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We describe a new method for estimating the area of home ranges and constructing
utilization distributions (UDs) from spatial data. We compare our method with
bivariate kernel and a-hull methods, using both randomly distributed and highly
aggregated data to test the accuracy of area estimates and UD isopleth construction.
The data variously contain holes, corners, and corridors linking high use areas. Our
method is based on taking the union of the minimum convex polygons (MCP)
associated with the k�/1 nearest neighbors of each point in the data and, as such, has
one free parameter k. We propose a ‘‘minimum spurious hole covering’’ (MSHC) rule
for selecting k and interpret its application in terms of type I and type II statistical
errors. Our MSHC rule provides estimates within 12% of true area values for all 5 data
sets, while kernel methods are worse in all cases: in one case overestimating area by a
factor of 10 and in another case underestimating area by a factor of 50. Our method
also constructs much better estimates for the density isopleths of the UDs than kernel
methods. The a-hull method does not lead directly to the construction of isopleths and
also does not always include all points in the constructed home range. Finally we
demonstrate that kernel methods, unlike our method and the a-hull method, does not
converges to the true area represented by the data as the number of data points
increase.
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The construction of space use maps from points

representing distributions of animals or plants in space

or time are critical in addressing a range of questions in

ecology from the behavioral to the landscape level.

Ecologists are generally interested in building two types

of such maps: home range maps (Burt 1943) that

delineate the spatial extent or outside boundary of an

animals movement, and utilization distributions (UDs)

(Jennrich and Turner 1969, Ford and Krumme 1979)

that represent the density of space used by animals.

The simplest method for constructing home ranges is

the minimum convex polygon (MCP). This method is

still widely employed (Meulman and Klomp 1999, Baker

2001, Creel and Creel 2002, Rurik and Macdonald 2003)

despite recent recognition that it provides an extremely

poor fit to data when the home range of an animal or the

distribution of a population is strongly non-convex

(Burgman and Fox 2003). In search of a better method,

Burgman and Fox (2003) propose using a-hull construc-

tions, which involve producing Delauney triangulations

of the data and then removing all sides that are a times

longer than the median of the original sides. Like the

MCP, this method does not explicitly reveal high and

low density use areas or clusters of points in cores. Also,

in applications to real data, a-hull constructions leave

some points hanging outside the area they bound,

resulting in area estimates of home ranges that are often

too conservative.

In the context of statistical errors, a home range or

UD map can be regarded as a hypothesis about the
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expected space use of an organism and is subject to both

type I (excluding valid areas) and type II (including

invalid areas) errors. In methods with adjustable

parameters one can trade-off these errors, where the

optimal trade depends on the consequence of each type

of error. Thus, if one is looking at the association of the

UD of an animal population with background vegeta-

tion types, the balance may be tipped in favor of type I

over type II errors (i.e. reducing false associations of

animals with particular vegetation types). On the other

hand, if one is looking for areas in a landscape that

contain hidden factors causing some disease in a

population, then type II errors may be more serious

than type I errors in generating a list of putative factors

common to all areas (i.e. we would not want to omit any

area that might hold some clue to the cause of the

disease).

Obviously, a method that produces both smaller type I

and type II errors than another is preferred, provided the

method is not computationally difficult to implement.

Various user-friendly software packages, particularly

those that include spatial mapping utilities, are available

for implementing some of the more computationally

challenging methods (e.g. see Lawson and Rodgers, 1997

for a comparison of five package), such as kernel

methods (Silverman 1986, Worton 1989). Kernel meth-

ods construct UDs by taking weighted sums of local

parametric distributions (e.g. bivariate normal kernels)

centered on each point in the data set being modeled

(Silverman 1986, Worton 1989). Hence they perform

well in constructing multimodal UDs for data generated

as the sum of several bivariate normal distributions

(Seaman and Powell 1996). The simplest of the kernel

methods is the fixed method: it uses the same smoothing

parameter value h at each point (this value determines

the relative peakedness of the local distributions). A

‘‘best’’ value for h can be found by minimizing the

mean-integrated-square-error of the UD fitted to the

data as a function of h (Worton 1989). Adaptive kernel

methods require additional computations to implement:

they modify the value of h from point to point, based

on local densities of points. In theory, adaptive methods

should perform even better than fixed methods in

characterizing the tails of the UD, but in practice

this is not always true. Also, kernel methods are

known to perform rather poorly when it comes

to estimating areas of home ranges from data

(Lawson and Rodgers 1997, Casaer et al. 1999, Ostro

et al. 1999).

In this paper, we demonstrate that kernel methods

perform poorly when fitted to distributions arising in

landscapes that have distinct boundaries determined by

geographic or physiographic features such as cliffs,

rivers, or abrupt changes in soil types leading to abrupt

changes in vegetation or other ecological determinants.

Our method performs much better than kernel methods

in fitting UDs to home ranges with distinct boundaries

and better than the a-hull methods in incorporating all

points into the home range. We do not compare our

method to grid or rectangular methods because these

methods appear to have no advantages over ours. In

particular, they are sensitive to the size of the underlying

paving units and they use ad-hoc criteria to fill in holes

after paving has been completed (e.g. Ostro et al. 1999

propose filling all holes 5/1% of the area of associated

MCP with the data �/ also see Plotnick et al. 1993, 1996,

Dale et al. 2002). We have also not compared our

method to those based on spatial statistics (such as the

‘‘local index of correlation association’’ and ‘‘spatial

analysis by distance indices’’ reviewed by Dale et al.

2002) or on cluster analysis (e.g. Kenward et al. 2001,

Plotkin et al. 2002) because the implementation of these

is more complicated even than adaptive kernel methods,

and they have not been widely applied.

Our method is direct and easily implemented. It

involves constructing a UD from the union of convex

hulls associated with each point and its k�/1 nearest

neighbors. We refer to this union as a k-NNCH

(k nearest neighbor convex hull) covering, while the

subcovering obtained from a union of the smallest of

these convex hulls covering x% of points provides for the

construction of the x% isopleth (e.g. the decile isopleths:

10%, 20%. . .100%). In the first part of this paper, we

describe the method and then use it to map the UDs

associated with computer-generated data that has sharp

boundaries, multinuclear cores (cf. Kenward et al. 2001)

and corridors. We then demonstrate that our algorithm

performs better than kernel methods in identifying these

features and in estimating area. Finally, we discuss where

our method is superior to the a-hull method in

constructing home ranges and utilization distributions

(as characterized by the isopleths associated the density

of points used to construct home ranges).

Methods

A k-NNCH covering for constructing UDs

Given a set of specified points the method begins by

constructing the convex hull associated with each point

and its (k�/1) nearest neighbors. We refer to the area

covered by the union of all these convex hulls as a k-

NNCH covering. We then order the hulls from the

smallest to the largest. By progressively taking the union

of these from the smallest upwards, until x% of points

are included (with some rounding error), we construct

the areas whose boundaries represent the x% isolpleth of

the densest set of points in our k-NNCH covering. (See

Appendix for technical details.)
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Kernel methods

Both fixed and adaptive bivariate normal kernel meth-

ods were coded in MATLAB using algorithms described

in Worton (1989). MATLAB routines were then used to

draw isopleths at the p% of the kernel density function.

We used the p�/0.99 as the outer boundary for area

calculations, although some studies rather use p�/0.95.

This choice does not affect our conclusions regarding the

poor estimation performance of kernel methods because

kernel methods both greatly over and under estimate the

areas involved. See Appendix for details regarding

implementation of the reference or the least-squares

cross-validated smoothing parameter values hREF (which

is optimal when the data are bivariate �/ see Silverman

1986) and hLSCV respectively for both the fixed and

adaptive kernel methods.

The a-hull method for constructing UDs

Following the method of Burgman and Fox (2003), we

constructed a Delauney tessellation to bound the data.

We then calculated the mean length of all connections in

this tesselation and removed those that were a times

greater than this mean for specific values of a. Finally,

we added up the area of the remaining triangles to

obtain our estimate of the area. Based on Burgman and

Fox’s (2003) finding that a�/3 is the most robust integer

value of a with regard to sampling artifacts, we focused

our analysis on this value and, for purposes of compar-

ison, on twice this value (a�/6). We also explored other

values of a to get a sense of how the a-hull method

performs as a function of a. Currently, no rule (such as

the MSHC rule we propose below for selecting k for our

algorithm) has been proposed for selecting an appro-

priate or ‘‘best’’ value for a: a value that is bound to

differ for different sets of data.

Computer-generated data sets

We generated the five data sets below using Monte Carlo

methods (Ripley 1987). The data are designed to test

how well the methods perform at different ends of the

data spectrum (random vs highly aggregated data), on

contrasting shapes (donuts, squares, and multicore

constructs), and identifying high use and odd-shaped

boundaries (e.g. edges of lakes or land used on only one

side of a the confluence of a river and one of its

tributaries). Specifically, our idealized data sets are: 1)

Random square (RS) (Fig. 6A): 1089 points where

placed at random on the unit square. (Area�/1 arbitrary

unit.) 2) Aggregated square (AS) (Fig. 5A): 1089 points

were randomly assigned x�/y coordinates on the unit

square. These coordinates were then cubed leading to

increasingly higher densities of points having lower (x,y)

values (i.e. strongly aggregating around the axes, espe-

cially the origin). (Area�/1 arbitrary unit). 3) Random

donut (RD) (Fig. 4A): We distributed 1089 points at

random on a donut that has an inner radius of 1 and an

outer radius of 5. The radius of each point was obtained

from the equation r�1�4
ffiffiffi
j

p
where j is a random

variable rectangularly distributed on [0,1] and an angle

between 0 and 2p was assigned at random. (Area�/75.4

arbitrary units). 4) Aggregated donut (AD) (Fig. 1A):

We distributed 1089 points, as in 3 above, except in this

case we used the formula r�1�4j3: This results in an

extremely strong clustering around the inner boundary

of the donut. (Area�/75.4 arbitrary units). 5) Multicore

(MC) (Fig. 8A): This data set was constructed by placing

less dense versions of the above 4 data sets at corners of a

25�/25 unit quadrant and then connecting them with

corridors. (Area is approximately 320 arbitrary �/ see

Appendix for details.)

The MSHC rule for selecting k

For relatively low values of k the resulting k-NNCH

coverings contain a number of holes that disappear with

increasing k. For areas with known topologies (squares,

donuts, etc.) the ‘‘minimum spurious hole covering’’

(MSHC) rule is to select the smallest value of k-that

produces a covering that has the same topology as the

given set. If the topology of the space associated with the

data is not known, we can guess its genus (number of

holes) by identifying relatively large physical features,

such as lakes, mountain peaks, or inhospitable habitats

at comparable scales. We expect these objects to produce

real holes in the data. Of course, real holes at scales that

are relatively small compared with the size of the home

range may well be missed. Differences between real and

spurious holes in k-NNCH coverings of data sets should

also be evident in plots of the number of holes in a

particular k-NNCH covering against the value of k: the

covering of spurious holes should correspond to a

leveling off of the resulting graph. Only experience

with the method, however, will reveal appropriate

methods for deciding when this leveling off has been

achieved. In our case, we know the topology of the data;

and we use k* to denote the value obtained using our

MSHC rule.

Results

The AD data (Fig. 1 A) and various k-NNCH coverings

(k�/2, 6, 10, k*�/17, and k�/301, where the latter is the

smallest k that covers the permanent hole in the center)

are plotted in Fig. 1. UDs and shaded deciles are drawn

in Fig. 2 for the 17-NNCH and 50-NNCH coverings

(panels A and B) for the hREF and hLSCV fixed and
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adaptive kernel methods (panels C�/F). The areas

associated with some of these constructions are plotted

(Fig. 3A) for decile isopleths (kernel constructions) with

the number of points and associated densities covered by

each decile interval plotted in Figs 3B and C.

Decile shadings of the RD (Fig. 4A), AS (Fig. 5A)

and RS (Fig. 6A) data are plotted for the 5-NNCH,

k*-NNCH, and 50-NNCH coverings (panels B�/D in

Figs 4�/7), and for both fixed and adaptive kernel

methods using hREF (panels E�/F in Figs 4�/7) and

hLSCV (panels G�/H in Figs 4�/7) smoothing parameter

values. For the RS, we also include the area, number

and density plots associated with these decile intervals

(Figs 7A�/C). Finally, for MC data (Fig. 8A), we plot

Fig. 1. k-NNCH coverings
(recall that k is the number of
nearest neighbors used to
construct local minimum
convex polygons) of the (A) AD
data are illustrated for the cases
(B) k�/2, (C) k�/6, (D) k�/10,
(E) k*�/17 and (F) k�/301.
(The donut hole is first filled
when k�/301 and the covering
becomes the minimum convex
polygon k�/1089, the total
number of points in the data
set.)
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decile shadings of the 5-NNCH (Fig. 8B), k*-NNCH

(k*�/17, Fig. 8C) and 50-NNCH (Fig. 8D) coverings.

For comparison we plot decile shadings of the fixed and

adaptive kernel distributions for this data for the hREF

(Fig. 8E�/F) and hLSCV (Fig. 8I�/J) cases.

To examine how well the methods converge to the area

associated with the AD data (Fig. 1A), we sub-sampled

five sets for each of a 30-point, 100-point and 300-point

assessment of the performance of our method (Table 1).

The UDs obtained form the k*-NNCH covering and

Fig. 2. Decile-shaded k-
NNCH coverings of the AD
(see Fig. 1A, data generated in
an area of ca 75 units) are
illustrated for the cases (A)
k*�/17 (area�/66 units) and
(B) k�/50 (area�/68 units).
Decile isopleths are plotted for
distributions obtained using the
REF smoothing parameters for
the fixed (C) hREF�/0.78
(area99%�/99 units) and
adaptive (D) hREF�/0.78
( area99%�/107 units) kernel
methods and using the LSCV
smoothing parameter value for
the fixed (E) hLSCV�/0.058
(area99%�/27 units) and
adaptive (F) hLSCV�/0.058
(area99%�/21 units) kernel
methods.
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hLSCV adaptive kernel method are illustrated in Fig. 9 for

one of the five 100 and 300 data point subsets (Fig. 9A�/

B). Area estimates averaged over the five different sets

for each of the three cases are given in Table 1.

The 3-hull coverings of all five data sets are illustrated

in Fig. 10A�/E. The comparison of areas estimated by

these coverings, as well as 6-hull coverings, with those of

selected k-NNCH coverings and kernel methods are

tabulated in Table 2.

Discussion

Minimum convex polygon (MCP) and kernel methods

are currently the mainstay of the home range construc-

tion literature. The reason could be the ease of calculat-

ing areas from MCPs and the existence of software

packages for implementation of kernel methods includ-

ing the more complicated adaptive kernel method (e.g.

CALHOME, RANGES IV and V, and TRACKER �/

see Lawson and Rodgers 1997 for a review).

Our k-NNCH covering method is a simple extension

of MCP to a union of a set of local MCPs. As such, our

method is easy to understand and relatively easy to

implement. The primary challenge in producing a

k-NNCH covering is deciding for a particular set of

data what the ‘‘best’’ value for k might be. The best value

for k should clearly equal or exceed k*, as evident from

Fig. 1B�/E. For the first four data sets (AD, RD, AS and

RS), however, k�/50 provides slightly better area

estimates than k* (Table 2). This is not the case for the

fifth data set (MC: Table 2): the value of k producing the

best area estimate is likely to vary for different data sets.

Selecting the best value for k could be based on

minimizing changes in area as a function of k, but the

question remains open until more experience is gained

using our approach. The question, however, appears to

be much less pressing than that of finding the best value

of the smoothing parameter h for kernel methods

because of the vast range of area estimates obtained

for different values of h (cf. panels E�/J in Fig. 8). By

contrast, comparisons of k-NNCH area estimates in-

dicate very little difference between area estimates using

k* and the ad-hoc value k�/50 for 4 of the 5 data sets

(Table 2).

Also of consideration in selecting a value for k is the

issue, as discussed in the introduction, of the relative

importance of avoiding type I vs type II errors. Errors

are unavoidable and the smaller the data set the greater

the error rate should be (although, this sensible require-

ment is not always true for kernel methods �/ Table 1).

Relatively large smoothing parameter values for the

fixed and adaptive kernel methods (i.e. hREF�/0.78)

may avoid type II errors (the donut is completely

covered �/ see Fig. 2C, D) but produce large type I

errors (at least 32% and 43% respectively of the area are

misidentified) through the inclusion of regions that lie

beyond the outer circumference of the AD (Table 2).

Further the fixed kernel method misidentifies the AD

hole as the most heavily utilized part of the home range

(Fig. 2D).

At the other extreme, for relatively small values of the

smoothing parameter (i.e. hLSCV�/0.058), both the fixed

and adaptive kernel methods do well at minimizing type

II errors, but only at considerable expense with regard to

type I errors and extensive fragmentation of the identi-

fied area (Fig. 2E, F). In particular, these methods under

estimate the area of the aggregated donut by 64% and

72% respectively (Table 2). The a-hull method performs

hardly better for the case a�/3 in underestimating the

area of the AD by 49%, although the underestimate for

the case a�/6 is much improved at 16% (Table 2). On the

other hand, our k-NNCH method performs well over a

large range of k values, underestimating the area of the

AD data by 12% for the 17-NNCH covering and only

9% for the 50-CH covering (Table 2).

Comparisons of home ranges constructed using k-

NNCH coverings and kernel methods for both the AD

(Fig. 2) and AS (Fig. 4) data sets indicate how much

better the former are than the latter when the data

includes heavily used boundaries and intersections of

Fig. 3. The (A) area, (B) number of points, and (C) correspond-
ing density (number of points divided by area) included in each
decile partition are graphed for each of the two k-NNCH
coverings and two adaptive kernel distributions of the AD data
plotted in Fig. 2.
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Fig. 4. Decile-shaded k-
NNCH coverings of the (A)
RD data (generated in an area
of approximately 75 units) are
plotted for the cases (B) k�/5
(area�/44 units), (C) k*�/17
(area�/72 units), and (D) k�/

50 (area�/75 units). Decile
isopleths are plotted for
distributions obtained the
following kernel methods: (E)
fixed, hREF�/2.2 (area99%�/

382 units); (F) adaptive,
hREF�/2.2 (area99%�/382); (G)
fixed, hLSCV�/0.44 (area99%�/

110 units); and (H) adaptive
hLSCV�/0.44 (area99%�/115
units).
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Fig. 5. Decile-shaded
k-NNCH coverings of the (A)
AS data (generated in an area
of 1 unit) are plotted for the
cases (B) k*�/5 (area�/0.51
units), (C) k�/29 (area�/0.95
units), and (D) k�/50 (area�/

0.95 units). Decile isopleths are
plotted for distributions ob-
tained using the following ker-
nel methods: (E) fixed, hREF�/

0.025 (area99%�/0.73 units); (F)
adaptive, hREF�/0.025
(area99%�/0.29 units); (G)
fixed, hLSCV�/0.0037
(area99%�/0.13 units): and (H)
adaptive, hLSCV�/0.0037
(area99%�/0.015 units).
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Fig. 6. Decile-shaded k-
NNCH coverings of the (A) RS
data (generated in an area of 1
unit) are plotted for the cases
(B) k�/5 (area�/0.56 units),
(C) k*�/22 (area�/0.97), and
(D) k�/50 (area�/0.98 units).
Decile isopleths are plotted for
distributions obtained using the
following kernel methods: (E)
fixed, hREF�/0.026 (area99%�/

1.21 units); (F) adaptive,
hREF�/0.026 (area99%�/1.23
units); (G) fixed, hLSCV�/0.057
(area99%�/1.52 units); and (H)
adaptive, hLSCV�/0.057
(area99%�/1.61 units).
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such boundaries (corners). For example, all three

k-NNCH coverings (Fig. 5B�/D) clearly identify the

high-density (lower-left) and two medium-density

(upper-left and lower-right) corners of the aggregated

square (AS). Only the low-density (upper-right) corner is

not detected, and then only because no data point falls

close enough to this corner to permit identification

under any method. On the other hand, kernel methods

by design are unable to trace out corners. For the

relatively large smoothing parameter value hREF�/

0.025 corners are obscured (Fig. 5E�/F), and for the

much smaller smoothing parameter value hLSCV�/

0.0037 the area is extraordinarily fragmented (Fig.

5G�/H). Further, the estimated areas are off by orders

of magnitude: 87% and 98% underestimates respectively

for the fixed and adaptive kernel methods (Table 2).

Kernel methods perform better on non-aggregated

than aggregated data, but still have problems with

corners and donut holes. For the random square (RS)

data (Fig. 6), kernel methods smear out the corners and,

surprisingly, the algorithmically complicated hLSCV

smoothing parameter construction (Fig. 6G�/H) over-

estimates the area of the square by more than twice that

of the much simpler hREF case (Fig. 6E�/F). Also

surprisingly, in both cases the adaptive kernel method

performs marginally worse than the fixed kernel method

in estimating area (see Table 2). By contrast, provided k

is sufficiently large to cover all of the spurious holes, our

Fig. 7. The (A) area, (B)
number of points, and (C)
corresponding density (number
of points divided by area)
included in each decile partition
are graphed for the larger two
k-NNCH coverings and two
adaptive kernel distributions of
the RS data plotted in Fig. 6.
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Fig. 8. Decile-shaded
k-NNCH coverings of the (A)
MC data (generated in an area
of approximately 320 units are
plotted for the cases (B) k�/5
(area�/199) units; (C) k*�/17
(area�/347 units) and (D) k�/

50 (area�/449 units). Decile
isopleths are plotted for distri-
butions obtained the following
kernel methods: (E) fixed,
hREF�/28 (area99%�/3459
units), (F) adaptive, href�/28
(area99%�/3459 units); (G)
fixed h�/2.8 (area99%�/1429
units); (H) adaptive h�/2.8,
area99%�/1445 units); (I) fixed,
hLSCV�/0.12 (area99%�/228
units); and (J) adaptive,
hLSCV�/0.12 (area99%�/215
units).
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k-NNCH coverings accurately maps out the home range

and its associated distributions of points (higher and

lower densities areas arise at random). In particular, k-

NNCH coverings underestimates the area of the square

by 3% for k*�/22 and by 2% when k�/50 (Table 2).

(Note because the points always fall within the defined

unit square, the actual area represented by the points is

always B/1, so the best method should always give a

slight underestimate.) The a-hull method does compara-

tively well in underestimating the area of the square by

5% when a�/3 and only 2% when a�/6.

For the random donut (RD) data (Fig. 4A), our k-

NNCH method continues to provided good estimates of

the area, underestimating it by 5% for the k*-NNCH

(k*�/18) covering and by only 1% for selected 50-

NNCH covering. Kernel methods, on the other hand fail

to locate the hole in all case (Fig. 4E�/H). Further, kernel

methods provide very poor estimates of the RD area

using hREF, overestimating it by 409% in the case of both

the fixed and adaptive kernel methods (Table 2). Even

the ‘‘optimized’’ hLSCV parameter performs poorly,

overestimating the area by 48% for the fixed and 53%

for the adaptive kernel methods (Table 2). Again, the a-

hull method does well in underestimating the area by 8%

when a�/3 and 4% when a�/6, which we can compare

with 5% and 1% underestimates for the k*-NNCH and

50-NNCH constructions respectively (Table 2).

Multimodal data also challenges the construction of

UDs. Although kernel methods are regularly used to fit

distributions to multimodal data, Casear et al. (1999)

have demonstrated that the Thiessen method, employing

a simple Dirichelet tessellations of the data, is superior

to kernel methods in identifying core usage areas. The

Thiessen method itself provides an estimate of area equal

to MCP, which is generally very poor (Bergman and Fox

2003). From Fig. 8, it is clear that kernel methods

perform very poorly in mapping out the home range

distribution of the MC data (Fig. 8A). In the case of

hREF�/28.4, the fixed and adaptive kernel methods

completely fail to identify high use areas (Fig. 8E�/F);

and they overestimate the area by an order of magnitude

(Table 2). In the case of hLSCV�/0.12, the fixed and

adaptive kernel methods yield highly fragmented home

ranges (Fig. 8I�/J); and they underestimate the area by

close to 33% (Table 2). For the completely ad-hoc

intermediate case h�/2.84 the core areas are identified

without unduly fragmenting the home range (Fig. 8G�/

H), but even then very poor representations are obtained

of the shape and size of the core areas and associated

corridors.

Our k-NNCH coverings capture very well the shape of

the core areas and the corridors (Fig. 8B�/C) associated

with the MC data. Additionally, the k*-NNCH covering

identifies both donut holes and only overestimates the

area by 8% (Table 2). The more arbitrary 50-NNCH

covering does not do quite as well: it covers one of the

donut holes and overestimates the area by 41%. For a�/

3, though, the a-hull method, provides an area estimate

matching the 8% performance of the k*-NNCH cover-

ing, except it provides an under rather than an over

estimate. The 3-hull method, however, does not identify

corridors as well as k-NNCH coverings (Fig. 10E),

yielding one fragmented corridor and leaving two of

the remaining three corridors linked by lines rather than

area segments.

A critical weakness of kernel methods is that unlike

hull methods (both the a-hull and k-NNCH construc-

tions) they do not provide convergent area estimates with

increasing number of points. As demonstrated by Sea-

man et al. (1999), this holds even for bivariate normal

data. The problem is much worse for aggregated data

sets, such as AD (Fig. 1A). Rather than reaching an

asymptote, the area estimates get worse in the case of the

hLSCV adaptive kernel method. Specifically, for sub-

samples of 30, 100, 300, and the full 1089 points the

method underestimates the area by 69%, 52%, 68% and

72% respectively (Table 1 �/ Fig. 9B, D, and F) which

should be compared with the converging sequence 62%,

45%, 23% and 12% for the k*-NNCH coverings (Table

1 �/ Fig. 9A, C, and E) and the converging sequence.

Table 1. Estimates of area from k-NNCH coverings and the
99th percentile of LSCV-optimized adaptive kernel distributions
obtained using each of five 30-point, 100-point and five 300-
point randomly sampled subsets of the 1089 points in the AD
data (Fig. 1A).

Sample size k-NNCH Adaptive kernel

k* Area hLSCV Area99%

10 28.9 0.43 27.0
9 26.9 0.60 28.6

30 10 32.7 0.62 25.3
9 26.5 0.49 27.4

10 27.5 0.13 10.0
Mean (SD) 28.4 (2.6) 23.6 (7.7)
Percent error1 �/62% �/69%

11 48.2 0.20 34.1
12 35.3 0.19 29.0

100 9 42.3 0.21 35.0
14 42.9 0.21 33.6
12 39.0 0.30 50.8

Mean (SD) 41.6 (4.8) 36.5 (8.3)
Percent error1 �/45% �/52%

13 54.3 0.10 23.4
16 61.2 0.09 22.3

300 16 58.3 0.09 17.7
12 60.6 0.12 31.5
15 56.3 0.11 25.4

Mean (SD) 58.1 (2.9) 24.1 (5.0)
Percent error1 �/23% �/68%

1089 17 66.0 0.06 20.8
Percent error1 �/12% �/72%

1The percentage of the known actual value that would have to
be added or subtracted (negative numbers) to this value to
obtain the estimated value.
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Beyond the questions of the accuracy and convergence

of area estimates, and of identifying high-density regions

in multimodal data, is the question of the accuracy of the

density isopleths themselves. For example, a plot of

decile isopleths against the number of points actually

bounded by those isopleths should be flat. This is nearly

the case for the k-NNCH constructions plotted in Figs

3B and 7B (AD and RS data), although the lines are

flatter for the smaller than larger values of k because of

rounding errors (the union of groups of k�/N points

into precise decile intervals of size N/10 produces smaller

rounding errors for smaller values of k). The number-of-

points plotted per decile isopleth is not at all flat for the

kernel UDs. Specifically, for the adaptive hREF�/0.78

UD constructed from the AD data, the tails (the first,

second, and last deciles of the distribution) contain at

least twice as many of points as they should, thereby

producing erroneous area (Fig. 3A and C) and density

estimates of the associated UD.

Errors associated with the adaptive hLSCV�/0.06 UD

are even more severe with hardly any points included in

the first seven decile intervals and most of the points in

the last decile interval (Fig. 3B) resulting to nonsensical

area and density plots (Fig. 3A and C). For the RS data,

Fig. 9. k*-NNCH and adaptive
kernel constructions of UDs
using 100-point (A) k*�/11,
(B) hLSCV�/0.33; 300-point (C)
k*�/14, (D) hLSCV�/0.15; and
1000-point (E) k*�/16, (F)
hLSCV�/0.06 sub samples of the
AD data (Fig. 1A). (See Table 1
for information on area
estimates.)
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Fig. 10. For the case a�/3, a-
hull coverings of the 5 data sets
(A) AD (area 38 units), (B) RD
(area 69 units), (C) AS (area
0.50 units), (D) RS, (area 0.95
units) and (E) MC (area 296
units).
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the adaptive kernel UDs now completely underestimate

the number of points in the tail for both the hREF�/

0.026 and hLSCV�/0.077 constructions (Fig. 7B: most of

the points are covered by the seventh and eight decile

intervals in the former case and fourth and fifth deciles

intervals in the latter case). Again, the inability of these

kernel methods to demarcate decile intervals of points

with any reasonable accuracy translates into hopelessly

erroneous area (Fig. 7B) and density (Fig. 7C) plots.

Conclusion

The construction of unbiased high resolution UDs

ultimately depends on the quantity and quality of the

data available, and issues such as serial correlations (De

Solla et al. 1999) and sampling errors affect all methods

to a greater or lesser degree. Modern radio telemetry,

however, provides data in much greater quantities and of

much higher quality than ever before. Thus our k-

NNCH covering, which converges on the true distribu-

tion as the quality and quantity of data increases,

provides a superior alternative to methods such as kernel

methods, which do not converge. Further, we have

demonstrated that k-NNCH provide much better fits

than kernel methods across a spectrum of distributions

of data, from uniform to highly aggregated, and multi-

modal.

Kernel methods perform particularly poorly on ag-

gregated and clustered data. Also, they were unable to

clearly demarcate boundaries and tended to fill in real

holes. We are certainly not the first to recognize this

problem. Creel and Creel (2002), p. 37, for example, in

their application of the adaptive kernel module of the

CALHOME program (Kie et al. 1994) to construct

utilization distributions from GPS data on the move-

ment of wild dogs in Africa state ‘‘. . .[we] modified the

shapes of several home ranges to exclude areas that

could not be used (lakes) . . . [by] overlaying the home

range contours onto a base map of the study area and

cutting out the unusable areas by manual onscreen

digitizing.’’ Further, the poor performance of kernel

methods in estimating home range areas is well docu-

mented (Lawson and Rodgers 1997, Ostro et al. 1999), as

is the problem of non convergence of kernel methods

with increasing sample size to some unbiased area

estimate (Casaer et al. 1999).

Yet kernel methods continue to be widely used. The

reason for this might be that other relatively simple

methods, such as MCP and a-hulls, do not produce

density isopleths; even though an algorithm can be

devised to construct density isopleths associated with a

given a-hull construction. Our k-NNCH does not have

this deficiency and leads directly to the construction of

density isopleths. It appears to provide very good area

estimates for challenging data sets and converges to the

true area as the number of data points increase.

Although a-hull methods, also satisfy this latter prop-

erty, they suffer from the deficiency of not always

including all points within or on the boundary of the

constructed area (i.e. some points may no be included at

all or they may be joined to an area by a line segment).

In short, k-NNCH coverings provide a general approach

to home range and UD construction that is superior to

existing kernel and hull methods, particularly when the

data reflects the existence of real boundaries, is multi-

modal, and topologically complex.
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Appendix

A k-NNCH covering for constructing UDs

Given a set of specified points (vectors) Zn�fzi�
(xi; yi)½i�1; . . .; ng the method begins by constructing

the convex hull associated with each point zi and its

(k�/1) nearest neighbors (i.e. its k-NNCH). The area

covered by each k-NNCH is then calculated and the

points zi are sorted and renumbered according to the

area of the associated local convex hull. This results in a

list L0�f(zi; ck
i ; ai)½i�1; . . .; ng; where ck

i is the name for

the convex hull associated with zi and its (k�/1) nearest

neighbors, and ai the area of ck
i with indices reordered

such that a15a25. . .5an: Then defining the unions

Ck
i �@i

j�1ck
j ; the list L0 is extended to obtain LE�

f(zi; ck
i ; ai; Ck

i ; Ai; Ni)½i�1; . . .; ng; where and Ai is the

area of Ck
i and Ni is the number of points zi associated

with Ck
i (a certain number will lie on the boundary,

defining the boundary elements and the rest will be in

the interior).

The list LE is used to construct percentiles of points

contained in the UD as follows. The densest area

containing at most p% of the points is Ck
i where i is

the largest integer for which Ni5/np/100. If we denote

this value of i by ip, then, for a selected set of values

0Bp1Bp2B. . .Bpm�100 we can construct a corre-

sponding nested set of regions fCk
ip1

;Ck
ip2

; . . .;Ck
ipm�1

;Ck
i100
g

each with area fAk
ip1

;Ak
ip2

; . . .;Ak
ipm�1

;Ak
i100
g to represent

the UD. These areas can be represented graphically and

values tabulated provide a visual and quantitative

characterization of the UD. Of particular interest

are the densities (here we define pi�1�0 and Ak
ip0

�0)
/dk

pi
�(Ak

ipi

�Ak
ipi�1

)=n(pi�pi�1); i�/1,. . .,m, which neces-

sarily are non-increasing with i.

The algorithm was implemented using vector-based

methods in MATLAB v6.12 (Mathworks).

Kernel methods

The standard choice for the smoothing parameter h,

which is known to be optimal for bivariate data (Silver-

man 1986, Worton 1995), is the ‘‘reference’’ value

hREF�/sn�1/6, where s�([s2
x�s2

y]=2)1=2
and s2

x and s2
y

are the variances respectively of the x, and y locations of

the data. For non-bivariate data, the least-squares cross-

validated smoothing parameter value, denoted hLSCV, is

regarded as ‘‘best’’ or ‘‘optimal’’ for the fixed kernel

method: it is the value of h that minimizes the cross-

validation function CV(h) (the formula for this function

is described elsewhere �/ see Silverman 1986, Worton

1995, Seaman and Powell 1996). We found the mini-

mum, as suggested in Worton (1995), by plotting CV(h)

over the range 0.1hREFB/hB/1.5hREF to the desired

degree of accuracy, extending the range if, initially, an

internal minimum was not obtained. For the adaptive

kernel method, following Silverman’s recommendation

that hLSCV is a reasonable choice for the global smooth-

ing parameter useful form for minimizing (also see

Seaman and Powell 1996) we also used hLSCV as our

global smoothing parameter and locally modified as

prescribed for adaptive kernel methods by Silverman

(1986), also see Worton 1995, Seaman and Powell 1996).

We also calculated the areas enclosed by a sequence of

isopleths pi, i�/1,. . .,m�/1, in the same way as we do

for our k-NNCH algorithm, and then calculate the
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densities df
pi

(fixed method) and da
pi

(adaptive method),

i�/1,. . .,m�/1, using the number of points with in the

area bounded by each isopleth divided by the area itself.

Multicore computer-generated data sets

An AD (cf. data set 4) containing 500 hundred rather

than 1089 points (i.e. area�/75.4 with density of 500/

75.4�/6.63 points per unit area) was connected by

the rectangular corridor [95x521]�[45y56]
containing 50 points (i.e. area�/24 with density of 50/

24�/2.08 points per unit area) to an RS (cf. data set 1)

containing 500 points (i.e. area is 64 with density of 500/

64�/7.81 points per unit area). This AD was also

connected by the 50 point [45x56]�[95y521]

corridor (i.e. area�/75.4 with density of 2.08 individuals

per unit area) to a 500 point AS (cf. data set 2) located at

[15x59]�[215y529] (i.e. area�/64 with density of

7.81 individuals per unit area). Finally, both rectangles

were connected by the 25-point corridors [95x521]�
/[245y526] (i.e. density is 25/24�/1.04 points per unit

area) and [245x526]�[95y521] (i.e. area of 12

with a density of 50/12�/1.04 individuals per unit area)

to a 500 point RD (cf. data set 3) centered at (25,25)

(i.e. area of 75.5 with a density of 6.63 points per unit

area). Taking into account that the corridors are not

flush with the donuts, but overlap by approximately 1.9

units of area, the total area of MC is approximately

(2�/64�/2�/75.4�/4�/12)�/4�/1.9:/320 units and the

mean density of points is 2150/320�/6.7 points per unit

area.
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