbaum, 2002; Cepeda, Boston, Farrar, & Strom,

2003; Ali, Groenwold, & Lungel, 2014; Glynn, Schnee-

weiss & Sutmer, 2006] as use of propensity scores adds

only a single dimension to the regression model. Of

note, at least one study found that outliers among the

propensity score distribution may considerably skew

effect estimates [Kurth et al., 2006]. However, post hoc

testing found that this was not the case in our analyses.

Specifically, sensitivity analyses excluding all subjects

whose predicted probability of first trimester ultrasound

was less than 20% resulted in no notable differences in

regression results. Moreover, the effect size associated

with exposure to first trimester ultrasound changed by

less than 10% in all cases such that no model predic-

tions shifted between statistically significant and non-

significant. We also note that propensity score adjust-

ment does not help reduce bias due to unmeasured

confounders [Brooks & Ohsfeldt, 2013; Weitzen et al.

2004]. This, of course, is an inherent limitation of

observational studies, one that would remain true if we

had chosen regression models that only adjusted direct-

ly for measured covariates without the use of propensi-

ty scores.

Conclusion

In a national sample of children with ASD that includ-

ed detailed, quantifiable post-natal childhood outcomes

and genetic information, we found that the combina-

tion of first trimester ultrasound and presence of CNVs

in male children with ASD correlated with poorer
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cognitive outcomes and increased repetitive behavior.

Moreover, across gender and independent of the pres-

ence of identified CNVs, first trimester ultrasound corre-

lated with increased repetitive behaviors. Better

understanding of the range and types of environmental

stressors that may interact with genetic vulnerabilities

is needed in order to fully understand contributions to

heterogeneity in ASD functioning. If we can better

identify the neural development periods most vulnera-

ble to environmental insults, particularly in regard to

exposures that can be limited, modified, or regulated by

changing practice such as non-medical use of diagnos-

tic ultrasound imaging, it may be possible to quickly

reduce the severity of ASD in future children. Further

replication both in larger epidemiological populations

and in animal models that can address mechanisms are

needed.
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