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Abstract

Successful biological control results when an introduced natural enemy, very often a parasitoid, is able to suppress the
abundance of an insect pest to a level at which it no longer causes economic damage. We review the host—parasitoid models
that have been developed to describe the process of biological control by parasitoids or more specifically. the dynamics of
interacting host and parasitoid populations. We trace the origins and basic framework for both discrete time (Nicholson—Bai-
ley) models and continuous time (Lotka—Volterra) models, through the search for stabilizing mechanisms in local
populations to the more recent focus on spatial and temporal heterogeneity in the distribution of parasitoid attack. In
particular, we review the functional response that underlies all consumer—resource models, partial host refuges generated by
spatial heterogeneity or temporal asynchrony of parasitoid attack or by host stage structure, the co-existence of competing
parasitoid species, and size-dependent host feeding and sex allocation by parasitoids. The mechanistic explanations for
biological control derived from these host—parasitoid models are then compared with the few case studies of successful
biological control projects that have received sufficient study. We conclude by questioning, and suggesting improvements
for, the basic assumptions of discrete-time and continuous-time models for biological pest control.
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1. Introduction

Classical biological control is the purposeful introduction and establishment of one or more natural enemies
from the region of origin of an exotic pest, specifically for the purpose of suppressing the abundance of the pest
in a new target region to a level at which it no longer causes economic damage (DeBach, 1964; DeBach and
Rosen, 1991). Pests that can be controlled through natural enemy introductions include invertebrates, verte-
brates, weeds and plant diseases, but here we confine our attention to insect pests as the most frequently used
targets of classical biological control. The organisms that function as natural enemies of insect pests include
vertebrate predators (e.g., birds, reptiles, amphibians and fish), invertebrate predators (primarily arthropods),
parasitoids (holometabolous insects that live parasitically during their larval stage on a single individual of an
arthropod host, causing the death of the host), other macroparasites (primarily nematodes), and microparasites or
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microbial pathogens (viruses, bacteria, fungi and protozoa). We again restrict our attention to just one group of
natural enemies, the parasitoids, which are the most frequently used group of natural enemies in classical
biological control and historically have been the focus for models of biological control.

Classical biological control of insect pests, henceforth referred to as biological control, began in 1888 when
the now legendary predator, the vedalia beetle (which functions as a parasitoid), was imported from Australia
and established in California, where it very rapidly suppressed populations of the cottony cushion scale that had
been decimating the developing citrus industry (Caltagirone and Doutt, 1989). This pioneering project was
spectacular for several reasons; (a) it reduced populations of the pest to very low densities, where they remain to
this day unless disrupted by the intervention of broad-spectrum insecticides, (b) it provided the first experimen-
tal evidence that parasitoids can act as keystone species determining the functioning and organization of an
agroecosystem, and (c) it generated tremendous interest and activity in promoting the use of parasitoids for the
control of invading pests throughout the world.

To date there have been more than 3600 purposeful introductions of parasitoids against more than 500
arthropod pests in almost 200 countries and islands around the world (Greathead and Greathead, 1992). In
contrast, very few introductions of microbial pathogens have been attempted, for reasons documented by
Maddox et al. (1992). Not all introductions have been as successful as the vedalia example, in fact only 30% of
introductions have resulted in establishment of the natural enemy in the target region, and of these, only 36%
have resulted in substantial or complete control of the target pest (Greathead and Greathead, 1992). The elusive
nature of success in biological control was apparent to even the earliest researchers involved in such programs,
and has presented the challenge of developing a scientific framework to explain the reasons for success and
failure.

Biological control is essentially a population phenomenon, resulting from the action of a natural enemy
population interacting with a host population. The discipline of insect population dynamics grew out of one of
the earliest biological control projects, when Howard and Fiske (1911) were faced with the need to explain the
rapid expansion of the gypsy moth, an accidentally introduced pest, in the New England states of the U.S.
around the turn of the century and to consider the potential for biological control. The spectacular examples of
biological control, such as the vedalia story, exhibit two key characteristics: firstly, the regional density of the
pest is reduced to a very much lower level of abundance following the establishment of the natural enemy and
local densities of the pest may sometimes be reduced to extinction; and secondly, once reduced, the regional
density of the pest population is maintained at low densities unless the interaction is disrupted (Beddington et
al., 1978; Murdoch et al., 1985; May and Hassell, 1988; Murdoch, 1990). In this paper we review the use of
host—parasitoid models and how they relate to the biological control of insect pests. We first present the general
framework upon which these models are based, we then review the origins of population models that seek to
explain these characteristics of successful biological control and the subsequent extensions of these earlier
models. We examine the importance of key features, such as host refuges, and their influence on population
models and host suppression. Then finally, we re-appraise the basic assumptions and directives upon which the
models are based, in an attempt to redirect the focus of population modelling to reduce the broadening gap
between the theory and practice of biological control.

2. Basic framework of host-parasitoid models

Models of biological control have a long history of theoretical development that have focused on the
interaction of a parasitoid and its host. Host—parasitoid models have been favored as they allow several
simplifying assumptions that would not be possible for other groups of natural enemies; the specificity of many
parasitoids allows the system to be considered closed and allows generation times of host and parasitoid to be
considered equivalent, and since host attack is confined to the parasitoid adult female stage only, this allows age
structure to be ignored or handled in a more simplified form.
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A difference equation framework for a coupled, synchronized host—parasitoid system with discrete genera-
tions can be written (after Hassell, 1978; May and Hassell, 1988) as the generalized model:

N1 =d(N)Nf(N,.P) (1a)
P1+1=C1Vz{1 —f(]V,,P,)} (lb)

where N, and N, and P, and P,_, are the host and parasitoid population abundance in generations ¢ and
t + 1 respectively, d(N,) is the per capita net rate of increase of the host population, f(N,,P,) is the proportion
of host individuals that escape attack by the parasitoid, and ¢ embodies the numerical response or the average
number of parasitoids that emerge per host individual parasitized. P is generally interpreted as the abundance of
adult parasitoid females and N as the abundance of host adults and thus ¢ includes the number of parasitoid
eggs laid per host, the survival of the parasitoid in the attacked hosts and the sex ratio of the emerging parasitoid
adults. This discrete-generation framework characterizes a perfectly synchronized parasitoid interacting with a
host that has distinct generations, which is frequent in host—parasitoid systems in temperate regions of the world
and even some from more tropical regions when parasitism causes generation cycles within the overlapping
generations of some multivoltine hosts (Godfray and Hassell, 1987, 1989; Gordon et al., 1991).

When host generations are overlapping, a differential equation framework is more suitable to represent a
coupled host—parasitoid system in continuous time:

dN/dt=g(N)N—h(N,P)P

dP/dt=yh(N,P)P - &P (2)

where N and P are the population abundance of host (any stage but in general adults) and parasitoid (generally
adult female) respectively, g(N) is the per capita net rate of increase, #(N,P) is the per capita functional
response of the parasitoid or the rate of host attack, 3 the per capita death rate of the parasitoid population, and
v the conversion efficiency of hosts to parasitoids. The differential model, originally developed to explore
vertebrate prey—predator interactions (Lotka, 1925; Volterra, 1926), updates both parasitoid and host popula-
tions continuously and so includes within-generation dynamics as well as between-generation dynamics (Lotka,
1923; Murdoch, 1990). This is a critical difference between differential and difference equation models.

It is important to note that, in general, biological control has been modelled as a two-species interaction. In
reality, a host—parasitoid interaction never occurs in isolation of a host plant and therefore, a tritrophic model
should be used to better represent the tritrophic nature of the biological control of insect pests. We will return to
this point in a later section.

3. Functional response

The notion of a functional response is central to modelling any type of consumer resource interaction,
including host—parasitoid interactions. This notion has been used in various discrete and continuous time models
in different but related ways, which has led to some confusion. It will be helpful for us to clarify the notion of a
functional response before reviewing the development of host—parasitoid models.

The functional response of a consumer to a change in the density of a resource is generally understood to be
the rate at which an individual consumer extracts resources as a function of resource density. Holling (1959)
was the first ecologist to investigate this functional relationship in depth, and did so in the context of shrews and
deer mice feeding on sawfly cocoons. It is important to note, however, that Holling only considered the per
capita response of isolated individuals to prey density: for the case of several consumers competing for
resources, interference may reduce the per capita resource extraction rate in response to changes in consumer
density at a given resource density (Getz, 1993). More generally, we would expect the functional response to
depend on P as well as on N.
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The per capita functional response in the continuous-time framework of Eq. 2 is represented by (N, P ), but
in the discrete-time framework of Eq. 1, as we will argue, it is the quantity A(N,,P,) = N{l — f(N,,P)}/P,.
These expressions are not directly comparable as h(N,.P,) is a per capita attack rate per unit time (or
generation) whereas A(N, P) is an instantaneous per capita attack rate. The function #(N,,P,) in Eq. 1 is derived
by considering the number of encounters (N,) per host, then calculating the mean encounter rate N, /N and
selecting f(N,P) to be the zero term of a probability distribution representing the frequency of 0, I, 2,...,
attacks on individual hosts (as discussed below, the Poisson and negative binomial distributions are the
probability distributions used most often).

Holling (1959) presents three different functional response classes, for which the following are nominal
forms: type I (linear then constant), type II (decelerating rise to an upper asymptote), and type HI (sigmoidal).
Canonical forms for these functional response classes in terms of two arbitrary positive constants u and v and
the Poisson distribution for the discrete time functions are:

Type I: (linear in N)

continuous:

h(N,P)y=uN for N<v/u
h(N.P)=1v for N> uv/u

discrete:

II(NI’PI):ZVI{I_exp(mMPl)}/Pl (3)

(note that the constant portion of #(N,,P,) is ignored in discrete-time host—parasitoid models)
Type II: (asymptotic in N)
continuous:

R(N,P)=uN/(v+N)
discrete:
h(N,.P)=N[1—exp{—uP/(v+N)}]/P, (v maybeo0) (4)
Type 1I: (sigmoidal in N)
continuous:
h(N.P) = uN=/(v? + N7
discrete:
"(N,.P)y =N|[1 = exp{ —uN,P,/ (> +N?)}] /P, (5)

Other forms of type II and type 11T functional responses abound in the literature (Royama, 1971: Hassell, 1978;
Berryman, 1992).

4. Early developments

Thompson (1939) attributes the earliest developments of a mathematical model of the interaction of
parasitoids and their hosts to Bellevoye and Laurent (1897), Marchal (1908) and Fiske (1910). However, the
first notable model to address the biological control of a host insect by a parasitoid is due to Thompson (1922,
1924) himself. His involvement in some of the earliest biological control programs using parasitoids led him to
develop a simple expression for the impact of a parasitoid on its host:

¥ =N{1 — exp(—X/N)) (6)
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where Y is the number of hosts parasitized, N the number of individuals in the host population and X the total
number of eggs laid by the parasitoid population (i.e., X = P, where B is the mean number of eggs laid per
parasitoid). This expression is notable for two reasons. Firstly, it introduced, for the first time, the notion of
using a probability function for parasitoid attack: given that X /N is the mean number of eggs laid per host, then
— under the assumption that eggs are randomly or Poisson distributed among hosts — the quantity exp(—X/N)
is the proportion of hosts that escape attack and {1 — exp(—X/N)} is the proportion of hosts that are attacked
one or more times. Secondly, it also introduced the assumption that parasitoid attack rate is constrained by egg
limitation and that egg limitation imposes an explicit upper bound on the impact of an individual parasitoid in
response to host density, generating a type II functional response (Eq. 4 with v = 0).

Thompson (1929) further indicated that the dynamics of a host and parasitoid population could be
represented by the difference equations:

N\ = AN,exp( = BP,/N,)

P,y = AN{l —exp(—BP,/N)} 7

which is equivalent to the model of Eq. I, with the per capita net rate of increase of the host population
d(N,) = \, the escape function f{N,, P,)=exp(—BP,/N,) and the parameter ¢ = N. This model assumes that
the generations of parasitoid and host are discrete, that the net rate of increase of the host is constant between
generations and independent of host abundance and that a single female parasitoid individual always resuits
from an attacked host individual. Because the model identifies the parameter ¢ in Eq. 1 as A, the implication is
that the host population first experiences net reproduction and then parasitism, with the net rate of increase of
the parasitoid population being dependent on the abundance of juveniles A N,. In effect, the model ignores the
issues of host and parasitoid survival rates and parasitoid sex ratio. Thompson (1929) interpreted the model as
indicating that host—parasitoid interactions are unstable and incorrectly claimed that the parasitoid population
will always eliminate the host population either by steady decline or following an initial increase in the host
population. As we have shown elsewhere (Getz and Mills, 1996), however, the model has no non-trivial
equilibrium (N~ > 0, P* > 0) and, depending on initial population densities, predicts that host and parasitoid
populations may both crash to zero or may both grow without bound.

A more familiar and influential model of a discrete-generation host—parasitoid interaction was developed by
Nicholson and Bailey (1935):

N, = AN,exp( —aP,)
P, =N{l —exp(—aP,)}

(8)

where, in this case, the escape function f(N,P,) = exp(—aP,) with a representing the ‘area of discovery’ or the
proportion of the host environment that can be covered by an individual parasitoid in its lifetime. This model
implicitly assumes that parameter ¢ in Eq. 1 is 1 and thus that every attacked host gives rise to a single
parasitoid female, a situation that is appropriate only for solitary parasitoids in which the male sex is absent (see
Gauld and Bolton (1988) for details of parasitoid biology). The importance of the Nicholson—Bailey model lies
in the fact that it has served as the basis for the development of more realistic models of discrete-generation
host—parasitoid models. However, it is important to note that, like the Thompson model, the Nicholson-Bailey
model distributes parasitoid attacks at random among the host individuals but, in contrast to the Thompson
model, the functional response is type I (Eq. 3) with mean attack rate driven purely by parasitoid search. This
simple model is also unstable and predicts that both host and parasitoid populations will show divergent
oscillations (the parasitoid lagging behind the host by one generation) until the parasitoid population is driven to
extinction (Hassell and May, 1973).

The linear functional response of the Nicholson—Bailey model was shown to be an inaccurate representation
of parasitoid and predator search by Holling (1959), who introduced the hypothesis that the search for hosts is
limited by time. The time taken to ‘handle’ hosts reduces the time available for search generating a type II
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functional response for the proportion of hosts attacked (c.f., Eq. 4), with a maximal mean attack rate set by the
ratio of the total lifetime of a parasitoid 7 to the handling time 7, required for an individual host:

N\ = ANexp{—a'TP,/(1 +a'T,N)))

Py =N[1 —exp{=a'TP/(1 +a T, N)}] )

where ' is the rate of parasitoid search. The addition of handling time as a constraint on parasitoid search adds
to the instability of the Nicholson—Bailey model, which increases with the ratio T, /T (Hassell and May, 1973).
Nonetheless, handling time was an important concept in the development of host—parasitoid models as it
introduced the notion that parasitoid attack is time limited, in contrast to the earlier suggestion of Thompson
(1924) that parasitoid attack is egg limited.

Based upon the early observations of population growth by Verhulst (1838) and Pearl and Reed (1920), both
Lotka (1925) and Volterra (1926) independently derived a continuous-time differential model for the interaction
of a predator and its prey with potential application to host—parasitoid interactions:

dN/dt=rN — aNP 10)
dP/dt= yaNP - 8Y (

where g(N)=r is the per capita net rate of increase of the host population, the functional response
f(N,P) = aN (the linear portion of Eq. 3), a is the attack rate (assumed to be dependent on search efficiency), -y
is the conversion rate of hosts attacked to female parasitoids, and & is the per capita parasitoid death rate. The
model is a more appropriate description of predation rather than parasitism, as parasitized hosts always remain
vulnerable to multiple attacks (superparasitism) unless the parasitoid exhibits perfect discrimination against
previously parasitized hosts (Van Alphen and Visser, 1990). Despite this, as we elaborate below, the
Lotka—Volterra model (Eq. 10) has been used as the basis of many host—parasitoid models. This model predicts
constant rather than divergent (Nicholson—-Bailey model) oscillations of parasitoid and host populations, the
constancy of the cycles resulting from the continuous nature of the growth of host and parasitoid populations
(May, 1973).

These early models of host—parasitoid interactions provided an underlying mathematical framework for
further development and, to differing degrees, provided conceptual advances for a theory of biological control.
In all cases, however, the dynamics of these host—parasitoid models were unable to generate a stable interaction
with a low equilibrium host density: the two features that are generally considered characteristic of successful
biological control.

5. The search for stability

The firm belief that the persistence of successful biological control results from the direct stabilizing action
of the parasitoid (e.g., Huffaker et al., 1976, Murdoch, 1994) spurred a vigorous search for the biological
attributes of parasitoids that could induce stability in host—parasitoid models. In fact, the search for parasitoid-
induced stability has dominated the development of a theoretical basis for biological control to the exclusion of
any other paradigm, and has been a particularly fertile area of research.

Stability can readily be incorporated into the Nicholson—Bailey model by introducing density-dependent self
limitation into either the host or the parasitoid population (after Hassell, 1978):

N,y = AN!"" exp( —aP,) ()
P, =N"""{1 —exp(—aP,)}

N = AN exp( ~aPl! )
P, = N,{l - exp(—aP,“’”’))}

(12)



N.J. Mills, WM. Getz / Ecological Modelling 92 (1996) 121-143 127

where m is a constant representing the severity of density dependence. Unfortunately, these simple power
functions of density dependence have some unrealistic properties, as discussed by Hassell (1978), that make
them unsuitable as general models. However, Beddington et al. (1975) provide a more elegant demonstration of
the stabilizing influence of density-dependent self limitation on the host population of a Nicholson—Bailey
model using the discrete form of the logistic expression (or Ricker equation, Ricker (1954), see Eq. 13 below),
and Beddington (1975) provides a similar analysis of the stabilizing effect of density-dependent mutual
interference between searching parasitoid adults. Hassell et al. (1983) also show that the addition of a
density-dependent parasitoid sex ratio has a stabilizing effect on the Nicholson—Bailey model. Leslie (1958) and
Murdoch and Oaten (1975) show similar stabilizing properties of density-dependent self limitation in continu-
ous-time Lotka—Volterra models. In each case, the addition of density dependence to either the host or
parasitoid population results in population trajectories that show damped oscillations in host and parasitoid
abundance.

Murdoch and Oaten (1975) pointed out that a typical asymptotic type II functional response (c.f., Eq. 4) by a
parasitoid induces inverse density-dependent mortality on the host population, but that a sigmoidal type III
functional response (c.f., Eq. 5) results in density-dependent host mortality over the range of host densities
spanned by the accelerating section of the response curve. In the framework of a Lotka—Volterra model a
sigmoidal functional response (c.f., Eq. 5) induces stabitity (Murdoch and Oaten, 1975), but in the context of a
Nicholson-Bailey model it does not (Hassell and Comins, 1978). The difference again lies not with the
assumptions of the sigmoidal functional response but with the implicit time delay of the Nicholson—Bailey
model in contrast to the continuous dynamics of the Lotka—Volterra model. That there are consistent differences
in the properties of Nicholson—Bailey (discrete-time difference equation) models and Lotka—Volterra (continu-
ous-time differential equation) models will be a re-occurring theme throughout this review.

Beddington et al. (1978) reviewed a series of modifications of the Nicholson-Bailey host—parasitoid model
in the context of a general theory for biological control. In comparing the realism of the various models, they
used the criterion that a model must permit persistence of the two populations and must accurately reflect the
degree to which the host population is suppressed by the addition of the parasitoid. The base model included
self-limiting host population growth to ensure the persistence of the two populations:

N = Nexp{r(1 = N,/K)}exp(—aP,)
Py =N{l ~exp(~aP)}

1+ 1

(13)

where r = In()\) (c.f., Eq. 8) is the net rate of increase of the host population and K is the carrying capacity of
the environment. The base model was then modified in a number of ways which included alteration of the
relative generation times of the parasitoid and host, addition of a type II functional response with parasitoid
mutual interference (c.f., Eq. 4), addition of a type I functional response (c.f., Eq. 5), addition of a
fixed-number refuge from parasitoid attack, and alteration of the distribution of parasitoid attack from random to
aggregated. The degree of host suppression is well represented by the ratio g of the host equilibrium population
size in the presence and absence of the parasitoid, which for real field-based examples of successful biological
control were estimated to vary from 0.002 < g < 0.03 (Beddington et al., 1978). Of all the model variations
considered, only two could match the degree of host suppression observed in successful biological control and
both represent forms of environmental heterogeneity: the occurrence of a very small fixed-number host refuge
(less than 1% of K), and the aggregation of parasitoid attack. This result spurred a proliferation of models
dealing with the consequences of refuges from parasitoid attack that are the subject of the next section.

6. Spatial heterogeneity and the distribution of parasitoid attack

Environmental heterogeneity or patchiness has the effect of providing the host population with a refuge from
parasitoid attack and can occur in many different forms (e.g., Crawley, 1992). The main causes of heterogeneity
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are either host plant effects, host effects or parasitoid effects. Host plant-induced refuges include the absence of
volatile attractants associated with the host (Weseloh, 1976), the presence of parasitoid deterrents such as leaf
surface hairs (Woets and Van Lenteren, 1976), and the presence of physical barriers such as the depth of
concealment of the host in host plant tissue (Weis et al., 1985). Host-induced refuges include the production of
large egg batches that exceed the ovipositional capacity of a parasitoid (Braune, 1982), the selection of host
plant parts that are not searched by the parasitoid (Murdoch et al., 1989), and invulnerable classes of individuals
(Bailey et al., 1962; Hassell and Anderson, 1984; Murdoch et al., 1987). Finally, parasitoid-induced refuges
include parasitoid switching between hosts (Murdoch and Oaten, 1975), and an aggregated distribution of
parasitoid attack (Hassell et al., 1991a).

Refuges can be considered explicitly by allowing either a fixed number or fixed proportion of host
individuals to be invulnerable to parasitoid attack. Both types of refuge appear to contribute to the stability of
Nicholson—Bailey models (Hassell, 1978), but only a fixed number refuge can stabilize a Lotka—Volterra model
(Maynard Smith, 1974; Crawley, 1992). However, the most widely explored form of refuge is that generated by
the aggregation of parasitoid attack. Considered initially to result from the tendency of parasitoids to aggregate
in patches with higher host densities (Hassell and May, 1973, 1974; Murdoch and Oaten, 1975), aggregation
was captured in a simple phenomenological model by May (1978) in which the Nicholson-Bailey model
assumption of random attack (zero term of the Poisson distribution) was modified to an assumption of
aggregated attack (zero term of the negative binomial distribution):

N, =AN(1+aP k)"

P =N{1 = (1 +aP/k) "} (4

where k is the exponent of the negative binomial distribution describing the degree of aggregation of parasitoid
attack (the Poisson model corresponds to the case k — ). For k < 1, this model provides stability with the
extent of host depression ¢ dependent upon both the attack rate a and the degree of aggregation k. As pointed
out by Chesson and Murdoch (1986), however, this model represents a limiting case of an earlier model by
Bailey et al. (1962), in which aggregation is assumed to be independent of local host density. Subsequent
reviews of parasitism in relation to the variation in host density between patches in the field (e.g., Lessells,
1985; Walde and Murdoch, 1988) clearly showed that patterns of parasitism vary from direct dependence on
host density, through independence from host density to inverse dependence on host density. In response to this,
alternative Nicholson—Bailey models were developed that explicitly incorporated density-dependent (either
direct or inverse) aggregation (DDA) and density-independent aggregation (DIA) of parasitoid attack into a
linear (type I, c.f. Eq. 3) functional response (Chesson and Murdoch, 1986; May and Hassell, 1988; Hassell et
al., 1991a). These models culminated in the ‘CV?> 1" rule (Pacala et al., 1990) which states that a
host—parasitoid interaction will be stable whenever the coefticient of variation squared (CV?) of the density of
searching parasitoids in the vicinity of each host exceeds unity, making it clear that both these forms of
aggregation have a stabilizing influence. However, the assumptions of an unregulated host population and a
linear (type 1, c.f. Eq. 3) functional response both affect the generality of these results. Hochberg and Lawton
(1990) pointed out that the inclusion of self limitation in the host population can lead to circumstances where
less aggregation provides greater stability. Ives (1992b) also noted that relaxation of the assumption of a linear
(type I) functional response to include an asymptotic (type 1I, c.f. Eq. 4) curve affected the stabilizing influence
of DDA such that low levels of aggregation are destabilizing, while high levels remain stabilizing. The form of
the functional response had no effect on the stabilizing influence of DIA.

Although heterogeneity of parasitoid attack (or the existence of refuges from parasitoid attack) became
favored as a mechanistic model to account for the success of biological control and could be used to explain
case histories of biological control (e.g., Hassell, 1980), there remained a dilemma, termed the paradox of
biological control (Arditi and Berryman, 1991). The paradox is that there is a strong trade-off between stability
and the success of a parasitoid in depressing the host equilibrium density in discrete-generation models (Luck,
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1990; Murdoch, 1990; Tves, 1992b). This trade-off applies not only to the effects of stabilizing heterogeneity on
the Nicholson—Bailey model, but also to other stabilizing effects such as a density-dependent sex ratio. A
similar trade-off is also apparent in Lotka—-Volterra models that incorporate stabilizing influences such as a type
[II functional response {c.f., Eq. 5) or an invulnerable age class (Murdoch and Qaten, 1975; Murdoch et al.,
1987; Murdoch, 1990).

In a very influential paper, Murdoch and Stewart-Oaten (1989) incorporated aggregation of parasitoid attack
into a Lotka—Volterra model, using the general form of Eq. 2:

dN/dt=rN—-g(N)P s
dP/dt=yg(N)P— P (13)

with g(N) =a/P{ NP+ cov(n.p)}

where N and P are interpreted as the average density of hosts and parasitoids per patch, n and p are the
corresponding densities on a randomly chosen patch and cov(n, p) describes the distribution of parasitoids in
relation to the local host density. By assuming that the proportion of parasitoids in a patch increases linearly
with the proportion of hosts in the patch, the functional response becomes:

g(N)=aN+abV(n)/N (16)

where b represents the degree of aggregation and V(n) is the variance in host patch densities. Taylor (1986)
compiled considerable evidence to show that the variance in patch density of an organism is a simple power
function of its overall mean density V(»n) = AN, where A and x are positive constants, which on substitution
into Eq. 16 gives:

g(N)=aN+ab'/N* ', where b’ =bA (17)

Using this model, Murdoch and Stewart-Oaten (1989) found that, in contrast to the Nicholson—Bailey models,
DDA results in a reduction of the host equilibrium density but that stability is dependent on the value of the
exponent x of the power law function. When x > 2 the functional response is sigmoidal (type III, c.f. Eq. 5)
and provides stability through density dependence acting on the host population. However, when x =2 the
functional response is linear (type I, c.f. Eq. 3) and when x < 2 the response is asymptotic (type 11, c.f. Eq. 4,
the most frequent form for the functional response in real systems), neither of which cause density-dependent
host mortality and so do not provide stability. They further found that the inclusion of DIA had no effect on
either the host equilibrium or stability.

These contrasting effects of aggregation in Nicholson—Bailey and Lotka~Volterra models of local dynamics
result from the fact that redistribution of parasitoid attack in discrete-generation models is limited to just once
each generation, whereas in differential equation models parasitoids continually respond to changes in the local
patch densities of the host (Murdoch, 1990). This constraint in discrete-generation models provides a link
between the spatial density-dependent effect of parasitoid aggregation on the host population and the temporal
density-dependent effect of parasitoid aggregation on the per-capita efficiency of the parasitoid population
(Murdoch, 1990; Taylor, 1993; Rohani et al., 1994). This linkage gives the impression that stability arises from
a spatial effect of parasitism on the host population, whereas it in fact results from a temporal effect of the
reduced per-capita efficiency of the parasitoid population such that the greater the reduction in parasitoid
efficiency, the greater the stability, and the greater the host equilibrium density. In contrast, for continuous-time
models, the within-generation response of parasitoids to local host density breaks the linkage between spatial
and temporal density dependence. In these models, the per-capita efficiency of aggregated parasitoids is
increased, which leads to a reduction in host equilibrium density and removes the temporal density-dependent
effect on the parasitoid population.

The phenomenological model of Murdoch and Stewart-Oaten (1989) has generated some controversy in the
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literature (Godfray and Pacala, 1992; Ives, 1992a; Murdoch et al., 1992a) since it is based upon a statistical
description of the heterogeneity of parasitoid attack rather than on specific movement rules for the parasitoid.
However, the inclusion of parasitoid behavior necessitates a change from a local dynamics model to a
metapopulation model that represents an ensemble of patches, and any stochastic variation in either host
reproduction or parasitoid attack causes sufficient asynchrony in the dynamics of the separate subpopulations of
a metapopulation model to induce stability in the ensemble (Reeve, 1988; Taylor, 1990; Ives, 1992a). The
explicit inclusion of parasitoid aggregation between patches in continuous time Lotka—Volterra models very
often causes stability (Godfray and Pacala, 1992; Ives, 1992a; Murdoch et al., 1992a) because of this
asynchrony. The metapopulation stability demonstrated for a Nicholson—-Bailey model of patch dynamics with
local dispersal also appears to result from asynchrony. More recently, Rohani et al. (1994) have been able to
exclude the problem of asynchrony between subpopulations by combining the use of time-lagged differential
equations to model the within-generation dynamics of separate patches together with discrete breaks in the
generations to model the redistribution of parasitoids and hosts between generations. Parasitoid attack within a
host patch is defined by an instantaneous form of the May (1978) functional response (Eq. 14) and parasitoid
density in a patch is defined by a specific rate of dispersal between patches. This model confirms that even
moderate levels of parasitoid dispersal between patches within generations removes the temporal stabilizing
influence generated by the action of DDA on the per-capita efficiency of the parasitoid population. However, in
contrast to the model of Murdoch and Stewart-Oaten (1989), within-generation parasitoid dispersal does not
destroy the stabilizing influence of DIA. Whether the simplifying assumption of a linear (type I, c.f. Eq. 3)
functional response affects the stabilizing influence of DIA has not been tested.

The role of host refuges in the stabilization of host—parasitoid models and the success of a parasitoid in
reducing the equilibrium density of the host population is a complex issue that will undoubtedly continue to be
debated in the literature. The frequent conflicts between discrete-generation and continuous-time models
indicate the potential confounding effects of the structure of the model and suggest that each of the assumptions
need to be addressed carefully before any conclusions can be drawn.

One important assumption that has received very little attention in this context is the assumption that
parasitoids are search limited over the full range of host densities. We have questioned this assumption (Getz
and Mills, 1996), arguing that pro-ovigenic parasitoids (which emerge with a full complement of mature eggs)
have an absolute limitation on the number of hosts that they can attack, and that even synovigenic parasitoids
(with continuous production of eggs through their adult life) are likely to experience daily egg limitation.
Parasitoid attack is inevitably limited by searching efficiency at low host densities but at higher host densities,
the condition that prevails initially in biological control programs, it seems more reasonable to assume that
parasitoids are egg limited. To address this question we used a discrete-generation model with a (type 1)
functional response that combines both search limitation (c.f., Eq. 8) and egg limitation (c.f., Eq. 7), and a
generalized distribution of parasitoid attack:

Nr+l=)‘sz(E)
P =cN{1-f(€)}

where the mean encounter rate

e=aBP/(B+aN,) (18)

a is the search efficiency of the parasitoid, B is the per capita fecundity of the parasitoid, ¢ is the mean fraction
of females emerging per parasitized host and f(-) is the proportion of hosts that escape parasitism each
generation. Note that the encounter rate function (Eq. 18) reduces to the pure search limited case € = aP, as
B — = and to the pure egg-limited case € = BP,/N, as a — =. For the case of the negative binomial form of the
escape function f(e)= (1 + e/k) ¥, stability arises only if the distribution of parasitoid attack is sufficiently
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heterogeneous (0 < k < 1) and the maximum per capita growth rate of the parasitoid population (Bc) is
sufficiently greater than the per capita growth rate of the host population (A). In addition, stability can only be
maintained if the per capita host growth rate declines (A — 1) as the degree of heterogeneity of parasitoid attack
increases (k — 0). Interestingly, the model indicates that the more efficient a parasitoid, the more it is egg
limited at moderate to low host densities and the more suppressed the host equilibrium density. This analysis
confirms that heterogeneity is not always sufficient for stability in discrete-time host—parasitoid models and that
a low stable host equilibrium density can be achieved through biological control.

Arditi and Berryman (1991) also point out that the paradox of biological control can readily be resolved in
Lotka—Volterra models by adoption of a ratio-dependent functional response A(N/P) which permits stability at
a low host equilibrium density. Although a ratio-dependent form of the functional response is not generally
accepted (see Abrams, 1994; Murdoch, 1994) it has some support from an analysis of data on parasitism in the
blackberry leathopper (Pitcairn et al., 1990), and seems worthy of further investigation in the context of the role
of host refuges in biological control.

7. Temporal heterogeneity, host age distribution and synchronization

The Nicholson-Bailey and Lotka—Volterra models discussed so far have glossed over the host stage
attacked, although it is perhaps generally assumed that the host stage modelled is the stage susceptible to
parasitism. Beddington (1974) and May et al. (1981) have addressed the influence of the relative timing of
population processes on the stability of the Nicholson—Bailey model. The basic framework of Eq. 1 implies that
both parasitism and density dependence act on the initial host population density. If parasitism occurs before
density dependence then the latter should act only on the survivors from parasitism and hence Eq. 1a must be
modified to:

Ny = g{N,.f(N,.P)INf(N,.P,) (19)

Alternatively, to reverse the typical sequence of parasitism before density dependence to density dependence
before parasitism Eq. 1b must be modified to:

Pt+1:Cg(]Vr)]Vf{1—f(]vz’P1)} (20)

The widely adopted formulation for a discrete time model (Egs. la and 1b) is therefore a less realistic and
general representation of host—parasitoid systems than the modifications of Eq. 19 and Eq. 20. Using the logistic
expression (Eq. 13) for g(N,) and the negative binomial expression (Eq. 14) for the escape function f(N,,P,),
May et al. (1981) showed that there are only limited differences in the stability properties of models (Eq. la and
Eq. 1b) and (Eq. 19 and Eq. 1b). However, for the model in which density dependence acts on the survivors
from parasitism (Eq. la and Eq. 20) the stable equilibrium density of the susceptible host stage may increase
above the carrying capacity K set in the absence of parasitism. This has obvious consequences for biological
control as the impact of parasitoid species acting early in the life cycle of their hosts, such as egg parasitoids,
could theoretically, at least, cause an increase in the mean density of a host, such as a stem-borer, that is heavily
affected by density dependent mortality during the larval stage (e.g., Van Hamburg and Hassell, 1984).

More explicit age structure was added to the Nicholson—Bailey model by Wang and Gutierrez (1980). These
authors investigated the stability properties of a model with two age classes, immatures and adults, restricting
adult parasitoids to attack immature hosts, but allowing the two processes, parasitism and aging to occur in
either sequence. When survival from parasitism precedes aging, the model has limited stability (although
stability can occur, unlike the corresponding model with no age structure), but when aging occurs before
parasitism a host refuge from parasitism is created and the model shows a broader range of stability.
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A similar refuge effect was documented by Murdoch et al. (1987) using a delay-differential Lotka—Volterra
model, based upon the stage-structure model of Gurney et al. (1983), to examine the effects of age structure:

dU(t)/di=E(t) — My(r) —aP()U(r) —d U(1)
dA(r)/de=My(1) —d, A1)
dJ(t)/dt=aP()U(t) —M,(t) —d;J(1)
dP(t)/dt=M,(1) —dpP(1)

(21)

with

M (t)=E(t~ T])exp{—f [aP(x) +dy]dx

and
M,(t) =aP(r = T)U(t —T,) exp( —d,T,)

where U(1), A(1), J(1) and P(:} are the densities at time ¢ and dy., d,, d, and d}, are density-independent
per-capita death rates at time ¢ of unparasitized immature hosts, adult hosts, juvenile parasitoids and adult
parasitoids respectively. E(r) is the density of host eggs produced per day at time ¢ by A(1) adults, M(¢) and
M{1) are the density of immature host and juvenile parasitoids maturing to their respective adult stages per day
at time 7, T, and T, are constant durations of the immature stage of the host and juvenile stage of the parasitoid
respectively, and « is the attack rate of the linear functional response. The linear (type 1, cf. Eq. 3) functional
response of the parasitoid determines the density of hosts parasitized per day at time 7. The model indicates that
an invulnerable adult stage of the host is stabilizing over a much broader set of conditions than is an
invulnerable juvenile stage, an encouraging result as most hosts tend to be attacked during the juvenile stages
(e.g., Clausen, 1962; Gauld and Bolton, 1988). The stability of the model is dependent upon the duration of the
invulnerable host adult stage (mean longevity T, = 1/d,,) relative to that of the immature parasitoid stage, but
again there is a trade-off with host equilibrium density which increases with 7,.

In contrast to the extensive research on the influence of spatial heterogeneity in host—parasitoid models, there
has been far less interest in the effects of temporal heterogeneity generated by asynchrony in the phenologies of
the susceptible stage of the host and the foraging period of the adult parasitoid. Griffiths (1969) was the first to
make a quantitative study of the effects of a temporal refuge or asynchrony in a host—parasitoid model and
Miinster-Swendsen and Nachman (1978) provided the first direct evidence that temporal asynchrony alone is
sufficient to stabilize a host—parasitoid interaction. More recently, Godfray et al. (1994) have examined the
effects of a temporal host refuge using an age-structured time-delayed Lotka—Volterra model very similar to
those described above. As in the spatial aggregation model of Rohani et al. (1994), this model has a discrete
generation component as well as a continuous-time within-generation component. However, in this case the
functional response of the parasitoid (that is represented in the within-generation Lotka—Volterra component of
the model) combines a type II response to host density with an instantaneous version of May’s (Eq. 14)
density-independent parasitoid aggregation:

R[N(t),P(1)] = kIn{l +aP(t) /k[1 + T, N(1)]} (22)

such that k is an inverse measure of the extent to which parasitoid efficiency is dependent on parasitoid density.
It is worth noting here that Griffiths (1969) has earlier used a negative binomial expression for the functional
response of his discrete-time model of parasitoid asynchrony. In the absence of asynchrony the Godfray et al.
(1994) model is stable for sufficient levels of parasitoid density dependence (k < 1/W, where W is the duration
of the susceptible host stage). However, the degree of density dependence needed to stabilize the model can be
reduced to zero depending on the extent to which parasitoid adult emergence is delayed. Only a relatively small
window of stability exists in the total absence of direct parasitoid density dependence, but the effect of
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asynchrony is apparent over a broader range of delayed parasitoid emergence suggesting that asynchrony in
causing a temporal refuge from parasitism may have an important influence on the persistence of host—parasitoid
interactions.

8. Parasitoid competition

Intraspecific competition between parasitoids can occur at the adult stage or the larval stage with different
consequences for the host—parasitoid interaction. For example, competition between searching parasitoids may
cause a direct density-dependent reduction in the parasitoid attack rate function (Hassell and Varley, 1969;
Beddington, 1975; Godfray et al., 1994; Eq. 12 and Eq. 22). Alternatively, competition between adult
parasitoids may affect the sex ratio (Hassell et al., 1983; Comins and Wellings, 1985) or competition between
parasitoid larvae may affect the per capita parasitoid survival within the host (Taylor, 1988), both of which
cause direct density dependence in the mean parasitoid reproduction per host (parameter ¢ of Eq. 1). In both
cases, intraspecific competition requires the addition of density-dependent self limitation to the parasitoid model
and has the result that the interaction is stabilized, at least at moderate levels of density dependence, with the
consequence that the host equilibrium density is raised (but see Taylor, 1988).

On the other hand, by biasing its sex ratio towards female progeny, a parasitoid population will invariably
increase its competitiveness. As a consequence, a female-biased population may ultimately exclude its
competitors or, in extreme cases, exclude its competitors and destroy the host population along with itself
(Kaitala and Getz, 1992).

One of the most important questions in biological control has been whether multiple parasitoid species
provide better control of the host than a single parasitoid species. In general, both the Nicholson—Bailey and
Lotka—Volterra models permit the persistence of only the single most efficient of two parasitoid species (i.e.,
the parasitoid species with the greatest attack rate «). The addition of parasitoid interference into the
Nicholson—Bailey model by Hassell and Varley (1969), (Eq. 12) provided the first instance in which a second
parasitoid species could be added to a host—parasitoid model to allow both parasitoid species to persist. A
similar result was obtained using a model that included the stabilizing influence of both direct density
dependence on the host population (Eg. 13) and temporal density dependence, through a negative binomial
distribution of parasitoid attack (Eq. 14), on the parasitoid populations (May and Hassell, 1981):

N, =Nexp{r(1 = N/K)}(1+apP/k) (1 +a,0,/k) "
P1+1=M{1_(]+aPpt/k)7k} (23)
Q1 =N(1+apP/k) {1 = (1 +a,0,/K) ")

This model includes the simplifying assumption that parasitoid P acts independently of parasitoid Q (i.e.,
parasitoid P is either the superior larval competitor or parasitoid @ attacks only the hosts that survive
parasitism from P) and that the distribution of parasitoid attacks are independent, which implies that the two
parasitoids have non-overlapping niches. In general, the model indicates that a second parasitoid can success-
fully invade and persist in a system when both parasitoids limit their own abundance more than that of the
competitor (Briggs, 1993). The successful persistence of a second parasitoid with a greater attack rate generally
reduces the host equilibrium density below that achieved by the first parasitoid alone, although the degree of
host suppression may not be as great as could be achieved by the second parasitoid acting alone (May and
Hassell, 1981, 1988). A very similar model (Nicholson—Bailey with aggregated parasitoid attack) has been
extended by Hogarth and Diamond (1984) to include the effects of a variable rather than a fixed outcome of
competition with essentially similar results.

However, Kakehashi et al. {1984) pointed out that the model of May and Hassell (1981) allows the two
parasitoids to have independent distributions of parasitoid attack within the host population (an assumption also
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used by Hogarth and Diamond, 1984), and argue that it may be more realistic to assume that both parasitoids
will share the same distribution of attack (i.e., identical niches) in responding to the same set of cues used for
host location. This alters the equation for the second parasitoid to give:

Q1 =N{(1+apP/k) " — (1 +apP sk +ay0,/k) "} (24)

which has little affect on the stability properties of the Nicholson—Bailey model, but does affect the host
equilibrium density and the question of multiple introductions of parasitoids. For the situation where both
parasitoids have identical niches, the single parasitoid with the greatest attack rate always maximizes the
reduction in host equilibrium density. Using a simplified Nicholson—Bailey model with a linear functional
response, Kakehashi et al. (1984) were able to introduce a variable level of niche overlap between parasitoids,
indicating that single introductions are always the best strategy in biological control unless niches are
completely segregated, or when parasitoid @ attacks only a fraction of hosts that have been attacked by
parasitoid P and the attack rates of the parasitoids are very different.

Building upon the stage-structured Lotka—Volterra model framework of Murdoch et al. (1987, 1996, Eq. 21),
Briggs (1993) and Briggs et al. (1993) consider the interaction of two parasitoids, one of which attacks the host
egg stage (P) and the other the host larval stage (), in a host population with three age classes:

dE(t)/dt=rA(t) — Mg(t) —ap P(t)E(1) — dp E(1)
QL(1) /di = Me(r) — M,(1) = agQ(1) L(1) — d, L(1)
dA(r)/dt=M (1) —d, A(1) (25)
dP(1)/dt=apP(1 = Tp)E(t— Tpp) exp(—dypTyp) — dp P(1)
dQ(1) /dr=aqQ(t = T)o) L(t = Tyq) exp( —dyoTyq) — dq O(1)
with

ME(z)=rA(z—TE)exp{—[’

[apP(x) +dE]dx}

E

ML(I) =ME(I — TL) exp{ _jr" ] [aQQ(x) + dL]dX}

L
where E(r), L(1) and A(r) are egg, larval and adult host densities, d, are the density independent death rates of
the host stages and r is the per capita birth rate of the host adults. P(r) and Q(t) are the densities of the two
adult parasitoids, ap and a, are their respective attack rates, 7;, and T)q are the durations of the juvenile stages
in days, and djp and d), the death rates of the juvenile parasitoids. My(¢) and M, () are maturation functions
for the host egg and larval stages with T and T, the durations of the egg and larval stage. The model includes
no explicit density dependence acting on the host or either of the parasitoid populations, and none results from
the linear parasitoid functional responses.

Briggs (1993) initially retained the assumption of a constant stage duration in this general stage-structured
model, to explore the effect of larval competition (termed intrinsic competition by Zwdlfer (1971)). By making
the assumption that one parasitoid is always intrinsically superior to the other in larval competition, then
co-existence is possible only if the later-attacking parasitoid Q is intrinsically superior and shows at least some
discrimination against the attack of hosts previously parasitized by parasitoid P. The set of conditions for
co-existence is limited and the stability determined by the relative duration of the invulnerable adult stage (as in
the single host—parasitoid model of Murdoch et al. (1987, 1992b, discussed above). More generally, the
parasitoid that is intrinsically superior is able to exclude its competitor, unless the ratio of relative attack rates
(extrinsic competition between adult parasitoids) greatly favors the intrinsically inferior parasitoid. However, in
contrast to the earlier non-stage-structured models of May and Hassell (1981) and Kakehashi et al. (1984), that
were based solely on extrinsic competition between parasitoids, the single parasitoid species that persists in the
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interaction (as a result of both intrinsic and extrinsic competition) does not always provide the best reduction in
host density. If the goal is to reduce the abundance of a particular host stage, it is best to use a single
intrinsically-superior parasitoid that attacks that particular stage (the result can be reversed if the parasitoid is
intrinsically inferior), but the equilibrium density of adult hosts is not always reduced to the greatest extent by
the winning parasitoid. In addition, when parasitoids do co-exist in the system, the host density at all stages
tends to be intermediate between those levels set by each parasitoid acting alone.

Briggs et al. (1993) later relaxed the assumption of a constant stage duration, to explore the influence of
variation in immature stage durations in a model in which parasitoid P is assumed to be intrinsically superior.
With a constant stage duration, there is no parasitoid co-existence, as shown by Briggs (1993), but if individuals
mature out of a stage at a constant rate (i.e., an exponential distribution of stage durations) the set of conditions
under which parasitoid P excludes parasitoid Q is reduced to provide a relatively broad region of parameter
space that permits co-existence. In contrast to the constant stage duration model, this variable stage duration
model also suggests that under conditions that support the persistence of only a single parasitoid, the winning
parasitoid always provides the best reduction in the density of adult hosts (as in non-stage-structured models),
and similarly when both parasitoids persist the resultant host equilibrium is also equivalent to the best reduction
achievable by either of the parasitoids acting alone. The choice of a constant rate of maturation to represent the
variability in immature stage durations is somewhat unrealistic, since it allows some individuals to mature
almost immediately from the immature stage. The addition of a minimal stage duration, from which individuals
then mature at a constant rate, improves the realism of stage maturation, but drives the resultant behavior of the
model towards that of the constant stage duration model. It reduces the parameter space that permits
co-existence and reverts to the winning parasitoid not necessarily providing the best reduction in adult host
abundance and co-existence providing intermediate host equilibrium densities, unless the mean duration of the
variable section of the stage duration greatly exceeds the minimum stage duration.

Building upon an earlier model framework (Hassell et al., 1991b; Comins et al., 1992) in which local
dispersal between patches in a two-dimensional grid provided metapopulation persistence of a host—parasitoid
model with locally unstable Nicholson—Bailey dynamics, Hassell et al. (1994) demonstrate that these same
conditions promote the co-existence of two parasitoids on a single host. If the dispersal rates of the parasitoids
are similar only a narrow window of stability exists, but the stable co-existence of the parasitoids occurs over a
greater range of conditions if the parasitoids differ markedly in dispersal rate. The less dispersive parasitoid
appears to occupy refuges within the grid and to persist at much lower densities than the more dispersive
parasitoid. The effects on equilibrium densities of the host metapopulation were not explored.

9. Size-dependent host feeding and sex allocation

Predation of hosts by adult female parasitoids, or host feeding, is frequent among hymenopteran parasitoids
(also recorded in the Tachinidae, Nettles, 1987), particularly among synovigenic species, and typically results in
the death of the host (Jervis and Kidd, 1986). In general, adult parasitoids feed on the same host population that
they use for oviposition, but it is common to find that host feeding is confined to the smaller host individuals
that are unacceptable for oviposition (Walde et al., 1989; Kidd and Jervis, 1991a). Similarly, there is mounting
evidence that hymenopteran parasitoids that can attack hosts of different size, frequently place male eggs in
smaller hosts and female eggs into larger hosts (King, 1987). These host size-dependent features of host—para-
sitoid interactions have only recently been addressed by models.

The first model to incorporate host feeding as well as parasitism (Yamamura and Yano, 1988) was a
non-stage-structured Lotka—Volterra model in which a constant proportion of the attacks by the parasitoid were
assumed to result in host feeding and the parasitoid death rate was set to be a complex function of feeding that
we will not elaborate here. At intermediate host feeding to oviposition ratios, host feeding was found to stabilize
the host—parasitoid model, but it is not clear what feature of the model caused the stabilizing action. Kidd and
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Jervis (1989) considered a stabilized Nicholson—Bailey model (with no age structure) in which an empirical
relationship between the realized lifetime fecundity of a parasitoid and the number of hosts attacked (Jervis and
Kidd, 1986) is replaced by a simplified phenomenological function K(N,):

N\ = AN,exp(—aP,)

Pr+l=KM{1 —exp(—aP,)} (26)

where
A=(R—mN)
and

K=1—{1/]log(N,) + 1]}

R being the maximum host population growth rate and m a constant representing the degree of host density
dependence. Since the destructive host feeding in this model is independent of host and parasitoid density, the
choice between host feeding or oviposition has no stabilizing influence on a host population with a density-inde-
pendent growth rate and it serves to raise the host equilibrium density of the host stabilized model. In a more
detailed simulation model that incorporates host and parasitoid age structure, egg resorption and egg limitation,
which result from inadequate host feeding, had an important destabilizing effect on the model (Kidd and Jervis,
1989). When stage discrimination (host feeding on younger hosts but oviposition on older hosts) by a parasitoid
with an unlimited egg supply was added to the model, a limited degree of stability (dependent on the relative
parasitoid generation time) occurred in a continuous generation version of the model but none was apparent in a
discrete generation version (Kidd and Jervis, 1991b).

The conflicting evidence that host feeding may either be stabilizing (Yamamura and Yano, 1988) or have no
effect on the stability (Kidd and Jervis, 1989, 1991b) of host—parasitoid models with no age structure has been
addressed more recently by Briggs et al. (1995). These authors used an analytical Lotka—Volterra framework in
which the parasitoid population was structured by egg load (the number of mature eggs stored by a synovigenic
female parasitoid at a particular point in time). In this model host feeding had no effect on stability whether the
decision to feed on or parasitize a host was a function of parasitoid egg-load or not. A stabilizing effect of host
feeding was achieved by introducing the assumption that the mortality rate of parasitoid females is a decreasing
function of their egg load, but the further addition of a drain on egg load (egg resorption) to support
maintenance resulted in a destabilizing influence.

Murdoch et al. (1992b) have also extended their stage-structured Lotka—Volterra model (Murdoch et al.,
1987) to address stage discrimination for both host feeding and sex allocation, such that young immature hosts
may either be host-fed or receive a male egg (i.e. young hosts are killed but do not contribute to parasitoid
recruitment) and old immatures receive only a female egg. The model has a linear functional response and it is
further assumed that host feeding has no effect on parasitoid attack rate or longevity. One clear feature of the
model is that the host equilibrium density increases with the relative attack rate of young immatures, the
susceptible host stage that fails to contribute to parasitoid recruitment. There is also an inverse relationship
between adult parasitoid and old immature host densities, since more adult parasitoids result in the death of
more younger immature hosts leaving less old immature hosts for female parasitoid development. This effect,
termed ‘pseudo-density-dependence’, causes delayed density-dependence on the parasitoid population which
permits stability under a limited set of conditions (based on the duration of the immature host stage and the
development time of the parasitoid) but the typical Lotka—Volterra limit cycles are more prevalent.

10. Case studies in biological control

The models that we have discussed above have been developed as conceptual tools to advance our
understanding of host—parasitoid systems in general, the parameters that are most influential in these systems
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and the minimal parameter set that is necessary to capture the dynamics of the system. However, it is also
important to consider how frequently and how successfully these models have been applied to real case studies
in biological control.

The first attempt to use models in the context of real case studies in biological control concerned the winter
moth, a defoliator of hardwood trees in eastern Canada (Embree, 1971; Varley et al., 1973). When this program
took place in the 1950s the host—parasitoid model in general use was the basic Nicholson—Bailey model (Eq.
(8)). This model predicted cyclical outbreaks of the winter moth following the establishment of parasitoids from
its native Europe (Varley and Gradwell, 1968), but once implemented, the program was very successful in
reducing this pest to low levels of abundance (Embree, 1971). Subsequently, in a retrospective analysis of the
program, Hassell (1980), following the prevailing view that parasitoid aggregation was the most likely
mechanism for successful biological control (Beddington et al., 1978), used the Nicholson-Bailey model for
aggregated parasitoid attack (Eq. 14) to explain the stable reduction of winter moth abundance. More recently,
however, Roland (1988, 1994) has re-analysed the program in greater detail to show that although parasitism
significantly reduced the abundance of surviving pupae during the population decline of the winter moth,
density-dependent predation of unparasitized pupae in the soil, by generalist predators, was able to maintain
winter moth at low levels of abundance. Thus in the case of the winter moth, it seems that predation rather than
parasitism stabilizes populations under biological control.

As more than 40% of all natural enemy introductions have been targeted against homopteran hosts and the
best examples of spectacular control have resulted from this host taxon (Greathead and Greathead, 1992; Mills,
1994), it is not surprising that at least some of these programs have been addressed by host—parasitoid models.
The more recent applications of host—parasitoid modelling to biological control programs are based on
continuous-time Lotka-Volterra models, either in the form of delay-differential stage-structured models
(Godfray and Waage, 1991; Murdoch, 1994; Murdoch et al., 1996), or in the form of simple simulation models
with modular age-structured sub-models for each trophic level in the system (Gutierrez, 1992; Mills and
Gutierrez, 1996). In general, the programs have been analysed retrospectively; the cassava mealybug in Africa
(Gutierrez et al.,, 1993) and the California red scale in California (Murdoch, 1994; Murdoch et al., 1996).
However, Waage (1990) introduced the idea of prospective modelling to examine the dynamic consequences of
different combinations of parasitoid species, from the parasitoid assemblage that exists in the region of origin of
a pest, in order to select the most effective parasitoid species for introduction in a biological control program.
Prospective modelling has subsequently been applied to the mango mealybug in west Africa (Godfray and
Waage, 1991) and the silverleaf whitefly in California (Mills and Gutierrez, 1996).

These applications of host—parasitoid models to case histories and prospective projects in biological control
have revealed several important considerations. Firstly, in both the cassava mealybug (Hammond et al., 1991)
and the California red scale (Reeve and Murdoch, 1985) systems there is very little evidence of an aggregation
of parasitoid attack. It is also apparent from these case studies that some form of age structure is essential in
host—parasitoid models to be able to correctly interpret the dynamic consequences to the host population of
competing parasitoid species that attack different stages of the host life cycle (Godfray and Waage, 1991;
Gutierrez et al., 1993; Mills and Gutierrez, 1996; Murdoch et al., 1996). The role of a refuge from parasitism,
either as physical refuges (Murdoch et al., 1989) or as host quality (i.e., size) effects (Gutierrez et al., 1993;
Murdoch, 1994), appears to have a strong influence on the local dynamics of the host populations in these case
studies. Lack of synchronization, or temporal refuges, were not apparent in these systems but may nonetheless
be another important refuge factor in real examples of biological control, particularly those in which there are
discrete host generations. Despite the fact that host feeding is common to the parasitoids of the Homoptera, this
aspect of the interaction has either been ignored (Godfray and Waage, 1991; Murdoch, 1994; Murdoch et al.,
1996) or considered of little consequence to the overall dynamics of the interaction (Gutierrez et al., 1993; Mills
and Gutierrez, 1996) in these case studies. Finally, host plant effects are apparent in the California red scale
system (Murdoch, 1994) but such ‘bottom-up’ effects have only been explicitly explored for the cassava
mealybug system (Gutierrez et al., 1993, 1994).
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11. Conclusions

The pursuit of a theoretical basis for biological control, through the development of mathematical models to
enhance our understanding of the mechanisms for successful control of a pest population by an introduced
parasitoid, has had a checkered history. Starting from a very simple assumption that parasitoids are egg limited
(Thompson, 1924) the majority of subsequent models have all focused, perhaps erroneously, on host limitation.
Similarly, the early notion that biological control results when the parasitoid induces density-dependent
mortality on the pest population (Smith and van den Bosch, 1967; Huffaker et al., 1976), focused attention on
the stabilizing action of various parameters of the parasitoid host interaction, whereas with the realization that
the local dynamics of successful programs may not be stable (Murdoch et al., 1985) the degree to which a
parasitoid population can suppress the regional abundance of a pest has become, quite rightly, a more important
question in biological control models.

The discrete time formulation of the Nicholson—Bailey model appears to be of declining interest for
providing a theoretical framework for biological control, even in situations where the host has discrete
generations (e.g., Godfray et al., 1994) due to the overriding importance of stage structure and developmental
delays on the attack rate of the parasitoid population. However, in dealing with broader issues of host—parasitoid
interactions a Nicholson—Bailey structure may still be valuable (e.g., Hassell et al., 1994) and simpler to analyze
than differential equation models. In this context, it seems long overdue to re-appraise the basic structure of the
Nicholson-Bailey model (Eq. 1) with its implicit assumption that reproduction, parasitism and self limitation all
act upon the same host stage, or at least the same level of host abundance. The Thompson (1929) model (Eq. 7)
included parasitism acting on the abundance of the host after reproduction, but in reality the host population will
experience reproduction, parasitism and density dependence as a sequence of events acting at the different levels
of abundance that occur through a generation. A more general model that accounts for this effect requires the
form:

]vz+l = )‘Mg(D/+I).f(Sr+l’Pz)
P =cS,, l{l — (84 ’Pr)}
where D, , and S,,, are the densities of the host population at the particular points in time when

self-regulation and parasitoid attack are in effect. These densities will themselves be functions of adult host N,
and female parasitoid P, densities, such that:

D, = D(N/»Pr)
Sie1=Fs(N,.P)

(27)

As before, the parameter A is the net reproductive rate of the host taking into account the host sex ratio, the
mean per capita fecundity of female hosts and all density independent mortality and ¢ reflects the mean number
of female parasitoids emerging from a parasitized host (i.e., includes parasitoid sex ratio and host mortality after
parasitoid attack but before the parasitoid exits the host). This formulation is a more realistic representation of
the sequence of population events that occur both prior to, during, and after the host reaches the stage
susceptible to parasitism and thus embodies some basic elements of stage structure without the complexity of
using a series of separate host equations for the three distinct stages.

The same concern applies to the continuous time Lotka-Volterra model, unless stage structure is added
explicitly (as in the models based upon Gurney et al., 1983). In addition, in contrast to the Nicholson—Bailey
models, the instantaneous parameters of Lotka—Volterra models do not explicitly incorporate the effects of
superparasitism. These models therefore assume that any host individual can only be parasitized once or that
parasitoids show perfect discrimination against previously parasitized hosts. Neither assumption fits the
observed behavior of most parasitoids (Godfray, 1994) and the extent to which this feature may influence the
predictions of such models, as far as we are aware, has never been explored.
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The continued use of a linear (Nicholson—Bailey and Lotka-Volterra) functional response in models of
biological control would also seem to be in need of revision. Since all parasitoids must experience egg limitation
at higher host to parasitoid ratios, an asymptotic type II response (with its known destabilizing influence,
Hassell and May (1973)) must be considered a minimal representation of the functional response, particularly in
view of the fact that the shape of the functional response can cause very different predictions from
host—parasitoid models (e.g., Ives, 1992b).

It must also be argued that a two-species host—parasitoid relationship never takes place in isolation, as
assumed in almost all models. In reality, all arthropod pests must at minimum represent an intermediate trophic
level in a tritrophic system in which the variable plant resource may have as great an influence on the pest
population as the population of parasitoids (Gutierrez et al., 1994). In addition, it is very seldom that only a
single parasitoid species is used in a biological control program, although one parasitoid species is often much
more abundant than its competitors, and consequently a multiparasitoid tritrophic model (such as that used by
Gutierrez et al.,, 1993; Mills and Gutierrez, 1996) needs to be more widely employed in the analysis of
biological control.

Thus, in conclusion, with greater attention to the basic assumptions of the host—parasitoid models used in
biological control, it seems that significant advances can be made in our understanding of the mechanisms that
lead to the successful suppression of the abundance of a pest through the introduction of parasitoids. Such
models provide an experimental framework to examine the reasons for past biological control successes and
failures and to develop more successful programs in the future. The notion of prospective modelling, in contrast
to retrospective modelling, is both intuitively appealing and seems likely to offer important contributions to the
development and implementation of future programs, although as of yet it has seldom been used. It must be
remembered, however, that real biological systems are complex and that the application of simple models to
specific pest problems may not generate realistic predictions without consideration of the more detailed
biological relationships pertinent to that situation. Nonetheless, there is much to be gained from using models to
assess the generalities of biological control programs and to continue to develop a sound theoretical framework
that can be used to improve the implementation of parasitoid introductions for particular pest taxa.
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