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Despite being forbidden in equilibrium, spontaneous breaking of time translation symmetry can occur in
periodically driven, Floquet systems with discrete time-translation symmetry. The period of the resulting
discrete time crystal is quantized to an integer multiple of the drive period, arising from a combination of
collective synchronization and many body localization. Here, we consider a simple model for a one-
dimensional discrete time crystal which explicitly reveals the rigidity of the emergent oscillations as the drive
is varied. We numerically map out its phase diagram and compute the properties of the dynamical phase
transition where the time crystal melts into a trivial Floquet insulator. Moreover, we demonstrate that
the model can be realized with current experimental technologies and propose a blueprint based upon a one
dimensional chain of trapped ions. Using experimental parameters (featuring long-range interactions), we
identify the phase boundaries of the ion-time-crystal and propose a measurable signature of the symmetry
breaking phase transition.
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Spontaneous symmetry breaking—where a quantum state
breaks an underlying symmetry of its parent Hamiltonian—
represents a unifying concept in modern physics [1,2].
Its ubiquity spans from condensed matter and atomic
physics to high energy particle physics; indeed, examples
of the phenomenon abound in nature: superconductors,
Bose-Einstein condensates, (anti)ferromagnets, any crystal,
and Higgs mass generation for fundamental particles. This
diversity seems to suggest that almost any symmetry can be
broken.
Spurred by this notion, and the analogy to spatial crystals,

Wilczek proposed the intriguing concept of a “time crystal”—
a state which spontaneously breaks continuous time trans-
lation symmetry [3–5]. Subsequent work developed more
precisedefinitionsof such timetranslationsymmetrybreaking
(TTSB) [6–8] and ultimately, led to a proof of the “absence of
(equilibrium) quantum time crystals” [9]. However, this proof
leaves the door open to TTSB in an intrinsically out-of-
equilibriumsetting, andrecentwork [10,11]hasdemonstrated
that quantum systems subject to periodic driving can indeed
exhibit discrete TTSB [10–13]; such systems develop per-
sistent macroscopic oscillations at an integer multiple of the
driving period, manifesting in a subharmonic response for
physical observables.
An important constraint on symmetry breaking in many-

body Floquet systems is the need for disorder and localiza-
tion [10–17]. In the translation-invariant setting, Floquet
eigenstates are short-range correlated and resemble infinite
temperature states which cannot exhibit symmetry breaking
[15,18,19]. Under certain conditions, however, prethermal
time-crystal-like dynamics can persist for long times [20,21]
even in the absence of localization before ultimately being
destroyed by thermalization [17,22].

In this Letter, we present three main results. First, by
exploring the interplay between entanglement, many body
localization and TTSB, we produce a phase diagram for a
discrete time crystal (DTC) [24]. The DTC, like other

FIG. 1. (a) Phase diagramof the discrete time crystal as a function
of interaction strength Jz and pulse imperfections ϵ. (b) Depicts the
location of the subharmonic Fourier peak as a function of ϵ. In
the noninteracting case (Jz ¼ 0), the peak tracks ϵ, while in the
interacting case (Jz ¼ 0.15), the peak remains rigidly locked
at ω=2. The pink region indicates the FWHM of the base of the
ω=2 peak. Data are obtained atL ¼ 14with 102 disorder averages.
(c)–(d) Representative realizations of the subharmonic Fourier
response corresponding to ϵ in (b). All Fourier transforms are
computed using 10 < n < 150 Floquet periods.
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symmetry breaking phases, possess macroscopic rigidity
and remains locked in its “collective” period, displaying a
characteristic “plateau” at the location of its subharmonic
Fourier response (Fig. 1). This is in stark contrast to free
spins, which simply follow the period dictated by the
driving. Second, we compute the scaling properties of the
dynamical quantum critical point associated with the onset
of TTSB, or equivalently, the quantum melting of the time
crystal. Third, we propose an experimental realization of
the DTC in a one-dimensional chain of trapped ions. Using
experimental parameters, we identify the phase boundaries
of the DTC and propose a measurable signature of the
symmetry breaking phase transition.
Discrete time crystal.—Let us begin by considering a one

dimension spin-1=2 chain governed by the binary strobo-
scopic Floquet Hamiltonian (with period T ¼ T1 þ T2),

HfðtÞ ¼
8<
:

H1 ≡ ðg − ϵÞP
i
σxi ; 0 < t < T1

H2 ≡P
i
Jzσ

z
iσ

z
iþ1 þ Bz

iσ
z
i ; T1 < t < T

ð1Þ

where ~σ are Pauli operators and Bz
i ∈ ½0;W� is a random

longitudinal field. To simplify the notation, we choose to
work in units of T1 ¼ T2 ¼ 1, where the Floquet evolution
reduces to: Uf ¼ U2U1 ≡ e−iH2e−iH1 . Throughout the
remainder of the Letter, we work with g ¼ π=2 and note
that for generic ϵ ≠ 0, the model does not exhibit any
microscopic symmetries [13].
To gain some intuition for the nature of TTSB in this

model, let us begin with the ideal decoupled limit where
ϵ ¼ Jz ¼ 0. In the parlance of NMR, this simple case
corresponds to a chain of decoupled spins undergoing
“spin-echo” time evolution. To see this, let us consider a
random initial product state, jψi ¼ j↑↓↓↑↓ � � �i, aligned
along the ẑ direction. The spin-echo unitary, U1 ¼
e−iπ=2

P
i
σxi , flips each spin about the x̂ axis, resulting in

the oppositely polarized state, jψ1i ¼ j↓↑↑↓↑ � � �i. The
second unitary results in only a global phase,ϕ, as each spin
is already aligned along ẑ, jψ2i ¼ eiϕj↓↑↑↓↑ � � �i. Since
each spin is flipped once per Floquet period, measuring a
simple autocorrelation function, RðtÞ ¼ hσzi ðtÞσzi ð0Þi, at
stroboscopic times (e.g. T; 2T; � � �) yields a perfect train
of oscillations [25].
These oscillations imply that RðtÞ is 2T periodic, a

fact best captured by its subharmonic Fourier response at
ω=2—half the drive frequency [Fig. 1(c)]. This seems to fit
the picture of TTSB and raises the question: are decoupled
spins undergoing “spin echo” a discrete time crystal?
The answer lies in the lack of stability to perturbations
[21,26,27]. In this decoupled limit, any imperfection in the
spin-echo pulse (e.g., ϵ ≠ 0) immediately destroys the
ω=2 subharmonic. In particular, for ϵ > 0, the unitary,

U1 ¼ e−iðπ=2−ϵÞ
P

i
σxi , leads to beating in RðtÞ and a splitting

of the ω=2 Fourier peak [Fig. 1(c)].

Turning on sufficiently strong Ising interaction (Jz > 0)
leads to a qualitatively different story [10–13,20]. For
perfect echo pulses (ϵ ¼ 0), the autocorrelation function
looks identical to the decoupled case, exhibiting the same
normalized Fourier peak at ω=2 [Fig. 1(d)]. Crucially,
imperfections (ϵ > 0) no longer lead to a splitting of theω=2
Fourier peak, demonstrating the robustness of the system’s
subharmonic response [Fig. 1(d)]. Herein lies the essence of
the discrete time crystal—despite imperfect spin rotations,
collective synchronization from the interactions maintains
robust oscillations at half the driving frequency. This rigidity
is evinced in Fig. 1(b) [28], where the location of the
normalized Fourier peak is plotted as a function of ϵ; for
finite interactions, this peak is locked at precisely ω=2.
To explore the phase diagram of the discrete time crystal,

we perform extensive numerical simulations to probe both
the localization and symmetry breaking phase transitions
[29]. As the DTC is only stable in the presence of locali-
zation, we begin by characterizing theMBL transitionvia the
quasienergy level statistics ratio, hri ¼ minðδn; δnþ1Þ=
maxðδn; δnþ1Þ, where δn ¼ Enþ1 − En is the nth quasienergy
gap [10,30]. Upon averaging hri over both disorder and the
quasi-energy spectrum, one expects the value in the thermal
phase to approach the circular orthogonal ensemble limit of
0.527, while the value in the localize phase should approach
the Poisson limit of 0.386. Figure 2(a) depicts hri as a
function of Jz for ϵ ¼ 0.1, where one observes a clear
transition at Jz ≈ 0.18. The evolution of this thermalization
transition point for general Jz and ϵ is shown in Fig. 1(a)
(green line). Interestingly, the transition exhibits a weak flow
toward larger Jz at small ϵ, consistentwith the integrability of
ϵ ¼ 0 line.
That the thermalization transition occurs for such weak

interactions (more than an order of magnitude smaller
than the disorder width) is somewhat surprising; a simple
explanation may be that the (imperfect) spin-echo unitary,
which flips each spin by approximately 180°, is nearly
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FIG. 2. (a) Level statistics ratio for ϵ ¼ 0.1 as a function of Jz.
For L ¼ 8 and L ¼ 10, we perform ∼104 disorder realizations
and for L ¼ 12, we perform ∼103 disorder realizations. There is a
clear crossing at Jz ≈ 0.18, indicating the transition. Additional
weak disorder in the interactions, Jzi ∈ ½0; Jz�, preserves locali-
zation over the same parameter range (inset). (b) Variance of the
ω=2 Fourier peak magnitude as a function of ϵ. We observe a
clear peak at the transition, which exhibits a nearly linear scaling
with increasing Jz.
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canceling the random field between the two pieces of the
binary drive, leading to effectively weaker disorder. This is
consistent with our observation that turning on additional
disorder (Jzi ∈ ½0; Jz�) in the Ising interactions, which are
invariant under a uniform spin rotation, leads to a signifi-
cantly enhanced region of localization [Fig. 2(a), inset].
Let us now turn to diagnosing the TTSB transition,

which enables us to establish the existence of the discrete
time crystal phase and locate its phase boundaries. We will
use a combination of four signatures (at infinite temper-
ature): 1) magnitude, 2) variance, and 3) exponential (in
system size) persistence—of the subharmonic Fourier peak,
and 4) mutual information between distant sites [11].
We note that a number of other probes of the DTC phase
have also been proposed, including certain eigenstate
correlations and responses [13].
We have already encountered the first signature while

probing the rigidity of the ω=2 subharmonic response. As
one increases the strength of the drive imperfections, ϵ, the
magnitude, h, of the ω=2 peak decreases [Fig. 1(d)] and
eventually, becomes completely washed out when one
transitions into the trivial paramagnet [25]. The second
signature originates from strong critical fluctuations in h
near the TTSB transition. This results in a sharp peak in the
variance of h and enables one to quantitatively locate the
transition in moderate system sizes. As shown in Fig. 2(b),
increasing Jz strengthens the rigidity of the DTC, shifting
the melting transition toward larger detuning, ϵ. We identify
the third signature by computing the finite time scale where
the ω=2 Fourier peak drops below amplitude 0.05; in the
DTC phase, this time scale increases exponentially in
system size, while in the trivial phase, it exhibits a
significantly weaker dependence [11–13]. The final sig-
nature (Fig. 3) relates to the long-range mutual information
[11] and will be discussed below in the context of the
critical scaling properties of the TTSB transition. As
illustrated in Fig. 1(a), the combination of these four
diagnostics allows us to establish the TTSB transition
point as a function of Jz and ϵ (blue line).
Quantum melting transition.—Having mapped out the

phase diagram of the DTC, we turn to an analysis of the
critical properties of the TTSB transition [25,31]. We obtain
the universal scaling properties of this dynamical quantum
phase transition by mapping the Floquet evolution to a
“hidden” effective static Ising model whose excited state
critical properties can be exactly obtained by renormaliza-
tion group methods [34–38]. Though the TTSB transition
falls into the random Ising universality class, wewill see that
the hidden character of the Ising model introduces notable
differences in physical scaling properties.
For simplicity, our analytic analysis will be performed in

a model where the TTSB transition is tuned via transverse
fields instead of spin-echo imperfections (e.g., ϵ ¼ 0)
[11–13]. While the conclusions will be identical, this
approach allows us to compute the effect of U1 exactly and

then to treat U2 in a high frequency expansion for JzT,

j~BjT ≪ 1. To this end, we consider a modifiedH2 → H0
2 ¼P

iJzσ
z
iσ

z
iþ1 þ

P
α¼x;y;zB

α
i σ

α
i , where Bx controls the tran-

sition and By is added to avoid unintentional microscopic
symmetries [13].
This model exhibits a hidden emergent Ising symmetry ~S

[13], and is in fact, related by a finite depth unitary trans-
formation, UFD, to a driven transverse field Ising model
withBy;z ¼ 0. In particular,UFDUðTÞU†

FD¼ e−iHTFIMT
Q

iσ
i
x,

where HTFIM ¼ P
i
~Jziσ

z
iσ

z
iþ1 þ ~Bx

i σ
x
i has a conventional

(e.g., on site and Hamiltonian independent) symmetry
S ¼ Q

iσ
x
i , and ~Jzi , ~B

x
i are spatially random quantities, given

the disordered character of UFD. Recast in slightly different
terms, the original Floquet evolution has an emergent “hid-
den” Ising symmetry (which is quasi-local and Hamiltonian
specific) generated by ~S ¼ U†

FDð
Q

iσ
i
xÞUFD [12]. In the

supplementary information, we provide a general scheme
to explicitly construct this emergent symmetry in a way that
reveals its physical connection to time-translation symmetry.
To probe the nature of the TTSB transition, our strategy is

to consider time evolution for twoFloquet periods,Uð2TÞ ¼
U†

FDe
−2iHTFIMTUFD. Crucially, unlike UðTÞ, this unitary

takes the form of evolution under a local transverse field
Ising Hamiltonian. Since long-time evolution can always be
decomposed into repeated evolutions byUð2TÞ followed by
partial evolution for up to a single period, the late-time
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FIG. 3. (a) Finite size flow of the mutual information between
spins on opposite ends of a length L chain. For small detuning,
ϵ ≈ 0, there is nearly full I ¼ log 2, long range mutual informa-
tion, which drops dramatically upon leaving the TTSB phase for
large ϵ. (b)–(d) Scaling collapse of I to the functional form
ð1=LβÞfðL=jϵ − ϵcj−νÞ optimized over the parameters β and ν.
Insets depict the collapsed data with a semilogarithmic y axis.
Averaging over all Jz yields numerical estimates for the critical
exponents: βED ≈ 0.4� 0.1 and νED ≈ 1.3� 0.1; we note that the
error bar associated with these exponents ignores the ambiguity
in the location of the transition.
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properties of the system are governed by those of the excited
eigenstates ofHTFIM. For strong disorder, these states exhibit
a nonergodic quantum phase transition between a trivial
MBL phase and an Ising symmetry breaking magnetic glass
phase. This transition falls into the same universality class as
the zero temperature random Ising transition [34]. Thus, the
Z2 discrete time-crystal melting transition, at strong dis-
order, falls into the universality class of a “hidden” random
Ising transition [34–37].
A few remarks are in order. The key difference between

this “hidden” Ising transition and the conventional transition
is the following: The scaling fields,Σα of this “hidden” Ising

transition, i.e., those that exhibit hΣαðrÞΣβð0Þi ¼ δαβ=r2Δα

(where the overbar indicates disorder averaging), are related
to those of HTFIM by UFD. Because of the absence of
any microscopic symmetries in the underlying DTC
Hamiltonian, the original spinswill generically have overlap
with all scaling fields: σμi ¼

P
i;j;αc

μ
ij;αΣα

j (μ ¼ x, y, z),
where cμij;α are nonuniversal coefficients that depend on the
microscopic details of the lattice and decay exponentially in
ji − jj. Thus, generic spin-spin correlation functions will

also pick up contributions from all scaling fields: hσμi σνji ¼P
i0j0αc

ðμÞ
ii0;αc

ðνÞ
jj0;αð1=jri0j0 j2ΔαÞ ≈ ð1=ji − jj2Δα� Þ. For large sep-

arations, the decay of these correlation functions will be
dominated by the scaling field, α�, with the slowest decay
(i.e., minimal scaling dimension,Δα�). In the case of the 1D
random Ising transition, the magnetization has the slowest
decay ∼1=rβ, where β ¼ 2 − φ and φ ¼ ð1þ ffiffiffi

5
p Þ=2 is the

golden ratio [34].
Because of the strong randomness character of the

transition, there is a marked difference between the mean
scaling behavior just discussed and the typical scaling
behavior. Indeed, the 1=r2−φ power-law behavior of all
local mean correlation functions results from rare regions
that are unusually large, well-ordered, and dominate the
average [34]. Typical correlation functions, on the other
hand, all decay significantly faster than any power law,
namely, as a stretched exponential: hΣαðrÞΣβð0Þityp∼
δαβe−

ffiffi
r

p
. Similarly, the typical and mean scaling properties

will also be governed by two different diverging length
scales: ξtyp ∼ jϵ − ϵcj−νtyp and ξavg ∼ jϵ − ϵcj−νavg , with cor-
relation length exponents, νtyp ¼ 1 and νavg ¼ 2.
While the above discussion focuses on critical

eigenstate properties, in an experiment, one is interested
in manifestations of criticality in dynamical signatures.
To this end, one can examine the critical temporal
decay of the aforementioned ω=2 Fourier peak. A sharp
definition of this mixed time or frequency object can be
obtained through the Wigner distribution function:
Cabðω0; tÞ≡

R
∞
0 dτe−iω0τhσaðtþ τÞσbðτÞi, which, due to

the “hidden” Ising structure of the transition will decay
asymptotically as the slowest decaying scaling field [35]

Cab

�
ω0 ¼

ω

2
; t

�
∼

1

log2−φt
: ð2Þ

This logarithmically slow decay contrasts with both the
power-law decay characteristic of trivial MBL phases,
Cab
MBL ∼ t−p and the exponential decay characteristic of a

thermalizing system, Cab
thermal ∼ e−t [39].

Critical scaling of mutual information.—Having eluci-
dated the scaling structure of the TTSB transition, we now
perform a numerical exploration of the time-crystal-melting
transition for the original model [Eq. (1)]. In particular, we
compute the mutual information, IðLÞ, between the first
and last site of the spin chain as a function of ϵ for fixed Jz
(Fig. 3) [11]. As depicted in Fig. 3(a), the mutual
information exhibits a clear finite size flow, sharpening
with increasing system size. To explore the critical proper-
ties of the transition, we conduct a finite size scaling
analysis of this data, based on our analytic understanding of
the transition. In analogy to the disordered Ising transition,
the TTSB critical point can be viewed as having a broad
distribution of nearly ordered time-crystal clusters. The
mutual information between two spins separated by L is of
order unity when they belong to the same cluster and
exponentially small otherwise. Hence, at criticality, IðLÞ
tracks the probability for two spins to be in the same cluster,
which scales as ∼L−β [34]. For ϵ ≈ ϵc near the transition,
the mutual information will then follow the universal
scaling form: I ∼ ð1=LβÞfðL=ξÞ, where ξ ∼ jϵ − ϵcj−ν is
the correlation length of the incipient time-crystal order.
In Figs. 3(b)–3(d), we perform a two parameter scaling

collapse on the numerical data for I, by plotting LβIðLÞ
versus ðϵ − ϵcÞL1=ν. Tuning β and ν to collapse the various
system sizes near the critical point, we obtain βED ≈ 0.4�
0.1 and νED ≈ 1.3� 0.1 (averaged across all interaction
strengths Jz) [25]. These fits are consistent with the exact
analytic expression for β. The value of νED lies between the
expected typical and mean values, likely reflecting the
limitations of our small system sizes for capturing rare
fluctuations that give νavg ¼ 2 in macroscopic systems.
Experimental realization.—We now propose a simple

experimental blueprint for the implementation of a discrete
time crystal in a one dimensional array of trapped ions
[40–42]. In such systems, the spin degree of freedom can be
formed from two internal electronic states within each ion;
an effective transverse field, HT ¼ Ω

P
iσ

x
i , can then be

realized via resonant microwave radiation between these
electronic states [41,42]. Coulomb repulsion between the
ions stabilizes a crystalline configuration and interactions
between the spins are generated via off resonant laser fields
that couple each spin with either longitudinal or transverse
phonon modes [43]. This produces long-range Ising-type
interactions, Hint ¼

P
ijJij=r

α
ijσ

z
iσ

z
j, between the spins

which fall off as a tunable power law, with 0 < α < 3
(Fig. 4) [42,43]. Finally, a disorder potential can be
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generated via either individual ion addressing or a 1D
optical speckle potential that leads to randomized ac Stark
shifts [44,45]. In combination, these above ingredients
enable the direct realization of a power-law generalization
of Eq. (1),

Uion ¼
(
Uion

1 ¼ e−iΩ
P

i
σxi t1

Uion
2 ¼ e−ið

P
ij
Jij=rαijσ

z
i σ

z
jþBz

i σ
z
i Þt2;

ð3Þ

where the nearest neighbor Ising interaction is replaced
by Hint and ft1; t2g represent tunable evolution times. We
emphasize that our proposed realization can likewise be
naturally implemented in ultracold polar molecules [46,47]
and Rydberg-dressed neutral atom arrays [48,49], both of
which also feature long-range interactions.
This leads to a key question: can the discrete time crystal

survive the presence of such long-range interactions
[50–52]? To quantitatively probe the effect of the long-
range power law and the existence of aDTCphase in trapped
ions, we perform a numerical study of Uion with α ¼ 1.5
[53]. Diagnosing the MBL transition, one finds that
long-range interactions disfavor localization and the MBL
transition shifts significantly toward smaller Jz [inset Fig. 4,
red line] [25]. We note that many-body resonance counting
suggests a critical power law, αc ¼ 3=2 in one dimension
[52], although this delocalization is expected to emerge only
for very large systems, and we do not find evidence of such
critical delocalization in our simulations.
Interestingly, within the localized phase, power-law

interactions seem to better stabilize the DTC phase [25].
In particular, starting from a fully polarized product state
aligned along ẑ, we again compute the variance of h as a

function of ϵ. As illustrated in Fig. 4, the transition as
determined from the peaking of VarðhÞ is weakly enhanced
when compared to the short-range case, leading to a
modified phase diagram (Fig. 4, inset). These results
suggest that a trapped ion quantum simulator can naturally
realize a discrete time crystal phase, even in the presence of
long-range interactions. Moreover, within current coher-
ence times [42], one can observe ∼102 Floquet periods,
sufficient to detect both the DTC’s subharmonic rigidity
and to probe its TTSB transition via VarðhÞ.
In summary, we have introduced a simple, one dimen-

sional disordered Floquet system that exhibits a robust
discrete time crystal phase. We characterize this phase via
several diagnostics including the rigidity of the emergent
subharmonic frequency to changes or imperfections in the
driving. Moreover, we develop a theory of the melting
transition from the time crystal into the trivial Floquet
paramagnet and utilize this to conjecture a scaling form for
the mutual information. Finally, we propose a realization of
the discrete time crystal in a 1D array of long-range-
interacting trapped ions and demonstrate that signatures of
both the DTC phase and the TTSB transition can be directly
observed with current experimental technologies.
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