












taxonomic composition and abundance (10). This
may be the case, for example, if the current sys-
tem can be returned to its long-term state by
reintroducing key taxa or genotypes. Where res-
toration is not possible or desirable (Fig. 1E)—
the situation for perhaps most of the ecosystems
on the half of the planet that humans have trans-
formed and that are changing even more under
current anthropogenic pressures—novel ecosys-
tems also provide many conservation opportunities
(6). By definition, novel ecosystems are distinct
with respect to past ecosystems in terms of tax-
onomic composition; thus, in these cases taxon-
free instead of taxon-based approaches provide
the most effective applications of paleontological
data to inform conservation strategies.
For example, paleontological analyses have

shown that certain body-mass distributions (34),
biomass patterns (29), numbers of species within
trophic and size categories (33, 34), abundance
patterns (61), and ecological networks (62, 63)
are characteristic of mammal communities that
persist for thousands to millions of years, irre-
spective of the constituent species. This knowl-
edge can answer critical questions, which abound,
about the design and long-term viability of novel
ecosystems by considering the constituent species
primarily in terms of ecological function rather
than taxonomic identity. In urban settings, for
example, do domestic cats carry out the function
of extirpated or extinct meso-predators, keeping
rodent and bird populations in check, which
would indicate healthy ecological function, or
is their impact greater than previously present
meso-predators, which might degrade ecosystem
health? In ranchlands, is the biomass of live-
stock within the bounds of long-term megafauna
variation, which once included mammoths and
other extinct large mammals, or is the biomass
of livestock presently greater? In managed relo-
cation experiments, how will the transferred
species affect trophic structure and ecological
networks of the target ecosystems? And in re-
wilding initiatives—which can range from re-
placing “missing” taxa with the same species
[for example, wolves in Yellowstone and the Re-
wilding Europe effort (64)] to building ecosys-
tems from scratch by using functional analogs of
extinct species (65)—what trophic structures and
ecological networks will maximize biodiversity
and ecosystem services and yield a system that
is functionally robust to perturbations, thus keep-
ing maintenance costs at a minimum?
Because taxon-free metrics can often be related

to environmental parameters with statistical sig-
nificance, they offer opportunities for under-
standing which kinds of species are likely to thrive
in which regions as biota adjust to rapidly chang-
ing environmental conditions (Fig. 4). Such mea-
sures have been applied in modern community
ecology (54, 66). In conservation paleobiology,
they have been called “ecometrics” (37, 67–69)
and include studies of both plants and animals,
with a focus on functional traits that are frequent-
ly preserved in the fossil record. For plants, this
includes leaf size and shape (reflects precipitation
patterns), stomatal index (measures equilibrium

with atmospheric carbon dioxide), and phytolith
shape (a proxy for resistance to herbivore use
and whether or not the leaf wax hardened in a
sunny or shady environment). Animal-based traits
include dental morphology (which is a proxy for
diet), locomotor attributes (which show distinct
differences in different environments) (Fig. 4),
and body size (which can reflect climate varia-
bles and nutrition). By focusing on such traits,
it becomes possible to assess the ability of taxa
to persist in particular places under particular
scenarios of rapid environmental change. This
in turn helps in identifying suitable candidates
and locations for managed relocation, restoration,
and rewilding programs (Fig. 1, example E2).
For example, in mammalian carnivore com-

munities, locomotor diversity is known to be
linked to vegetation cover (68, 70), which pro-
vides a valuable predictor of which carnivore spe-
cies will be best suited to areas where climate
change or other human impacts substantially
alter plant communities, and also a metric by
which to identify ecologically impoverished sys-
tems (Fig. 4). The application of such techniques
requires that the linkage between a given trait

and environmental parameter be firmly estab-
lished, which so far has only been done for rel-
atively few traits, especially in vertebrate animals.
Future research that expanded the suite of useful
traits would be valuable.
Taxon-free paleontological measures can also

reveal whether the potential for delivery of eco-
system services is being sustained in novel eco-
systems by tracking metrics that reflect ecological
processes over centennial to millennial time scales,
such as nutrient cycling, biomass, crop production,
water supply, climate regulation, timber, and coast-
al protection (43). Geologically based proxies can
track nutrient cycling, soil formation and stabi-
lization, and erosion (43). As an example, a suite
of 50 paleoenvironmental proxies demonstrated
that since the year 1800, rapid economic growth
and population increases since the mid-20th cen-
tury coincided with environmental degradation
in the lower Yangtze Basin, China (44).
Last, taxon-free paleontological data are crit-

ical for understanding whether certain ecosystems
are approaching ecological thresholds (10, 45)—
so-called “tipping points,” as demonstrated by anal-
ysis of diatoms, pollen, and sediments from lake
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Fig. 5. Pressures affecting wild tigers. (A) Only ~3800 wild tigers remain, confined to only 7% (dark
green) of their historic (light green) geographic range (the white arrow shows the region of Ranthambore
National Park). (B) Present geographic range of wild tigers (white outline) overlain on a map of crop and
pasture lands (darker shades of purple indicate more intensive agricultural use), and on (C) (red outline)
a map of human population density, where darker blues indicate higher density, ranging from ≤1 person/km2

in the lightest colored regions to >10,000 people/km2 in the darkest. (D) Tigers remain mainly in the least
densely populated areas, or in reserves located in novel ecosystems, such as this individual in Ranthambore
National Park, India. By 2050, at least one half billion more people are projected to populate regions that
include tiger reserves.P

H
O
T
O
:
(D

)
A
B
H
IN

A
V
T
YA

G
I

RESEARCH | REVIEW

 o
n 

Fe
br

ua
ry

 2
2,

 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

http://science.sciencemag.org/


cores, which identified a match between math-
ematical models and an ecological state-shift in
Yunnan, China. Another example comes from
Pennsylvania, USA, where feedbacks that caused
deforestation in one area triggered an ecological
state-shift in an adjacent area (10).
The utility of such taxon-free approaches for

conservation paleobiology and predictive ecol-
ogy has been demonstrated over the past dec-
ade by many case studies (71). A challenge going
forward will be to develop a coherent theoretical
framework that takes into account such impor-
tant relationships as the underlying trait distri-
bution, performance filters that define trait fitness
in varying environments, how traits will perform
as environments change (71), spatial and temporal
scaling and demography, and inter- and intra-
specific variability in trait distribution and per-
formance (72).

Emerging conservation applications
for paleobiology
Conservation genetics

Conservation genetics is now being enhanced
through studies of ancient DNA (56, 73). Besides
establishing the long-term range of genetic di-
versity, population fluctuation, and gene flow as
noted above for Yellowstone rodents (Fig. 1, ex-
ample E1) (73), paleontological studies also have
resulted in new methods applicable to contem-
porary conservation problems, notably coalescent
simulation analysis. This technique was devel-
oped to understand the relative contributions
of gene flow and population size in explaining
observed fluctuations in genetic diversity chron-
icled in ancient DNA (73, 74) but is now informing
conservation strategies for presently threatened
species. A case in point is one of the world’s iconic
mammals, tigers (Panthera tigris) (Fig. 5). Most
tigers live in zoos and other captive situations;
only ~3800 remain in the wild, and many of
those are confined to novel ecosystems such as
Ranthambore National Park, which has been
heavily used by humans for more than a thousand
years. Such small reserves can support just a few
individuals, which has led to dwindling genetic
diversity within populations. It has been unclear
whether such bottlenecks presage extinction of
tigers even in the few remaining habitats set
aside for them. Coalescent simulation analyses
used to forecast into the future instead of inter-
preting the past indicate that without substantial
gene flow between reserves, reduced diversity
will likely imperil tigers by the next century, but
that diversity can be maintained and perhaps
even enhanced by aggressively maintaining func-
tional connectivity, physically moving individuals,
and prioritizing breeding among reserves world-
wide (19). Global conservation efforts thus far,
however, tend to prioritize tiger numbers over
connectivity, or focus on maintaining the “purity”
of the genetic composition of tiger subspecies.
Fossils have also figured prominently in ex-

perimentation with so-called “de-extinction” (75)—
efforts to reconstruct facsimiles of species that hu-
mans have driven to extinction either recently (pas-
senger pigeons) or in the deeper past (mammoths).
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Fig. 6. The importance of conservation corridors. Climate change and jurisdictional differences
challenge corridor design. The Yellowstone to Yukon Conservation Initiative (purple outline) spans eco-
systems rapidly transforming from increasing wildfire frequency and forest mortality, both triggered by
global climate change, and two nations where private land confers varying property rights and federal
protected areas are managed by different government agencies. Although multiple jurisdictions com-
plicate enhancing connectivity, such diversity can also contribute to success when the goals of maximizing
biodiversity, ecosystem services, and preserving wilderness come into conflict because each stakeholder
may choose to optimize a different goal, while still contributing to the overall effect of providing a piece of
the corridor.
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Although such efforts may eventually create sci-
entific curiosities, their conservation applications
are at best limited (29), given that (i) the created
genomes would be mostly composed of the base
pairs of the nearest living relatives of the extinct
species; (ii) epigenetic effects are not yet well
understood; (iii) only a few individuals of a given
species could be engineered because the process
is both time-consuming (because of gestation
times) and very expensive; (iv) imparting the
learned behavior that offspring gain from parental
teaching would be impossible, because that knowl-
edge went extinct with the lost species; (v) the
ecosystems that supported many extinct species
no longer exist, so survival outside of captivity
would be difficult or impossible; and (vi) prevent-
ing the extinction of extant species and habitats
numbering in the thousands already is challeng-
ing, so the prospects of sustaining “de-extincted”
species are poor at best. Genetic engineering to
simulate extinct life also raises ethical and legal
concerns for many (76).

Invasive species

Whether invasive species substantially alter eco-
logical structure and function is a critical conser-
vation question that can only be answered with
a paleontological perspective. For instance, in
California grassland ecosystems, historic cattle
introduction transformed historic ecosystems into
novel ones; as cattle populations grew, grazing
megafauna biomass rose far above prehistoric
levels, precipitating a functional shift in grazing
pressure that favored replacement of native an-
nual grasses by invasive species (Fig. 1, example
E4) (77). The fossil record also can help inform
controversial management decisions (41), such
as whether wild horses on western North Amer-
ican ranch lands are invasive because they have
been absent for most of the Holocene, or native
because they evolved in those regions and were
for millions of years an integral component of
the ecosystems in which they are now thriving.

Enhancing connectivity

Corridors designed to connect protected areas,
such as the Yellowstone to Yukon Conservation
Initiative (Fig. 6), are critical today (4, 78) and
will be become even more so in the near future
because one tenth to one half of global terres-
trial area is highly vulnerable to biome shifts in the
21st century (79), whereas refugia in existing pro-
tected areas cover only 1 to 2% of global land (78).
Therefore, a new perspective is that effective cor-
ridor design (Fig. 1, example E5), besides taking
into account present land-use, will need to iden-
tify key areas that have served as refugia in pre-
history (80) and anticipate ecological changes that
will inevitably take place as climate changes (81).
Anticipating the future efficacy of corridors

generally uses species distribution modeling
(82). Most species distribution models rely on
matching present or near-historic occurrences
of a given species with nearby climatic param-
eters to estimate the ecological niche. Recent
work that uses the same models combined with
paleontologic, geologic, and paleoclimatic data

to hindcast where species could have occurred
over the past several thousand years (35, 42) re-
veals that in many cases, existing models do not
adequately project where species may move in
the future. In addition, incorporating prehistoric
distributional information helps quantify the prob-
ability of errors (10). Using the fossil record to
refine species distribution models requires pa-
rameterizing the climate models with appropriate
boundary conditions as well as adequate dating
control, which is now routinely achievable with
accelerator mass spectrometry radiocarbon dates
that place the age of critical fossils within decades.
The paleobiological approach can further im-

prove species distribution models by incorporat-
ing information on trait-environment connections
and/or persistent associations of taxa—that is,
groups of two or more taxa that co-occur in fossil
localities distributed widely through time and
space. Current models rely primarily on climatic
parameters alone to estimate niche space. Such
paleontologically enhanced species distribution
models can also be helpful in informing efforts
to relocate species into suitable environments,
ranging from managed relocation experiments
that aim to save threatened species to choosing
which trees to plant in urban and suburban land-
scaping in order to jump-start dispersal in antic-
ipation of future climatic conditions.
Even with ideal corridors, however, species

will not all respond in concert as climate changes,
a lesson made clear by the fossil record (10).
Some species will move quickly, some slowly,
and some not at all, and species will key on dif-
ferent aspects of global change, such as temper-
ature, humidity, or biotic interactions. Effective
corridors will maximize the opportunities for such
natural adjustments to proceed, even though the
end result will be species assemblages almost cer-
tainly different than current or historical ones.

Conservation policy implications

Laws and governmental policies have played a
critical role in conservation. Examples are numer-
ous, ranging from the court-mediated Endangered
Species Act in the United States, to extremes such
as the “shoot-to-kill” policy for poachers in South
Africa and Kenya. An open question under very
rapid global change, however, is whether exist-
ing policies and laws are adequate to facilitate
managing for the adaptive capacity of ecosys-
tems, as opposed to simply mandating the pres-
ence of certain species (9, 83, 84). Answering
that question will require concerted interactions
among conservation biologists, paleobiologists,
and the policy and law communities nationally
and internationally. A key challenge for paleo-
biologists and conservation biologists will be iden-
tifying ecological metrics that are meaningful
for legislation.

Conclusions and outlook

Effective conservation of biological resources now
involves understanding and anticipating change
in ecological systems in terms of adaptive ca-
pacity and ecosystem structure and function,
knowledge that will become even more impor-

tant in the future. The path forward requires
enhanced use of information from the fossil and
rock records in conservation planning and prac-
tice, combined with the coordination of conser-
vation efforts situated in historical and novel
ecosystems. Future efforts need to clearly dif-
ferentiate between historical and novel ecosys-
tems, identify key resiliencies and features of
past ecosystems that may be generally applica-
ble to the future, and characterize the functional
interactions that persist in ecosystems for at least
thousands of years. All of these tasks require
integrating information from paleobiology, Earth
sciences, and conservation biology through use
of both taxon-based and taxon-free analyses that
allow parallel characterization and comparison
of contemporary and past ecosystems. Taxon-free
methods—which allow comparisons of functional
attributes of past, present, and future ecosystems,
regardless of the species involved—may prove
especially useful for conservation efforts in novel
ecosystems and for calibrating the extent of
functional change that historical ecosystems
will experience under ongoing and future global
pressures. In addition to implementing these
new approaches to conservation, it will be es-
sential to deal with the root causes of the con-
servation crisis—rapid human population growth,
overconsumption of goods and resources, and
climate change—in order to keep nature diverse,
adaptive, and able to fulfill the needs of the bil-
lions of people for whom Earth is the only home.
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