Biological Invasions: a threat to California Ecosystems

- Taught by Dr. Matteo Garbelotto
 - Matteog@berkeley.edu
 - Office: Third floor Hilgard Hall
 - Office hours: by appointment

Course info

- One two hour lecture per week
- One quiz every week on previous lecture
- Tainter and Baker Forest Pathology book
- Some readings will be posted on the Lab's Web site: <u>www.matteolab.org</u>
 - » Link to UCB course
 - » POWERPOINT LECTURES, assigned readings
 - » Posted on Fridays

Course info

- One final quiz (3 questions out of 9)
- Possibility to improve grade by writing paper (5 pages)
- One computer lab: use of software for genetic analyses
- One field activity Saturday April 11th: participation in UCB SODBLITZ (www.sodblitz.org)

GRADING

- 25% class participation
- 25% weekly quizzes
- 25% final quiz
- 25% field activity participation

EMERGENT FOREST DISEASES: ARE THEY A THREAT TO NATIVE ECOSYSTEMS?

- Intro to Disease
- Native Diseases
- Invasive fungi and emergent disease I
- Invasive fungi and emergent disease II
- Exotic CA pathogens (EPCA): White Pine Blister rust
- EPCA:Dutch Elm Disease
- EPCA: Pine Pitch Canker, Colored Canker of Sycamore

- EPCA: Sudden Oak Death
- Genetic Analyses of Invasive spp
- EPCA: Other invasive Phytophthoras
- Habitat change: Annosum root rot
- Host change: Cypress canker; Armillaria root Rot
- Newly introduced disease and US introduced: Xylella, 1000 canker, Phragmidium violaceum, Chestnut blight
- Finals

EMERGENT FOREST DISEASES: ARE THEY A THREAT TO NATIVE ECOSYSTEMS?

> Matteo Garbelotto U.C.Berkeley

Disease: injurious physiological activity caused by the continuous irritation by a primary causal factor and expressed in characteristic pathological conditions called symptoms

Disease: any disturbance of a plant that interferes with its normal, structure, function or economic value

Primary causal factor=agent

ABIOTIC

BIOTIC (incl. VIRUSES)

Maple scorch

Premature needle yellowing and loss on ponderosa pine

Ozone mottle

Loss of vigor in ponderosa pine exposed to ozone

Smog symptoms on ponderosa pine in southern California

Advanced smog symptoms on ponderosa pine

Smog in San Bernardino Mountains

Acute SO₂ injury

Ash

Persimmon

BIOTIC DISEASES caused by:

Parasitic plants Bacteria Fungi Oomycetes Viruses

Nematodes

Tree of Life, from Patterson & Sogin, 1992

Phorodenron villosum on oak

Leafy mistletoe

Phoradendron pauciflorum on white fir

Phorodendron libocedri on incence cedar

Figure 5.1 – World distribution of *Arceuthobium*. The distribution is primarily in the Northern Hemisphere, crossing the Equator only in Kenya.

Large number of species because of high host specificity

Arceuthobium campylopodum on Jeffrey pine

Arceuthobium douglasii on Douglas-fir

Male flowers

Mature female shoots - seeds

Explosive seed dispersal of Arceuthobium

BACTERIA

Prokaryotes Unicellular Variously shaped Do not produce spores Reproduce by binary fission

Genetic elements

Chromosome (single one, circular)

Plasmids

Primary mechanisms of variation

Mutations

Loss/acquisition of plasmids and transposons

Recombination through: transformation (incorporation in Chromosome of plasmid DNA; conjugation (incorporation of DNA from another bacterium); transduction (incorporation through bacterial viruses called bacteriophages)

Phytoplasma

Prokaryotes lacking a cell wall (MLOs - *Mollicutes*)

Usually vascular pathogens

Generally vectored by insects

VIRUSES and VIROIDS

Submicroscopic parricles always intracellular when in the host, infectious and pathogenic

They comprise

Nucleic Acids (RNA or DNA) and a capsid protein

Viroids instead are simply constituted by a single RNA molecule, they do not code for or possess proteins

Nucleic acid: ssRNA, dsRNA, ssDNA, dsDNA

Protein capsid: protects virus during transport

VIRAL REPLICATION

The genome of the virus codes for:

- 1- capsid protein;
- 2- polymerase;
- 3- protein for intracellular movement;
- 4- proteins involved in transmission and relationship with vectors

ssRNA+

