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Abstract

The induction of hypometabolism in cells and organs to reduce is-
chemia damage holds enormous clinical promise in diverse fields, in-
cluding treatment of stroke and heart attack. However, the thought
that humans can undergo a severe hypometabolic state analogous
to hibernation borders on science fiction. Some mammals can enter
a severe hypothermic state during hibernation in which metabolic
activity is extremely low, and yet full viability is restored when the
animal arouses from such a state. To date, the underlying mecha-
nism for hibernation or similar behaviors remains an enigma. The
beneficial effect of hypothermia, which reduces cellular metabolic
demands, has many well-established clinical applications. However,
severe hypothermia induced by clinical drugs is extremely difficult
and is associated with dramatically increased rates of cardiac arrest
for nonhibernators. The recent discovery of a biomolecule, 5'-AMP,
which allows nonhibernating mammals to rapidly and safely enter
severe hypothermia could remove this impediment and enable the
wide adoption of hypothermia as a routine clinical tool.
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INTRODUCTION

The word hibernation is often associated with
bears taking a long winter rest. However,
some investigators would argue that bears do
not really hibernate but rather enter a state
of torpor. In mammals, the term torpor is of-
ten used when body temperature drops below
31°C. Hibernation is often described as deep
torpor. Although both words are widely used
in the scientific literature to reflect different
degrees of a hypometabolic state, their physi-
ological definitions are not clear. In addition,
some reptiles and amphibians can undergo
a hypometabolic process known as estivation
to survive challenging environmental condi-
tions. As articulated by Heldmaier et al. (1),
“The physiological properties of daily torpor,
hibernation and estivation are very similar.
The classification of hibernation, daily torpor
or estivation simply represents gradual differ-
ence in the timing, the duration and the ampli-
tude of physiological inhibition.” In essence,
these are hypometabolic behaviors used by an-
imals for energy conservation. On the basis
of oxygen consumption measurements, it was
demonstrated that the biochemical and phys-
iological events that inhibit endogenous ther-
moregulation occur rapidly prior to the onset
of hypothermia (1). In contrast, hypothermia
is driven by heat loss from the body to the
environment. This process depends on sev-
eral parameters including surface/volume ra-
tio, the amount of fur and fat insulation, and
the temperature gradient between the body
and the environment. The molecular and bio-
chemical mechanisms underlying the natu-
ral shutdown of metabolic activities remain
largely unknown.

The goal of this article is not to reca-
pitulate the physiology of hypometabolism
that occurs naturally, as there are excellent
reviews in the literature (1). Instead, I fo-
cus on recent attempts to mimic the induc-
tion of a hypometabolic state in mammals,
which may have potential clinical applica-
tions. I also offer some hypotheses on how
hypometabolism could occur in nonhibernat-
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ing mammals. Whether chemically induced
hypometabolism has any connection with the
natural process is not critical; observations
from these studies can be drawn upon to re-
veal the underlying biochemical and molecu-
lar processes of hypometabolic behaviors.

Clinically, only mild hypothermia of 32—
34°C can be induced safely by a cocktail of
paralytic drugs and anesthesia (2, 3). Severe
hypothermia (28°C or lower) induced by such
drug cocktails results in a high cardiac ar-
rest rate in nonhibernating mammals (4). To
date, three classes of molecules will result
in reversible severe hypothermia when ad-
ministered to small mammals such as mice
and hamsters. Two of these are metabolic in-
hibitors: 2-deoxyglucose and hydrogen sulfide
(H2S). The third, recently identified in my
laboratory, is the end metabolite 5'-adenosine
monophosphate (5'-AMP). It is the first nat-
ural biomolecule to have this effect (5).

2-DEOXYGLUCOSE AND
HYDROGEN SULFIDE

Hamsters are known to undergo daily tor-
por to conserve energy upon prolonged ex-
posure to low environmental temperature
and short photoperiod, which mimic seasonal
changes (6). This torpor behavior of ham-
sters is circadian-driven. This was demon-
strated by experiments in which ablation
of the suprachiamastic nucleus (SCN), the
central circadian structure, disrupts the an-
imal’s temporal rhythm (7). After receiving
the glycolytic inhibitor 2-deoxyglucose, ham-
sters readily undergo torpor even when kept
in long photoperiod (8). In contrast, inhibi-
tion of fatty acid metabolism by mercaptoac-
etate did not induce torpor in hamsters kept
in long photoperiod (6). These observations
implicate impediment of glucose utilization
as a key event for hypometabolism. How-
ever, the biochemical mechanism underlying
2-deoxyglucose induction of torpor remains
unclear.

Another metabolic inhibitor, H2S, was re-
cently found to enable mice to enter severe



hypothermia or suspended animation at a low
dosage of 80 ppm (9). Mice given H2S could
be cooled down to 15°C into a state of sus-
pended animation for up to six hours. Arousal
was spontaneous, and no apparent detrimen-
tal outcome was observed after recovery. It has
been thought that a core body temperature
below 20°C in nonhibernators will lead to car-
diac fibrillation (10). Our lowest recording of
core body temperature in mice during torpor
induced by fasting was about 26°C even when
the ambient environmental temperature was
maintained at 8°C (J. Zhang & C.C. Lee, un-
published observations). Thus, the ability to
drop a nonhibernating mammal’s core body
temperature to 15°C is a major step forward.
It suggests that nonhibernators are fully capa-
ble of withstanding extreme hypometabolism.

As with 2-deoxyglucose, the mechanism
underlying H2S induction of severe hy-
pothermia remains unclear. H2S is a specific
and reversible inhibitor of cytochrome ¢ ox-
idase, a key component of the mitochondria
respiratory complex IV (9). Inhibitors of the
mitochondria respiratory chain are toxic to
mammals because they disrupt ATP produc-
tion by oxidative phosphorylation. Similarly,
2-deoxyglucose inhibits glycolysis, which is
another biochemical process involved in the
generation of ATP and NADH from glucose
outside of the mitochondria. Thus, the actions
of both H2S and 2-deoxyglucose affect the
cellular production of ATP. In turn, the lower
ATP level would downregulate biochemical
reactions necessary for thermal regulation de-
fenses. It has been observed that during hiber-
nation, erythrocytes and organs have signifi-
cantly lower ATP levels (11, 12). In particular,
the ATP level of erythrocytes from a hiber-
nating animal is ~50% of the level observed
in a euthermic state (11). Such a large de-
crease in ATP level in the erythrocyte would
significantly compromise its function in regu-
lating oxygen/carbon dioxide molecules nec-
essary for maintaining high metabolic activity
of the major organs. Under such conditions, it
is highly possible that the metabolic rate of or-
gans will slow, and heat loss from the body to

the environment will not be adequately con-
trolled. This reasoning is consistent with the
hypothesis that decreased ATP production or
utilization is involved in hibernating behav-
iors (1, 12). How these biochemical observa-
tions can be reconciled with the widely held
dogma that the preoptic area of the hypotha-
lamus controls thermal regulatory response in
mammals is not clear (13).

SEARCH FOR AN ENDOGENOUS
MOLECULE FOR
HYPOMETABOLISM

For hibernators to achieve a severe hypother-
mic state, the basic principles of metabolic
biochemistry must be preserved to ensure en-
ergy homeostasis (12). This raises the possi-
bility that such biochemical processes may be
retained in all mammals. Mammalian organs
can be maintained in a hypothermic but highly
hypoxic state for many hours (14), as we see
when donor organs are transported in coolers
for organ transplantation. Upon transplan-
tation, the restoration of blood flow and its
rewarming revive the basic functions of the
donor organ. In addition, examples from acci-
dental hypothermia have suggested thatunder
certain conditions, humans can recover fully
from prolonged periods in severe hypother-
mia. Critically, these observations suggest that
nonhibernators’ organs are inherently capa-
ble of withstanding extreme hypoxic stress if
their metabolic demands are reduced. Thus,
a project was initiated to probe the possibil-
ity of identifying genes from nonhibernating
mammals thatare activated in an environment
encountered during hibernation.

It is widely recognized that mammals en-
ter hibernation in an environment of constant
darkness (1). Using liver mRNA, gene expres-
sion in mice exposed to regular 12:12 h cycles
of light:dark (LD) was compared to gene ex-
pression in mice kept in constant darkness or
dark:dark (DD). From microarray analysis, a
gene encoding procolipase was identified to
be highly expressed in the liver of the DD
mouse. Previous studies have demonstrated
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Activation of procolipase expression by a constant-darkness environment.
The Northern blot analysis shows a 4-h time course of the liver mRNA
species of Gapdh and procolipase obtained from mice keptin 12:12 h
light-dark (LD) cycles or in dark-dark (DD) cycles, i.e., constant
darkness. Gapdh is used as an internal control. The genes were identified
by radiolabeled cDNA’s probe for Gapdh and procolipase, respectively.
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that procolipase gene expression is highly
specific to the pancreas and gastrointestinal
tract, consistent with its primary role of break-
ing down dietary fat into fatty acids (15). The
exceptions are hibernating ground squirrels,
in which procolipase was activated in other
peripheral organs (16). Confirming the mi-
croarray findings, an independent method of
gene detection based on Northern blot anal-
ysis demonstrated that the procolipase gene
was indeed activated in DD mice but not in
LD mice (Figure 1). Tissue analysis revealed
procolipase was activated in a circadian man-
ner in the majority of the peripheral organs
in DD mice. Exposure of these mice to white
light resulted in the shutdown of procolipase
expression in the various organs (5). Together,
these findings suggested that the endogenous
signaling mechanism is mediated by a circu-
latory factor.

IDENTIFICATION OF 5'-AMP
AS AN ACTIVATOR OF
PROCOLIPASE EXPRESSION

The above observations indicate that this
endogenous regulator must be a circulatory
molecule that displays a circadian profile in
its activity. It could behave either as an acti-
vator or a repressor. If it is an activator, then
injection into LD mice will induce procoli-
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pase expression in the major organs. If it acts
as a repressor, then injection into DD mice
will abolish procolipase expression in the pe-
ripheral organs.

Through a series of careful experiments,
our search for this circulatory molecule was
narrowed to the soluble aqueous fractions of
blood extract. These studies led to the iden-
tification of a circulatory nucleotide display-
ing clear circadian oscillation that matched
the hypothesized profile described above (5).
Characterization of this molecule based on
its spectral absorption, its migration distance
on high-performance liquid chromatogra-
phy (HPLC) relative to known chemical nu-
cleotide standards, and enzymatic analysis
indicated the molecule was adenosine 5'-
monophosphate (5'-AMP). To confirm this,
synthetic 5-AMP was injected into LD mice;
procolipase expression was detected by re-
verse transcriptase polymerase chain reaction
(RT-PCR) in all tissues sampled with the ex-
ception of the brain (Figure 24). These find-
ings demonstrate that the level of circulatory
5-AMP was involved in regulating procoli-
pase expression. However, the induction of
procolipase by 5-AMP was not immediate.
Its prolonged time course suggests that it was
an indirect effect. Unexpectedly, mice that re-
ceived 5'-AMP were severely hypothermic,
with core body temperatures as low as 25°C
when kept in ambient room temperatures of
about 23-24°C (Figure 2b). The severe hy-
pothermic period was transient; animals reen-
tered a thermogenic period and core body
temperature was restored several hours later.
Further monitoring of these animals over
several months revealed no apparent deficit.
The impact of 5'-AMP as reflected internally
by the heart rate indicated a very rapid de-
cline in metabolic activity. The heart rate fell
from ~600 beat/min (normal for a mouse) to
~200 beat/min within 5 min after 5'-AMP was
given (Z. Tao & C.C. Lee, unpublished obser-
vations). As core body temperature dropped
from 37°C to 25°C, there was a direct correla-
tion between this hypometabolic state and the
reduced heart and respiration rates. Similarly,



as the animal aroused from the hypometabolic
state, the core body temperature gradually
rose toward euthermic state (~37°C), along
with increasing heart and respiration rates.
To determine whether 5'-AMP plays a sim-
ilar role in natural torpor, DD mice were
fasted to induce natural torpor. Mice in
fasting-induced torpor had approximately a
two- to three-fold higher level of 5'-AMP in
the blood than mice that did not enter torpor
(5). The kinetics of natural torpor is slower
than that induced by synthetic 5'-AMP; this
can be accounted for by the slower buildup of
natural 5'-AMP generated by fasting and the
physical barriers that regulate heat loss from
the body to the environment. It appears that
5’-AMP must inhibit or retard thermoregula-
tion, as hypothermia is a result of undefended
heat loss from the body to the environment.
How low the core body temperature of a non-
hibernator can be reduced and yet maintain
viability is unclear. Hibernators such as arctic
ground squirrels can withstand drops in core
body temperature to several degrees below
freezing (17). However, larger mammals that
are known to hibernate prefer core body tem-
peratures that are much higher. In the win-
ter, the core body temperature of bears re-
duces to ~32°C, and the tropical Malagasy
lemur, a primate that hibernates in the dry
season of the tropics, drops its core body tem-
perature to around 25°C (1). These observa-
tions suggest that each mammalian species has
an optimum core body temperature range for
such hypometabolic activities. A temperature
compensation mechanism is used to maintain
the core body temperature necessary for bio-
chemical reactions. Thus, when an animal’s
core body temperature drops below the ideal
range for its species, its metabolic rate in-
creases rather than slows down further (1).

POSSIBLE MECHANISMS
OF 5'-AMP-INDUCED
HYPOMETABOLISM

Although ATP is the cellular energy currency,
5’-AMP occupies the unique position that de-

[2]
<
S @ 2 8 >
a) T 38 s 2 .
3 8o 55 g5 2
I mh =< a I
Procolipase - [
5'-AMP
Procolipase -+ N
Saline
Gapch-~ ————

b) 39-

e | # -
6
33‘ —a— Saline
—0— AMP 0.15 umolig W
—— AMP 1.5umolig W
—0— AVP 10 umolig W
27-

0 3 6 9 121518
Time after injection (h)

CBT (°C)
w
S

Figure 2

Induction of procolipase expression and hypothermia by synthetic 5'-AMP.
(@) RT-PCR detection of procolipase and Gapdh expression in mice kept in
12:12 h light:dark cycles given saline or 5'-AMP. (b)) Hypothermic response
of mice injected with various dosages of 5'-AMP.

termines salvage and catabolism of the ade-
nine nucleotides (Figure 3). In all cells, the
adenylates’ biochemical equilibrium, ATP +
5'-AMP <« 2ADP, which is regulated by the
enzyme adenylate kinase, controls cellular en-
ergy charge (18). By and large, the ratio of
ATP to 5-AMP determines the energy state
of the cell. Therefore, excess 5'-AMP can ei-
ther be salvaged via ADP or is catabolized.
In the catabolic pathway, 5'-AMP can be de-
graded via two pathways. The major pathway
is via inosine 5’-monophosphate (IMP) con-
trol by the enzyme AMP deaminase. IMP is
rapidly catabolized to inosine and hypoxan-
thine and then to uric acid, which in humans
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5'-AMP is pivotal in adenine nucleotide salvage and catabolism. The diagram illustrates the extracellular
and intracellular roles of 5'-AMP. AdoR, adenosine receptors; CD73/ecto 5'NT, ecto 5'-nucleotidase;
ADA, adenosine deaminase; AK, adenosine kinase; cyto 5'N'T] cytosolic nucleotidase; AMPD, AMP
deaminase; PNC, purine nucleotide cycle; 5'-IMP, inosine 5’-monophosphate; AMP, adenosine
5’-monophosphate; ADP, adenosine diphosphate; ATP, adenosine triphosphate. It is unclear how ATP
gets out of the cell. Whether 5'-AMP is transported in and out of the cell is also unclear.

and other primates is excreted. In most other
mammals, the uric acid is further catabolized
into allantoin before being excreted. How-
ever, IMP can be salvaged to regenerate 5'-
AMP through the purine nucleotide cycle via
an intermediate, adenylosuccinate. In the mi-
nor pathway, 5'-AMP can be dephosphory-
lated directly into adenosine extracellularly by
ecto-5'-nucleotidase (CD73) and intracellu-
larly by cytosolic 5’-nucleotidase. Adenosine
is then degraded to inosine by the enzyme
adenosine deaminase (ADA) and eventually to
uric acid. Intracellularly, the rephosphoryla-
tion of adenosine to 5'-AMP is undertaken by
the enzyme adenosine kinase.

Extracellularly, adenosine, resulting from
dephosphorylation of 5-AMP into adeno-
sine by CD73, can either enter the cell via
transporters or bind its receptors. The latter
involves binding to four known adenosine-
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activated G protein—coupled receptors: Al,
A2a, A2b, and A3. These receptors have dif-
ferent affinities for adenosine and can play a
key role in either activating or inhibiting cas-
cades regulated by adenylyl cyclase (19). Al-
ternatively, adenosine is taken up by the cell
via multiple types of transporters such as equi-
librative nucleoside transporters (ENTs) and
concentrative nucleoside transporters (CN'Is)
(20, 21). The ENTs are gradient-driven,
whereas the CNTs are active transporters
that involve exchange of a cation such as
sodium. These transporters are very impor-
tant to certain cells, such as erythrocytes, that
are deficientin organelles and cannot perform
de novo synthesis of nucleoside. To main-
tain its cellular nucleotide pool, an erythro-
cyte has extremely high levels of nucleoside
transporter to overcome this lack of de novo

synthesis of nucleoside (20). Although the



identification of an AMP receptor has been
reported recently (22), it remains controver-
sial (23). The direct uptake of adenine nu-
cleotides such as cAMP by erythrocytes (24,
25) and of 5-AMP by intestinal cells (26)
has been reported. Several genes for ade-
nine nucleotide transporter/translocase have
been identified, but to date their functions
have been demonstrated only for organelles
such as mitochondria and peroxisomes
(27, 28).

The injection of 5'-AMP and adenosine
both induce procolipase expression in organs
of mice (5). However, the solubility of adeno-
sine in water is very low, and the amount re-
quired to induce procolipase expression in a
mouse has to be dissolved in an organic sol-
vent, DMSO. The solubility consideration
alone would argue strongly against adeno-
sine as the primary activator. In addition, cir-
culating adenosine largely remains very low
throughout the diurnal cycle (5). The extra-
cellular level of 5'-AMP is regulated by the en-
zyme ecto-5'nucleotidase (CD73), expression
of which is under circadian control (29, 30). In
addition, DD mice have a significantly damp-
ened expression level of CD73 compared with
LD animals (5). Thus, the photoperiod effect
and circadian profile of circulating 5'-AMP
levels is linked to the endogenous clock con-
trol of CD73 expression.

The induction of procolipase by 5'-AMP
or adenosine was blocked in animals that
had received a prior injection of dipyri-
damole, a broad-based transporter inhibitor
(5). This observation indicates that the un-
derlying mechanism involves an uptake of
adenosine or 5'-AMP rather than being me-
diated through the adenosine receptors. Our
studies do not exclude adenosine receptors’
role in the regulation of the adenosine trans-
porter function. Recent studies have shown
that nucleoside transporter activity can be
controlled by the adenosine receptors, as for
example CNT2 is controlled by the adeno-
sine Al receptor (31). However, once inside
the cell, adenosine is rapidly phosphorylated
into 5’-AMP because the K, of adenosine ki-

nase (AK) for adenosine is one to two orders
of magnitude smaller than that of ADA for
adenosine (32). Alternatively, 5'-AMP could
be transported into cells known to take up
adenine nucleotides directly, such as erythro-
cytes (24, 25). With either uptake mechanism,
a rapid buildup of 5'-AMP inside the cell re-
sults, which in turn affects the adenylates’
biochemical equilibrium (ATP + 5-AMP «
2ADP). To counter the rise of 5'-AMP, the
enzyme adenylate kinase drives the formation
of ADP, which leads to a depletion of ATP.
The decrease in ATP slows cellular function,
which would mimic the drop in ATP levels
observed in erythrocytes of hibernating mam-
mals (11). However, ATP cannot decrease in-
definitely if 5'-AMP levels continue to rise, as
this would result in the complete shutdown
of cellular function. The AMP deaminase K,
for 5'-AMP is higher than that of adenylate
kinase for 5'-AMP (12). Thus, excess 5'-AMP
above and beyond the K, of adenylate kinase
is rapidly catabolized by AMP deaminase to
IMP, thus limiting overdepletion of ATP in
the cell.

ALLOSTERIC REGULATION
OF METABOLIC ENZYMES
BY 5'-AMP

In addition to its pivotal position in the purine
biochemical pathways, 5'-AMP also acts as
an allosteric regulator of many rate-limiting
metabolic enzymes (18) (Figure 4). One such
allosteric enzyme is AMP-dependent protein
kinase (AMPK). AMPK, which is activated by
5'-AMP, has been implicated as a positive reg-
ulator of glucose transport in muscle, glycol-
ysis, and fatty acid oxidation (33). Its vast cel-
lular role is beyond the scope of this review.
Our studies showed that the 5'-AMP activa-
tion of procolipase expression in LD mice is
reciprocally linked to blood glucose (5). 5'-
AMP is known as an allosteric regulator of
two key enzymes that control glucose home-
ostasis: Itis a positive regulator of fructose 1,6
phosphatase (FDP) and a negative reglator of
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Allosteric regulation key metabolic enzymes by 5'-AMP. The rate-limiting
enzymes for gluconeogenesis (FDP), glycolysis (PFK) and glycogenolysis
(GP, glycogen phosphorylase) are allosterically regulated by 5'-AMP.
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phosphofructose kinase (PFK). FDP is a rate-
limiting enzyme for gluconeogenesis, and it
converts fructose 1,6 phosphate to fructose
6 phosphate (18). FDP binding of 5'-AMP
inhibits its enzymatic activity, thereby lim-
iting gluconeogenesis. In the reverse direc-
tion, PFK is a rate-limiting enzyme for gly-
colysis. It converts fructose 6 phosphate into
fructose 1,6 phosphate by utilizing an ATP
molecule (18). Unlike FDP, the activity of
PFK s enhanced by 5'-AMP, thereby increas-
ing the rate of glycolysis. For both enzymes,
the allosteric effects of ATP are opposite to
those of 5'-AMP because these adenylate nu-
cleotides bind competitively to the same reg-
ulatory motif (18). As proposed above, the el-
evated level of cellular 5-AMP after its up-
take will alter adenylate biochemical equilib-
rium to favor ADP production, thus reduc-
ing the cellular ATP level. The drop in ATP
will slow cellular biochemical processes and

DISCLOSURE STATEMENT

is postulated to reduce thermoregulatory ac-
tivity and allow hypometabolism to set in.
An animal must eventually exit from the hy-
pometabolic state, and the catabolism of 5'-
AMP to IMP by AMP deaminase or by the
cytosolic nucleotidase into adenosine can pro-
vide only part of the means for exit. The
regeneration of ATP from ADP via glycol-
ysis in various cells, including the erythro-
cytes, must occur to reestablish the euthermic
adenylate biochemical equilibrium. The de-
cline in the ratio of ATP to 5'-AMP that leads
to the hypometabolism eventually activates
PFK, thereby increasing glycolysis, which uti-
lizes the accumulated ADP in the cell to re-
generate ATP. This restores the adenylate bio-
chemical equilibrium to its euthermic state,
completing the metabolic events initiated by
5'-AMP.

CONCLUSION
The experimental investigation of hy-
pometabolism induced by 5-AMP s

ongoing. I have taken this opportunity to
articulate some of the current hypotheses
that are testable using existing biochemi-
cal and pharmaceutical tools. In addition,
mouse genetics could be used to dissect the
5’-AMP—driven biochemical pathways of hy-
pometabolism in animal models. Finally, our
identification of a natural biomolecule that
allows rapid initiation of hypometabolism in
mammals may eventually result in clinical
applications where hypothermia has been
shown to have tremendous lifesaving poten-
tial, such as trauma, heart attacks, strokes,
and many major surgeries (3).

A patent application has been filed by the University of Texas Health Science Center, Houston
on behalf of the author on the potential utilities of 5'-AMP.
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